
Encyclopedia of
Information Science and
Technology, Third Edition

Mehdi Khosrow-Pour
Information Resources Management Association, USA

A volume in the

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2015 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
			 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.�

Encyclopedia of information science and technology / Mehdi Khosrow-Pour, editor.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-1-4666-5888-2 (hardcover) -- ISBN 978-1-4666-5889-9 (ebook) -- ISBN 978-1-4666-5891-2 (print &
perpetual access) 1. Information science--Encyclopedias. 2. Information technology--Encyclopedias. I. Khosrow-Pour,
Mehdi, 1951-
 Z1006.E566 2015
 020.3--dc23
 2014017131

Managing Director:
Production Editor:
Development Editor:
Acquisitions Editor:
Typesetter:
Cover Design:

Lindsay Johnston
Jennifer Yoder & Christina Henning
Austin DeMarco & Jan Travers
Kayla Wolfe
Mike Brehm, John Crodian, Lisandro Gonzalez, Deanna Zombro
Jason Mull

Category: Data Mining and Databases

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

1914

Temporal Databases

INTRODUCTION

Time is a ubiquitous aspect of real world phenomena
and most computer applications require the manage-
ment of time-varying information (e.g., processing of
scientific and census data, banking and financial trans-
actions, record-keeping and scheduling applications).
Hence, the management of the temporal dimension
has become a recognized important requirement of
advanced database applications, in which the evolu-
tion of dynamic objects has to be represented in full
relief and non-destructive changes must be applied to
data. The advent of increasingly large and inexpensive
storage devices has been the technological spring for
the introduction of systems maintaining historical data
and keeping track of past activities.

In this article we will briefly resume and discuss
the main scientific results in the field of temporal
databases. In particular, we will survey the features of
proposed temporal data models based on extensions of
the relational model and of temporal query languages
based on extensions of the SQL standard, which are the
most relevant for mainstream application development.
Finally, we will survey the currently available imple-
mentations of temporal facilities in DBMS platforms.

BACKGROUND

Temporal databases have been an active research area
for several decades, primarily focusing on temporal
extensions of data models and query languages but
also considering several other aspects of database
technology. Extensions have been proposed mainly
for the relational data model but also for object-
oriented, XML, RDF and conceptual models like the
Entity-Relationship model. A quite large literature,
with pioneering works published in the early 1980s,
is the outcome of such an effort as witnessed by
several surveys and bibliographies (the latest thereof

is Grandi (2012)), which also includes references to
previous ones).

All extensions are based on the adoption of one or
more time domains of interest for applications, whose
values are used to assign a temporal pertinence (e.g.,
as timestamps) to data. The most popular and relevant
time dimensions are valid time and transaction time
(Jensen et al., 1998):

•	 The valid time of a fact is the time when the
fact is true in the modeled reality.

•	 The transaction time of a fact is the time when
the fact is stored in the database.

A database equipped with both valid and transac-
tion time is said to be a bitemporal database. In a
temporal database, a snapshot relation is a traditional
relation, without time support. Further time dimensions
(e.g., event/decision time, efficacy time or generic
“user-defined” time) have also been considered in
some application fields. For the modeling of a time
domain, several aspects have been taken into account
and studied, concerning its structure and features (e.g.,
discrete versus dense, linear versus branching, finite
versus unbounded, besides granularity, periodicity,
indeterminacy or probability, calendar support), and
special values have been defined and characterized (e.g.,
“beginning,” “now,” “∞,” “until changed”). In order
to exploit the potentialities of a temporal database in
applications, several temporal query languages (e.g.,
SQL extensions) have been proposed.

A milestone for the foundation and development
of the discipline was the International Workshop on
an Infrastructure for Temporal Databases, which was
organized in 1993 under the auspices of the U.S. ARPA/
NSF. As a side initiative, a panel of experts gathered
to discuss and compile a consensus glossary of widely
used technical terms specific to the temporal databases,
which was published in 1994. A consolidated, revised
and extended version of the glossary (Jensen et al.,

Fabio Grandi
University of Bologna, Italy

DOI: 10.4018/978-1-4666-5888-2.ch184

Temporal DatabasesCategory: Data Mining and Databases

 D

1915

1998) came to light after the Dagstuhl Seminar on
Temporal Databases held in 1997. Another follow-up
of the ARPA/NSF workshop was the setting up of a
committee, chaired by Richard Snodgrass, in charge
of designing a temporal extension of the standard
query language SQL-92: the TSQL2 Language Design
Committee produced a first draft in 1994 and the final
TSQL2 specification was published in a book (Snod-
grass et al., 1995). Parts of TSQL2 were accepted by
ANSI and included in a substandard of SQL3 named
SQL/Temporal. Due to disagreements within the ISO
committee, the project responsible for temporal support
was canceled in 2001. However, concepts and constructs
from SQL/Temporal were subsequently included in the
latest SQL standard published in 2011 and have been
implemented in several database platforms.

Temporal database studies have little by little en-
tered into practice, as mainstream commercial DBMSs
currently include some support for time-referenced
data and temporal query facilities.

TEMPORAL EXTENSIONS OF THE
RELATIONAL MODEL AND OF SQL

Temporal Data Models

Time can be associated with data in several different
ways. In an extension of the relational model, time
points, intervals or temporal elements (i.e., disjoint
unions of intervals) can be used as timestamps. Tempo-
ral elements have been defined by Gadia (1988) in order
to have a closed algebra of timestamp operators (differ-
ently from intervals, union and difference of elements
is always an element). Moreover, tuple-timestamping
or attribute-timestamping can be used (giving rise to
also called homogenous and inhomogeneous models,
respectively). In the former case, timestamps can be
stored in implicit or explicit columns added to the table
schema. In the latter case, a nested relation structure
is needed to encode timestamping.

Let us consider, as simple example, the career of
an employee which follows:

1. 	 John was hired as a programmer (PRG) with
initial salary 2K at time 1;

2. 	 John’s salary was raised to 3K at time 3 (but
recorded in the DB at time 4);

3. 	 John became a database administrator (DBA) at
time 6.

Notice that (b) involves a retroactive update. This
information can be stored in a valid-time, transaction-
time or bitemporal table as shown in Figure 1 (tuple-
timestamping with intervals is adopted; “−” means
“until changed” or “forever” in valid time and “now”
or “until changed” in transaction time). As it can also
be verified from the figure, a valid-time relation al-
lows users to effect retro- or pro-active changes, that
is changes non necessarily effective when they are
executed (but for which there is no way to know, after
they were effected, whether they were on-time, retro- or
pro-active). A transaction-time relation only allows to
effect on-time changes, or it would be better to say that
changes can only be interpreted as they were effective
when applied (in our example, from Figure 1(2), it seems
that John started earning 3K from time 4 and there is
no way to see that arrears from time 3 were due). A
bitemporal relation allows users to effect retro- and
pro-active changes and to keep track of them (e.g., a
tuple with valid start lesser than transaction start marks
the result of a retroactive change). In the presence of
retro- or pro-active changes, a bitemporal database only
provides for full auditing and accountability.

The same data as in the valid-time relation of Fig-
ure 1(1) can also be represented as shown in Figure
2 by adopting other temporal modeling solutions. In
particular, the representation in Figure 2(2), which is
also representative of interval-timestamping employed
at attribute level, corresponds to the case of a tempo-
rally grouped or history-oriented model (Clifford et al.,
2005). In a grouped model, the temporal dimension is
implicit in the structure of data representation and data
objects are substituted by their histories: attributes can
be regarded as functions that map time into domains
(Gadia, 1988). Grouped models and query languages
have been shown to be more expressive and friendly
for human users. They do not lend themselves to imple-
mentation in a 1NF relational DBMS, but they have
been proposed for implementation in nested relational
or XML DBMSs (Wang, Zaniolo, & Zhou, 2005).
Temporal models based on addition of timestamping
columns are ungrouped indeed.

Another distinction involves point-based versus
interval-based data models. In a point-based model,
truth values of facts are associated to time points,
whereas time intervals can be used merely as a compact

 D

Category: Data Mining and DatabasesTemporal Databases

1916

representation or normalization tool (overlapping or
adjacent timestamps of value-equivalent tuples can
be merged via a coalescence operator into maximal
intervals in order to produce a canonical representa-
tion). Querying in a point-based data model has the
same expressive power of first-order temporal logic
languages (Toman, 1996). In a strong interpretation
of an interval-based model, interval timestamps are
interpreted as indivisible as it is required for the so-
called telic temporal data (Terenziani & Snodgrass,
2004). Telic facts, that represent accomplishments
or achievements (like “the Golden Gate bridge was
built from January 1933 to April 1937”), are true on
an interval but false on any subinterval of it. On the
contrary, atelic facts true on an interval are also true on
any subinterval (e.g., “John worked as DBA in 2013”),
lending themselves to be represented in a point-based
data model. Temporal data of interest for management
applications are usually atelic-type. In a weaker and
more practical conception of interval-based model
(Böhlen, Busatto, & Jensen, 1998), individuality of
argument time intervals has to be preserved as much as
possible by operators, as boundary points of an interval

timestamp are reminiscent of their provenance from
significant change events.

The adoption of temporal elements as timestamps
is usually done in the framework of a point-based
semantics. According to the approach of Jensen, Soo
and Snodgrass (1994), a unifying data model called
BCDM (Bitemporal Conceptual Data Model), based
on temporal-element timestamping, can be defined
at conceptual level and then mapped, at logical level,
on different representational data models, which are
designed with implementation in mind (e.g., based on
interval-timestamping at tuple level, or on element-
timestamping at attribute level indeed, rather than on
backlogs, etc.). The structure of the chosen represen-
tational data model will reflect, at user interface level,
on the required query language features (leading to the
definition, according to Chomicki (1994), of a concrete
temporal query language).

For temporal data models, temporal integrity
constraints also involving notions of temporal key and
referential integrity, temporal dependencies and normal
forms have also been proposed.

Temporal Query Languages

If timestamps are added as explicit columns and, thus,
can be treated in the same way as the other attributes at
query language level, temporal data could be manipu-
lated via standard SQL (Snodgrass, 1997). On the other
hand, although not strictly necessary, special additional
predicates and functions for manipulation of time (seen
as a new abstract data type in SQL) can be provided
as language extensions, basically to simplify the life
of programmers. A further step is the full support of
a period data type, which can be used for encoding
interval-timestamps in a single column (endorsing an
interval-based data model). If timestamps are added in
an implicit way (i.e., they are inherent to the data model
as in the case of TSQL2), special constructs have to
be added to the query language and/or the semantics
of some standard constructs has to be reconsidered in
order to support temporal queries. The same applies
to grouped data models.

Abstaining here from the subtle distinction be-
tween upward compatibility and temporal upward
compatibility (Böhlen, Jensen, & Snodgrass, 2000),
a temporal query language can be said to be upward
compatible with SQL if non-temporal queries that can

Figure 1. John’s career data represented in a valid-
time (1), transaction-time (2) and bitemporal (3) table

Figure 2. The valid-time history of John’s career rep-
resented via point-based tuple-timestamping (1) and
by means of a temporally grouped model (2)

Temporal DatabasesCategory: Data Mining and Databases

 D

1917

be executed on the current snapshot of the database can
also be executed on the temporal database and produce
the same results. Upward compatibility is intended to
guarantee a smooth migration of legacy applications
and data to a temporal DBMS.

Some consistency notions for temporal query
languages, or temporal algebraic operators on which
query languages can be built upon, rely on the fact that
a temporal relation can also be viewed as made up of a
sequence of timestamped snapshot relations. Enforce-
ment of the mutual consistency of the two viewpoints
along the time axis leads to the notion of snapshot
reducibility, that holds if each snapshot in the result
of a temporal operator is equivalent to the result of the
non-temporal counterpart of the same operator evalu-
ated on the corresponding snapshot of the argument
relation(s). Hence, if interval timestamping is adopted,
the timestamps of the argument tuples are taken into
account when forming the interval timestamps associ-
ated to the result tuples (e.g., interval intersection is
used when executing a join). Enforcement of snapshot
reducibility gives rise to a sequenced semantics in
query execution.

However, snapshot reducibility does not apply to
queries involving predicates and functions over the
timestamps of argument relations, where snapshots
valid at different times have to be mixed in their evalu-
ation, which provide full temporal expressivity to a
query language (e.g., to retrieve employees who were
programmer before becoming DBA, which requires
a non-sequenced semantics to evaluate). Moreover,
preservation of the individuality of argument time in-
tervals (i.e., to respect the weak form of interval-based
semantics) has also been individuated as a desirable
property of queries. In order to characterize the correct-
ness of such kinds of queries too, the concepts of ex-
tended snapshot reducibility and change preservation,
respectively, of query languages have been introduced
(Dignös, Böhlen, & Gamper, 2012). Enforcement of
extended snapshot reducibility by means of timestamp
propagation (consisting in copying timestamp values
to additional columns to be dealt with as non-temporal
attributes) allows non-sequenced queries to be executed
with a sequenced semantics. Enforcement of change
propagation corresponds to the most correct, respectful
of provenance, application of the sequenced semantics
to data with true interval-timestamping.

In TSQL2, syntactic defaults have been embed-
ded in the language specification in order to make the

formulation of common temporal queries easier. For
instance, intersection of the valid times of all the rela-
tions involved in a query to be assigned as timestamp to
the results is automatically effected, yielding snapshot
reducibility and enforcing a sequenced semantics by
default (which, however, can be overridden by making
timestamps explicit via direct reference to their values
in expressions, or with a custom temporal projection
specification). The period type and also temporal
elements are fully supported, with a point-based per-
spective. Temporal selection is supported by means
of predicates for (also mixed) time point, period and
element comparison to be employed in the WHERE
clause (namely OVERLAPS, =, CONTAINS, PRE-
CEDES and MEETS) and of ancillary functions and
constructors for management of time values.

An outstanding feature of TSQL2 is the availability
of an implicit grouping mechanism with automatic
timestamp coalescence for range variables declared in
the FROM clause. For instance, the (non-sequenced)
query which follows uses range variable declarations
to conveniently retrieve the name of all the employees
who changed job without a salary increase, together
with the date of such a change:

SELECT SNAPSHOT Emp.Name,
BEGIN(VALID(Job2))
FROM Employee(Name) AS Emp,
Emp(Job,Salary)(PERIOD) AS Job1, Job2
WHERE Job1.Job <> Job2.Job
 AND Job1.Salary >= Job2. Salary
 AND VALID(Job1) MEETS VALID(Job2)

Range variables Job1 and Job2 bind to maximal
groups of consecutive tuples in the history of the
same employees, having a common value of Job and
Salary attributes. The selection predicates force Job1
and Job2 to represent consecutive interval “versions”
with different jobs and non increasing salary within
such histories. The SNAPSHOT keyword in the target
list forces implicit timestamps to be projected out from
the returned tuples. If tuples are grouped on the time-
invariant key of the relation (as for Emp in the example),
this corresponds to superimpose a temporally grouped
view over stored data (Clifford et al., 1995), with the
possibility of declaring history variables and denot-
ing versions within such histories. However, TSQL2
generalizes the grouping mechanism to arbitrary sets

 D

Category: Data Mining and DatabasesTemporal Databases

1918

of attributes and nesting levels, enabling an easy
writing of very complex and powerful queries (e.g.,
involving the so-called restructuring (Gadia, 1986) of
a temporal relation).

Moreover, TSQL2 was also designed to support
event tables, temporal aggregates, multiple calendars
and calendric systems, temporal indeterminacy, mul-
tiple temporal granularities, schema versioning and
vacuuming (Snodgrass et al., 1995).

The direct successor of TSQL2, ATSQL (Böhlen,
Jensen, & Snodgrass, 2000), introduces statement
modifiers to override the TSQL2 defaults and make
crystal clear the usage of a sequenced or non-sequenced
semantics of execution, according to the explicit user
specification.

The main criticism moved against TSQL2 and its
successors, ATSQL and SQL/Temporal, proposed as
SQL standard extension (Darwen & Date, 2006) con-
cerned the adoption of hidden timestamp columns and
the usage of the statement modifiers. A temporal SQL3
counterproposal submitted to ISO in 1995 was based
on the IXSQL language (Lorentzos & Mitsopoulos,
1997). IXSQL supports a generic interval data type,
which can be used for adding timestamps to temporal
tables. Normalization of timestamps is enforced by
means of two functions: fold and unfold. In order to
execute a temporal query, unfold can be used to split
interval-timestamped tuples into value-equivalent sets
of point-timestamped tuples (e.g., converting the table
in Figure 1(1) to the table in Figure 2(1)), before non-
temporal operators can be applied, without distinction
between non-temporal and time attributes, to execute
the query. After the execution, fold is eventually used
to merge timestamps of value-equivalent tuples into
maximal intervals. Although IXSQL is interval-based in
nature, when using the unfold operator, the underlying
data model becomes point-based and change preserva-
tion does not hold, but extended snapshot reducibility
can be supported. Application of a sequenced or non-
sequenced semantics depends on the user’s query.

Temporal Facilities in the SQL
Standard and Commercial DBMSs

One of the main features of the new SQL:2011 (ISO/
IEC 9075:2011) standard is improved support for
temporal databases. In SQL:2011 (Kulkarni & Mi-

chels, 2011), transaction time support is granted by
“system-versioned period tables” and valid time support
is granted by “application-time period tables” (so that
“system-versioned application-time period tables” are
bitemporal tables). As far as the underlying temporal
data model is concerned, the main difference with
TSQL2 is that there is no new data type for time intervals
(or elements) used as hidden dimensional column but
two explicit date or timestamp columns can be declared
together as tuple interval timestamp with a PERIOD
FOR construct. Temporal keys and referential integrity
constraints are supported. For instance, the schema of
a table the most similar to the one in Figure 1(1) can
be declared in SQL:2011 as follows:

CREATE TABLE Employee(
 Name VARCHAR(20), Job VARCHAR(20),
Salary INTEGER,
 VTStart DATE, VTEnd DATE, PERIOD
FOR VT (VTStart, VTEnd),
 PRIMARY KEY (Name, VT WITHOUT
OVERLAPS))

For querying, temporal predicates for interval
comparison quite similar to the TSQL2 ones (namely
OVERLAPS, CONTAINS, PRECEDES, SUCCEEDS,
IMMEDIATELY PRECEDES and IMMEDIATELY
SUCCEEDS) are provided. A validity can be specified
by users in UPDATE and DELETE statements (e.g., to
specify retro- or pro-active modifications).

As far as implementation of temporal database
functionalities in relational DBMSs on the market is
concerned, as of November 2013, we can compile the
list that follows.

•	 IBM DB2, since the version 10 for z/OS re-
leased in 2010, includes built-in support of the
period data type, valid and transaction time,
upward compatibility, temporal primary keys,
sequenced queries, in a manner very simi-
lar to that proposed for SQL/Temporal. From
the latest DB2 version 10 for Linux, Unix and
Windows released in 2012, adherence to the
SQL:2011 standard has been introduced (“ap-
plication time” has been dubbed as “business
time”).

Temporal DatabasesCategory: Data Mining and Databases

 D

1919

•	 Oracle has provided support for temporal ap-
plications from the version 9i of 2001. In the
latest version 12c, Oracle Workspace Manager
enables application developers and DBAs to
manage temporal data, with support of the
period data type, valid-time, transaction-time
and bitemporal tables, temporal primary keys,
uniqueness and referential integrity constraints,
sequenced and non-sequenced queries and up-
dates, in a manner quite similar to that pro-
posed for TSQL2 and SQL/Temporal.

•	 PostgreSQL has a couple of open-source con-
tributed packages that can be installed in the
database to manage temporal data: Temporal
PostgreSQL and Temporal Tables Extension.
The former basically adds temporal data types,
functions and operators, whereas the latter
adds transaction-time support in its current
version, but is part of a project that aims at pro-
viding a full SQL:2011-compliant bitemporal
extension.

•	 TimeDB is a free temporal relational DBMS
by TimeConsult, implemented from the version
2.0 as a Java API designed to run as a fron-
tend for Oracle. TSQL2/ATSQL statements
(queries, updates, and assertions) are compiled
into (sequences of) SQL-92 statements which
are executed by the backend via JDBC, which
makes it also compatible with other commer-
cial platforms including IBM-Cloudscape and
Sybase. TimeDB guarantees upward compat-
ibility and provides support of bitemporal
tables.

•	 Teradata Database, from the version 13.10 re-
leased in 2010, includes support of the period
data type, valid and transaction time, temporal
upward compatibility, temporal primary keys
and referential integrity constraints, non se-
quenced and sequenced queries, in a manner
similar to that proposed for TSQL2 (almost
identical to that proposed for SQL/Temporal).

Support of bitemporal data is also provided in the
Bloomberg-PolarLake Data Management Platform, or
can be added to a DB without native support through

the adoption of the Asserted Versioning Framework
middleware or the usage of the Anchor Modeling
database design tool.

Furthermore, some vendors provide tools that, in
practice, can be used to add transaction-time temporal
database facilities to leading DBMSs by working on
their log files. These include IBM-SQL Replication
for DB2, Lumigent-LogExplorer and ApexSQL-Log
for Microsoft SQL Server, ASG-Time Navigator for
most mainstream DBMSs as DB2, MySQL, Oracle,
PostgreSQL, SQL Server and Sybase.

FUTURE RESEARCH DIRECTIONS

Future research should follow the direction of a seamless
extension of temporal data base and query language
solutions with advanced aspects still lacking in current
standards and implementations, including, for instance,
support of temporal elements, history-oriented (tempo-
rally grouped) view on data and change preservation.
Implementation of temporal database functionalities
and their integration with industrial-strength DBMS
technology have not reached their maturity yet, and
further research and development efforts in this direc-
tion are required in the next years.

CONCLUSION

In this article, we reviewed some of the most promi-
nent theoretical results and practical achievements
of research in the temporal database field. Although
extensions required to any components of database
technology have been studied, we focused on proposed
temporal extensions of the relational model and of
the SQL standard, discussed their main features and
surveyed their emerging implementations in currents
DBMSs. The considered aspects are the most relevant
from the viewpoint of database application develop-
ment. In particular, we showed that state-of-the-art
temporal database solutions are often heritage of
different research proposals (e.g., either TSQL2-like
and IXSQL-like features can be found in commercial
systems), in the quest for the best trade-off between
theoretical soundness, user friendliness and imple-
mentation efficiency.

 D

Category: Data Mining and DatabasesTemporal Databases

1920

REFERENCES

Böhlen, M. H., Busatto, R., & Jensen, C. S. (1998).
Point- Versus Interval-based Temporal Data Models.
In S.D. Urban & E. Bertino (Eds.), International
Conference on Data Engineering (pp. 192–200). Los
Alamitos, CA: IEEE Computer Society Press.

Böhlen, M. H., Jensen, C. S., & Snodgrass, R. T.
(2000). Temporal statement modifiers. ACM Trans-
actions on Database Systems, 25(4), 407–456.
doi:10.1145/377674.377665

Chomicki, J. (1994). Temporal query languages: A
survey. In D.M Gabbay & H.J. Ohlbach (Eds.), Inter-
national Conference on Temporal Logic (pp. 506–534).
Berlin, Germany: Springer.

Clifford, J., Croker, A., Grandi, F., & Tuzhilin, A.
(1995). On Temporal Grouping. In J. Clifford, & A.
Tuzhilin (Eds.), Recent Advances in Temporal Da-
tabases (pp. 194–213). Berlin, Germany: Springer.
doi:10.1007/978-1-4471-3033-8_11

Darwen, H., & Date, C. J. (2006). An Overview and
Analysis of Proposals Based on the TSQL2 Approach.
In C. J. Date (Ed.), Date on Databases: Writings 2000-
2006 (pp. 481–514). New York, NY: Apress Media.

Dignös, A., Böhlen, M. H., & Gamper, J. (2012).
Temporal Alignment. In K.S. Candan, Y. Chen, R.T.
Snodgrass, L. Gravano & A. Fuxman (Eds.), ACM
SIGMOD International Conference on Management
of Data (pp. 433-444). New York, NY: ACM Press.

Gadia, S. K. (1986). Weak Temporal Relations. In A.
Silberschatz (Ed.), ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (pp.
70–77). New York, NY: ACM Press.

Gadia, S. K. (1988). A Homogeneous Relational Model
and Query Languages for Temporal Databases. ACM
Transactions on Database Systems, 13(4), 418–448.
doi:10.1145/49346.50065

Grandi, F. (2012). Introducing an annotated bibli-
ography on temporal and evolution aspects in the
Semantic Web. SIGMOD Record, 41(4), 18–21.
doi:10.1145/2430456.2430460

Jensen, C. S., & Dyreson, C. E. (Eds.). Böhlen, M.H.,
Clifford, J., Elmasri, R., Gadia, S.K., … & Wieder-
hold, G. (1998). The consensus glossary of temporal
database concepts – February 1998 version. In D.
Etzion, S. Jajodla and S. Sripada (Eds.), Temporal
Databases – Research and Practice (pp. 367–405).
Berlin, Germany: Springer.

Jensen, C. S., Soo, M. D., & Snodgrass, R. T. (1994).
Unifying Temporal Data Models via a Concep-
tual Model. Information Systems, 19(7), 513–547.
doi:10.1016/0306-4379(94)90013-2

Kulkarni, K., & Michels, J.-K. (2011). Temporal fea-
tures in SQL:2011. SIGMOD Record, 41(3), 34–43.
doi:10.1145/2380776.2380786

Lorentzos, N. A., & Mitsopoulos, Y. G. (1997). SQL
Extension for Interval Data. IEEE Transactions on
Knowledge and Data Engineering, 9(3), 480–499.
doi:10.1109/69.599935

Snodgrass, R. T. (Ed.). Ahn, I., Ariav, G., Batory, D.,
Clifford, J., Dyreson, C.E., … & Sripada, S.M. (1995).
The TSQL2 Temporal Query Language. Norwell, MA:
Kluwer Academic Publishers.

Snodgrass, R. T. (1997). Developing Time-Oriented
Database Applications in SQL. San Francisco, CA:
Morgan Kaufmann.

Terenziani, P., & Snodgrass, R. T. (2004). Reconciling
Point-Based and Interval-Based Semantics in Tempo-
ral Relational Databases: A Treatment of the Telic/
Atelic Distinction. IEEE Transactions on Knowledge
and Data Engineering, 16(5), 540–551. doi:10.1109/
TKDE.2004.1277816

Toman, D. (1996). Point vs. Interval-based Query
Languages for Temporal Databases. In R. Hull (Ed.),
ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems (pp. 58–67). New York,
NY: ACM Press.

Wang, F., Zaniolo, C., & Zhou, X. (2005). Temporal
XML? SQL Strikes Back! In International Symposium
on Temporal Representation and Reasoning (pp. 23–
25). Los Alamitos, CA: IEEE Computer Society Press.

Temporal DatabasesCategory: Data Mining and Databases

 D

1921

ADDITIONAL READING

Bettini, C., Jajodia, S., & Wang, X. S. (2000). Time
Granularities in Databases, Data Mining, and
Temporal Reasoning. Berlin, Germany: Springer.
doi:10.1007/978-3-662-04228-1

Böhlen, M. H., Gamper, J., & Jensen, C. S. (in press).
Temporal databases. In J. Hammer, & M. Schneider
(Eds.), Handbook of Database Technology. London,
U.K.: Chapman and Hall.

Böhlen, M. H., & Jensen, C. S. (2003). Temporal data
model and query language concepts. In H. Bidgoli
(Ed.), Encyclopedia of Information Systems. New York,
NY: Academic Press. doi:10.1016/B0-12-227240-
4/00184-2

Chakravarthy, S., & Kim, S.-K. (1994). Resolution
of Time Concepts in Temporal Databases. Informa-
tion Sciences, 80(1-2), 91–125. doi:10.1016/0020-
0255(94)90059-0

Chomicki, J., & Toman, D. (2005). Temporal databases.
In M. Fisher, D. Gabbay, & L. Vila (Eds.), Handbook
of Time in Artificial Intelligence. Amsterdam, The
Netherlands: Elsevier.

Clifford, J., Dyreson, C. E., Isakowitz, T., Jensen, C.
S., & Snodgrass, R. T. (1997). On the Semantics of
“Now” in Databases. ACM Transactions on Database
Systems, 22(2), 171–214. doi:10.1145/249978.249980

Clifford, J., & Tuzhilin, A. (Eds.). (1995). Recent
Advances in Temporal Databases. Berlin, Germany:
Springer. doi:10.1007/978-1-4471-3033-8

Etzion, D., Jajodia, S., & Sripada, S. (Eds.). (1998).
Temporal Databases – Research and Practice. Berlin,
Germany: Springer. doi:10.1007/BFb0053695

Golfarelli, M., & Rizzi, S. (2009). A Survey on Tem-
poral Data Warehousing. International Journal of Data
Warehousing and Mining, 5(1), 1–17. doi:10.4018/
jdwm.2009010101

Gregersen, H., & Jensen, C. S. (1999). Temporal Entity-
Relationship Models—A Survey. IEEE Transactions
on Knowledge and Data Engineering, 11(3), 36–44.
doi:10.1109/69.774104

Jensen, C. S., & Snodgrass, R. T. (1999). Tem-
poral data management. IEEE Transactions on
Knowledge and Data Engineering, 11(1), 36–44.
doi:10.1109/69.755613

Jensen, C. S., & Snodgrass, R. T. (2009). Temporal
Database. In L. Liu, & M. T. Özsu (Eds.), Encyclope-
dia of Database Systems. Berlin, Germany: Springer.

Johnston, T., & Weis, R. (2010). Managing Time in
Relational Databases. San Francisco, CA: Morgan
Kaufmann.

Özsoyoğlu, G., & Snodgrass, R. T. (1995). Temporal
and real-time databases: A survey. IEEE Transactions
on Knowledge and Data Engineering, 7(4), 513–532.
doi:10.1109/69.404027

Pissinou, N., Snodgrass, R. T., Elmasri, R., & Mumick,
I. S. Özsu, M.T., Pernici, B., Segev, A., & Theodoulidis,
B. (1994). Towards an Infrastructure for Temporal Data-
bases: Report of an Invitational ARPA/NSF Workshop.
ACM SIGMOD Record, 23(1), 35–51.

Roddick, J. F., & Patrick, J. D. (1992). Temporal
Semantics in Information Systems—A Survey. Infor-
mation Systems, 17(3), 249–267. doi:10.1016/0306-
4379(92)90016-G

Rolland, C., Bodart, F., & Léonard, M. (Eds.). (1987).
IFIP TC 8/WG 8.1 Working Conference on Temporal
Aspects in Information Systems. Amsterdam, The
Netherlands: North-Holland.

Segev, A., Jensen, C. S., & Snodgrass, R. T. (1995).
Report on The 1995 International Workshop on Tem-
poral Databases. SIGMOD Record, 24(4), 46–52.
doi:10.1145/219713.219754

Snodgrass, R. T. (1990). Temporal databases: Status
and research directions. SIGMOD Record, 19(4), 83–89.
doi:10.1145/122058.122068

Snodgrass, R. T. (1992). Temporal databases. In A.U.
Frank, I. Campari & U. Formentini. International Con-
ference on GIS: From Space to Territory (pp. 22–61).
Berlin, Germany: Springer.

Snodgrass, R. T., & Ahn, I. (1986). Temporal Data-
bases. IEEE Computer, 19(9), 35–42. doi:10.1109/
MC.1986.1663327

 D

Category: Data Mining and DatabasesTemporal Databases

1922

Tang, Y., Tang, N., & Ye, X. (2011). Temporal Infor-
mation Processing Technology and Its Applications.
Berlin, Germany: Springer.

Tansel, A., Clifford, J., Gadia, S. K., Jajodia, S., Segev,
A., & Snodgrass, R. T. (Eds.). (1993). Temporal data-
bases: Theory, design, and implementation. Redwood
City, CA: Benjamin/Cummings.

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R. T.,
Subrahmanian, V. S., & Zicari, R. (1997). Advanced Da-
tabase Systems. San Francisco, CA: Morgan Kaufmann.

KEY TERMS AND DEFINITIONS

Bitemporal Table: A relational table with sys-
tem support of one valid- and one transaction-time
dimension.

Temporal Database: A database with built-in
support for managing time-varying data.

Temporal Data Model: A data model for the
representation of time-varying data.

Temporal Query Language: A query language
that allows manipulation of time-referenced data.

Transaction Time: Temporal dimension concern-
ing when some data is current in the database.

Transaction Time Table: A relational table with
system support of one transaction time dimension.

TSQL2: A temporal extension of the SQL standard
designed by a committee of temporal database experts
chaired by R.T. Snodgrass in 1995.

Valid Time: Temporal dimension concerning when
some fact is true in the modeled reality.

Valid Time Table: A relational table with system
support of one valid time dimension.

