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Temporal Databases

INTRODUCTION

Time is a ubiquitous aspect of real world phenomena 
and most computer applications require the manage-
ment of time-varying information (e.g., processing of 
scientific and census data, banking and financial trans-
actions, record-keeping and scheduling applications). 
Hence, the management of the temporal dimension 
has become a recognized important requirement of 
advanced database applications, in which the evolu-
tion of dynamic objects has to be represented in full 
relief and non-destructive changes must be applied to 
data. The advent of increasingly large and inexpensive 
storage devices has been the technological spring for 
the introduction of systems maintaining historical data 
and keeping track of past activities.

In this article we will briefly resume and discuss 
the main scientific results in the field of temporal 
databases. In particular, we will survey the features of 
proposed temporal data models based on extensions of 
the relational model and of temporal query languages 
based on extensions of the SQL standard, which are the 
most relevant for mainstream application development. 
Finally, we will survey the currently available imple-
mentations of temporal facilities in DBMS platforms.

BACKGROUND

Temporal databases have been an active research area 
for several decades, primarily focusing on temporal 
extensions of data models and query languages but 
also considering several other aspects of database 
technology. Extensions have been proposed mainly 
for the relational data model but also for object-
oriented, XML, RDF and conceptual models like the 
Entity-Relationship model. A quite large literature, 
with pioneering works published in the early 1980s, 
is the outcome of such an effort as witnessed by 
several surveys and bibliographies (the latest thereof 

is Grandi (2012)), which also includes references to 
previous ones).

All extensions are based on the adoption of one or 
more time domains of interest for applications, whose 
values are used to assign a temporal pertinence (e.g., 
as timestamps) to data. The most popular and relevant 
time dimensions are valid time and transaction time 
(Jensen et al., 1998):

•	 The valid time of a fact is the time when the 
fact is true in the modeled reality.

•	 The transaction time of a fact is the time when 
the fact is stored in the database.

A database equipped with both valid and transac-
tion time is said to be a bitemporal database. In a 
temporal database, a snapshot relation is a traditional 
relation, without time support. Further time dimensions 
(e.g., event/decision time, efficacy time or generic 
“user-defined” time) have also been considered in 
some application fields. For the modeling of a time 
domain, several aspects have been taken into account 
and studied, concerning its structure and features (e.g., 
discrete versus dense, linear versus branching, finite 
versus unbounded, besides granularity, periodicity, 
indeterminacy or probability, calendar support), and 
special values have been defined and characterized (e.g., 
“beginning,” “now,” “∞,” “until changed”). In order 
to exploit the potentialities of a temporal database in 
applications, several temporal query languages (e.g., 
SQL extensions) have been proposed.

A milestone for the foundation and development 
of the discipline was the International Workshop on 
an Infrastructure for Temporal Databases, which was 
organized in 1993 under the auspices of the U.S. ARPA/
NSF. As a side initiative, a panel of experts gathered 
to discuss and compile a consensus glossary of widely 
used technical terms specific to the temporal databases, 
which was published in 1994. A consolidated, revised 
and extended version of the glossary (Jensen et al., 
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1998) came to light after the Dagstuhl Seminar on 
Temporal Databases held in 1997. Another follow-up 
of the ARPA/NSF workshop was the setting up of a 
committee, chaired by Richard Snodgrass, in charge 
of designing a temporal extension of the standard 
query language SQL-92: the TSQL2 Language Design 
Committee produced a first draft in 1994 and the final 
TSQL2 specification was published in a book (Snod-
grass et al., 1995). Parts of TSQL2 were accepted by 
ANSI and included in a substandard of SQL3 named 
SQL/Temporal. Due to disagreements within the ISO 
committee, the project responsible for temporal support 
was canceled in 2001. However, concepts and constructs 
from SQL/Temporal were subsequently included in the 
latest SQL standard published in 2011 and have been 
implemented in several database platforms.

Temporal database studies have little by little en-
tered into practice, as mainstream commercial DBMSs 
currently include some support for time-referenced 
data and temporal query facilities.

TEMPORAL EXTENSIONS OF THE 
RELATIONAL MODEL AND OF SQL

Temporal Data Models

Time can be associated with data in several different 
ways. In an extension of the relational model, time 
points, intervals or temporal elements (i.e., disjoint 
unions of intervals) can be used as timestamps. Tempo-
ral elements have been defined by Gadia (1988) in order 
to have a closed algebra of timestamp operators (differ-
ently from intervals, union and difference of elements 
is always an element). Moreover, tuple-timestamping 
or attribute-timestamping can be used (giving rise to 
also called homogenous and inhomogeneous models, 
respectively). In the former case, timestamps can be 
stored in implicit or explicit columns added to the table 
schema. In the latter case, a nested relation structure 
is needed to encode timestamping.

Let us consider, as simple example, the career of 
an employee which follows:

1. 	 John was hired as a programmer (PRG) with 
initial salary 2K at time 1;

2. 	 John’s salary was raised to 3K at time 3 (but 
recorded in the DB at time 4);

3. 	 John became a database administrator (DBA) at 
time 6.

Notice that (b) involves a retroactive update. This 
information can be stored in a valid-time, transaction-
time or bitemporal table as shown in Figure 1 (tuple-
timestamping with intervals is adopted; “−” means 
“until changed” or “forever” in valid time and “now” 
or “until changed” in transaction time). As it can also 
be verified from the figure, a valid-time relation al-
lows users to effect retro- or pro-active changes, that 
is changes non necessarily effective when they are 
executed (but for which there is no way to know, after 
they were effected, whether they were on-time, retro- or 
pro-active). A transaction-time relation only allows to 
effect on-time changes, or it would be better to say that 
changes can only be interpreted as they were effective 
when applied (in our example, from Figure 1(2), it seems 
that John started earning 3K from time 4 and there is 
no way to see that arrears from time 3 were due). A 
bitemporal relation allows users to effect retro- and 
pro-active changes and to keep track of them (e.g., a 
tuple with valid start lesser than transaction start marks 
the result of a retroactive change). In the presence of 
retro- or pro-active changes, a bitemporal database only 
provides for full auditing and accountability.

The same data as in the valid-time relation of Fig-
ure 1(1) can also be represented as shown in Figure 
2 by adopting other temporal modeling solutions. In 
particular, the representation in Figure 2(2), which is 
also representative of interval-timestamping employed 
at attribute level, corresponds to the case of a tempo-
rally grouped or history-oriented model (Clifford et al., 
2005). In a grouped model, the temporal dimension is 
implicit in the structure of data representation and data 
objects are substituted by their histories: attributes can 
be regarded as functions that map time into domains 
(Gadia, 1988). Grouped models and query languages 
have been shown to be more expressive and friendly 
for human users. They do not lend themselves to imple-
mentation in a 1NF relational DBMS, but they have 
been proposed for implementation in nested relational 
or XML DBMSs (Wang, Zaniolo, & Zhou, 2005). 
Temporal models based on addition of timestamping 
columns are ungrouped indeed.

Another distinction involves point-based versus 
interval-based data models. In a point-based model, 
truth values of facts are associated to time points, 
whereas time intervals can be used merely as a compact 
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representation or normalization tool (overlapping or 
adjacent timestamps of value-equivalent tuples can 
be merged via a coalescence operator into maximal 
intervals in order to produce a canonical representa-
tion). Querying in a point-based data model has the 
same expressive power of first-order temporal logic 
languages (Toman, 1996). In a strong interpretation 
of an interval-based model, interval timestamps are 
interpreted as indivisible as it is required for the so-
called telic temporal data (Terenziani & Snodgrass, 
2004). Telic facts, that represent accomplishments 
or achievements (like “the Golden Gate bridge was 
built from January 1933 to April 1937”), are true on 
an interval but false on any subinterval of it. On the 
contrary, atelic facts true on an interval are also true on 
any subinterval (e.g., “John worked as DBA in 2013”), 
lending themselves to be represented in a point-based 
data model. Temporal data of interest for management 
applications are usually atelic-type. In a weaker and 
more practical conception of interval-based model 
(Böhlen, Busatto, & Jensen, 1998), individuality of 
argument time intervals has to be preserved as much as 
possible by operators, as boundary points of an interval 

timestamp are reminiscent of their provenance from 
significant change events.

The adoption of temporal elements as timestamps 
is usually done in the framework of a point-based 
semantics. According to the approach of Jensen, Soo 
and Snodgrass (1994), a unifying data model called 
BCDM (Bitemporal Conceptual Data Model), based 
on temporal-element timestamping, can be defined 
at conceptual level and then mapped, at logical level, 
on different representational data models, which are 
designed with implementation in mind (e.g., based on 
interval-timestamping at tuple level, or on element-
timestamping at attribute level indeed, rather than on 
backlogs, etc.). The structure of the chosen represen-
tational data model will reflect, at user interface level, 
on the required query language features (leading to the 
definition, according to Chomicki (1994), of a concrete 
temporal query language).

For temporal data models, temporal integrity 
constraints also involving notions of temporal key and 
referential integrity, temporal dependencies and normal 
forms have also been proposed.

Temporal Query Languages

If timestamps are added as explicit columns and, thus, 
can be treated in the same way as the other attributes at 
query language level, temporal data could be manipu-
lated via standard SQL (Snodgrass, 1997). On the other 
hand, although not strictly necessary, special additional 
predicates and functions for manipulation of time (seen 
as a new abstract data type in SQL) can be provided 
as language extensions, basically to simplify the life 
of programmers. A further step is the full support of 
a period data type, which can be used for encoding 
interval-timestamps in a single column (endorsing an 
interval-based data model). If timestamps are added in 
an implicit way (i.e., they are inherent to the data model 
as in the case of TSQL2), special constructs have to 
be added to the query language and/or the semantics 
of some standard constructs has to be reconsidered in 
order to support temporal queries. The same applies 
to grouped data models.

Abstaining here from the subtle distinction be-
tween upward compatibility and temporal upward 
compatibility (Böhlen, Jensen, & Snodgrass, 2000), 
a temporal query language can be said to be upward 
compatible with SQL if non-temporal queries that can 

Figure 1. John’s career data represented in a valid-
time (1), transaction-time (2) and bitemporal (3) table

Figure 2. The valid-time history of John’s career rep-
resented via point-based tuple-timestamping (1) and 
by means of a temporally grouped model (2)
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be executed on the current snapshot of the database can 
also be executed on the temporal database and produce 
the same results. Upward compatibility is intended to 
guarantee a smooth migration of legacy applications 
and data to a temporal DBMS.

Some consistency notions for temporal query 
languages, or temporal algebraic operators on which 
query languages can be built upon, rely on the fact that 
a temporal relation can also be viewed as made up of a 
sequence of timestamped snapshot relations. Enforce-
ment of the mutual consistency of the two viewpoints 
along the time axis leads to the notion of snapshot 
reducibility, that holds if each snapshot in the result 
of a temporal operator is equivalent to the result of the 
non-temporal counterpart of the same operator evalu-
ated on the corresponding snapshot of the argument 
relation(s). Hence, if interval timestamping is adopted, 
the timestamps of the argument tuples are taken into 
account when forming the interval timestamps associ-
ated to the result tuples (e.g., interval intersection is 
used when executing a join). Enforcement of snapshot 
reducibility gives rise to a sequenced semantics in 
query execution.

However, snapshot reducibility does not apply to 
queries involving predicates and functions over the 
timestamps of argument relations, where snapshots 
valid at different times have to be mixed in their evalu-
ation, which provide full temporal expressivity to a 
query language (e.g., to retrieve employees who were 
programmer before becoming DBA, which requires 
a non-sequenced semantics to evaluate). Moreover, 
preservation of the individuality of argument time in-
tervals (i.e., to respect the weak form of interval-based 
semantics) has also been individuated as a desirable 
property of queries. In order to characterize the correct-
ness of such kinds of queries too, the concepts of ex-
tended snapshot reducibility and change preservation, 
respectively, of query languages have been introduced 
(Dignös, Böhlen, & Gamper, 2012). Enforcement of 
extended snapshot reducibility by means of timestamp 
propagation (consisting in copying timestamp values 
to additional columns to be dealt with as non-temporal 
attributes) allows non-sequenced queries to be executed 
with a sequenced semantics. Enforcement of change 
propagation corresponds to the most correct, respectful 
of provenance, application of the sequenced semantics 
to data with true interval-timestamping.

In TSQL2, syntactic defaults have been embed-
ded in the language specification in order to make the 

formulation of common temporal queries easier. For 
instance, intersection of the valid times of all the rela-
tions involved in a query to be assigned as timestamp to 
the results is automatically effected, yielding snapshot 
reducibility and enforcing a sequenced semantics by 
default (which, however, can be overridden by making 
timestamps explicit via direct reference to their values 
in expressions, or with a custom temporal projection 
specification). The period type and also temporal 
elements are fully supported, with a point-based per-
spective. Temporal selection is supported by means 
of predicates for (also mixed) time point, period and 
element comparison to be employed in the WHERE 
clause (namely OVERLAPS, =, CONTAINS, PRE-
CEDES and MEETS) and of ancillary functions and 
constructors for management of time values.

An outstanding feature of TSQL2 is the availability 
of an implicit grouping mechanism with automatic 
timestamp coalescence for range variables declared in 
the FROM clause. For instance, the (non-sequenced) 
query which follows uses range variable declarations 
to conveniently retrieve the name of all the employees 
who changed job without a salary increase, together 
with the date of such a change:

SELECT SNAPSHOT Emp.Name, 
BEGIN(VALID(Job2)) 
FROM Employee(Name) AS Emp, 
Emp(Job,Salary)(PERIOD) AS Job1, Job2  
WHERE Job1.Job <> Job2.Job  
  AND Job1.Salary >= Job2. Salary 
  AND VALID(Job1) MEETS VALID(Job2)

Range variables Job1 and Job2 bind to maximal 
groups of consecutive tuples in the history of the 
same employees, having a common value of Job and 
Salary attributes. The selection predicates force Job1 
and Job2 to represent consecutive interval “versions” 
with different jobs and non increasing salary within 
such histories. The SNAPSHOT keyword in the target 
list forces implicit timestamps to be projected out from 
the returned tuples. If tuples are grouped on the time-
invariant key of the relation (as for Emp in the example), 
this corresponds to superimpose a temporally grouped 
view over stored data (Clifford et al., 1995), with the 
possibility of declaring history variables and denot-
ing versions within such histories. However, TSQL2 
generalizes the grouping mechanism to arbitrary sets 
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of attributes and nesting levels, enabling an easy 
writing of very complex and powerful queries (e.g., 
involving the so-called restructuring (Gadia, 1986) of 
a temporal relation).

Moreover, TSQL2 was also designed to support 
event tables, temporal aggregates, multiple calendars 
and calendric systems, temporal indeterminacy, mul-
tiple temporal granularities, schema versioning and 
vacuuming (Snodgrass et al., 1995).

The direct successor of TSQL2, ATSQL (Böhlen, 
Jensen, & Snodgrass, 2000), introduces statement 
modifiers to override the TSQL2 defaults and make 
crystal clear the usage of a sequenced or non-sequenced 
semantics of execution, according to the explicit user 
specification.

The main criticism moved against TSQL2 and its 
successors, ATSQL and SQL/Temporal, proposed as 
SQL standard extension (Darwen & Date, 2006) con-
cerned the adoption of hidden timestamp columns and 
the usage of the statement modifiers. A temporal SQL3 
counterproposal submitted to ISO in 1995 was based 
on the IXSQL language (Lorentzos & Mitsopoulos, 
1997). IXSQL supports a generic interval data type, 
which can be used for adding timestamps to temporal 
tables. Normalization of timestamps is enforced by 
means of two functions: fold and unfold. In order to 
execute a temporal query, unfold can be used to split 
interval-timestamped tuples into value-equivalent sets 
of point-timestamped tuples (e.g., converting the table 
in Figure 1(1) to the table in Figure 2(1)), before non-
temporal operators can be applied, without distinction 
between non-temporal and time attributes, to execute 
the query. After the execution, fold is eventually used 
to merge timestamps of value-equivalent tuples into 
maximal intervals. Although IXSQL is interval-based in 
nature, when using the unfold operator, the underlying 
data model becomes point-based and change preserva-
tion does not hold, but extended snapshot reducibility 
can be supported. Application of a sequenced or non-
sequenced semantics depends on the user’s query.

Temporal Facilities in the SQL 
Standard and Commercial DBMSs

One of the main features of the new SQL:2011 (ISO/
IEC 9075:2011) standard is improved support for 
temporal databases. In SQL:2011 (Kulkarni & Mi-

chels, 2011), transaction time support is granted by 
“system-versioned period tables” and valid time support 
is granted by “application-time period tables” (so that 
“system-versioned application-time period tables” are 
bitemporal tables). As far as the underlying temporal 
data model is concerned, the main difference with 
TSQL2 is that there is no new data type for time intervals 
(or elements) used as hidden dimensional column but 
two explicit date or timestamp columns can be declared 
together as tuple interval timestamp with a PERIOD 
FOR construct. Temporal keys and referential integrity 
constraints are supported. For instance, the schema of 
a table the most similar to the one in Figure 1(1) can 
be declared in SQL:2011 as follows:

CREATE TABLE Employee( 
   Name VARCHAR(20), Job VARCHAR(20), 
Salary INTEGER, 
   VTStart DATE, VTEnd DATE, PERIOD 
FOR VT (VTStart, VTEnd), 
   PRIMARY KEY (Name, VT WITHOUT 
OVERLAPS))

For querying, temporal predicates for interval 
comparison quite similar to the TSQL2 ones (namely 
OVERLAPS, CONTAINS, PRECEDES, SUCCEEDS, 
IMMEDIATELY PRECEDES and IMMEDIATELY 
SUCCEEDS) are provided. A validity can be specified 
by users in UPDATE and DELETE statements (e.g., to 
specify retro- or pro-active modifications).

As far as implementation of temporal database 
functionalities in relational DBMSs on the market is 
concerned, as of November 2013, we can compile the 
list that follows.

•	 IBM DB2, since the version 10 for z/OS re-
leased in 2010, includes built-in support of the 
period data type, valid and transaction time, 
upward compatibility, temporal primary keys, 
sequenced queries, in a manner very simi-
lar to that proposed for SQL/Temporal. From 
the latest DB2 version 10 for Linux, Unix and 
Windows released in 2012, adherence to the 
SQL:2011 standard has been introduced (“ap-
plication time” has been dubbed as “business 
time”).
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•	 Oracle has provided support for temporal ap-
plications from the version 9i of 2001. In the 
latest version 12c, Oracle Workspace Manager 
enables application developers and DBAs to 
manage temporal data, with support of the 
period data type, valid-time, transaction-time 
and bitemporal tables, temporal primary keys, 
uniqueness and referential integrity constraints, 
sequenced and non-sequenced queries and up-
dates, in a manner quite similar to that pro-
posed for TSQL2 and SQL/Temporal.

•	 PostgreSQL has a couple of open-source con-
tributed packages that can be installed in the 
database to manage temporal data: Temporal 
PostgreSQL and Temporal Tables Extension. 
The former basically adds temporal data types, 
functions and operators, whereas the latter 
adds transaction-time support in its current 
version, but is part of a project that aims at pro-
viding a full SQL:2011-compliant bitemporal 
extension.

•	 TimeDB is a free temporal relational DBMS 
by TimeConsult, implemented from the version 
2.0 as a Java API designed to run as a fron-
tend for Oracle. TSQL2/ATSQL statements 
(queries, updates, and assertions) are compiled 
into (sequences of) SQL-92 statements which 
are executed by the backend via JDBC, which 
makes it also compatible with other commer-
cial platforms including IBM-Cloudscape and 
Sybase. TimeDB guarantees upward compat-
ibility and provides support of bitemporal 
tables.

•	 Teradata Database, from the version 13.10 re-
leased in 2010, includes support of the period 
data type, valid and transaction time, temporal 
upward compatibility, temporal primary keys 
and referential integrity constraints, non se-
quenced and sequenced queries, in a manner 
similar to that proposed for TSQL2 (almost 
identical to that proposed for SQL/Temporal).

Support of bitemporal data is also provided in the 
Bloomberg-PolarLake Data Management Platform, or 
can be added to a DB without native support through 

the adoption of the Asserted Versioning Framework 
middleware or the usage of the Anchor Modeling 
database design tool.

Furthermore, some vendors provide tools that, in 
practice, can be used to add transaction-time temporal 
database facilities to leading DBMSs by working on 
their log files. These include IBM-SQL Replication 
for DB2, Lumigent-LogExplorer and ApexSQL-Log 
for Microsoft SQL Server, ASG-Time Navigator for 
most mainstream DBMSs as DB2, MySQL, Oracle, 
PostgreSQL, SQL Server and Sybase.

FUTURE RESEARCH DIRECTIONS

Future research should follow the direction of a seamless 
extension of temporal data base and query language 
solutions with advanced aspects still lacking in current 
standards and implementations, including, for instance, 
support of temporal elements, history-oriented (tempo-
rally grouped) view on data and change preservation. 
Implementation of temporal database functionalities 
and their integration with industrial-strength DBMS 
technology have not reached their maturity yet, and 
further research and development efforts in this direc-
tion are required in the next years.

CONCLUSION

In this article, we reviewed some of the most promi-
nent theoretical results and practical achievements 
of research in the temporal database field. Although 
extensions required to any components of database 
technology have been studied, we focused on proposed 
temporal extensions of the relational model and of 
the SQL standard, discussed their main features and 
surveyed their emerging implementations in currents 
DBMSs. The considered aspects are the most relevant 
from the viewpoint of database application develop-
ment. In particular, we showed that state-of-the-art 
temporal database solutions are often heritage of 
different research proposals (e.g., either TSQL2-like 
and IXSQL-like features can be found in commercial 
systems), in the quest for the best trade-off between 
theoretical soundness, user friendliness and imple-
mentation efficiency.
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KEY TERMS AND DEFINITIONS

Bitemporal Table: A relational table with sys-
tem support of one valid- and one transaction-time 
dimension.

Temporal Database: A database with built-in 
support for managing time-varying data.

Temporal Data Model: A data model for the 
representation of time-varying data.

Temporal Query Language: A query language 
that allows manipulation of time-referenced data.

Transaction Time: Temporal dimension concern-
ing when some data is current in the database.

Transaction Time Table: A relational table with 
system support of one transaction time dimension.

TSQL2: A temporal extension of the SQL standard 
designed by a committee of temporal database experts 
chaired by R.T. Snodgrass in 1995.

Valid Time: Temporal dimension concerning when 
some fact is true in the modeled reality.

Valid Time Table: A relational table with system 
support of one valid time dimension.


