
Temporal Databases

Fabio Grandi

fabio.grandi@unibo.it

DISI, Università di Bologna

A short course on Temporal Databaes for DISI PhD students, 2016 

Credits: most of the materials used is taken from slides prepared by Prof. M. Böhlen (Univ. of Zurich, Switzerland)



Applications of TDBs

 There are many examples of applications where some 
aspect of time is needed to maintain the required 
information in a DB:

 Health care: patient and treatment histories need 
to be maintained

 Insurance: claims and accident histories are 
required

 Finance: stock price and exchange histories need 
to be maintained

 Personnel management: salary and position 
histories need to be maintained

 Banking: account transactions and credit histories 
need to be maintained



TDBs: What, When & Why

 Temporal databases, encompass all DB applications 
that require some aspect of time when organizing their 
information

 TDB applications have been developed since the early 
days of database usage. However, in creating these 
applications, it was mainly left to the developers to 
discover, design, program, and implement the temporal 
concepts

 They exhibit the need for developing a set of unifying 
concepts and tools for application developers to use



Limitations of Traditional DBs

 Modifications and deletions of data in a traditional DB are 
destructive (previous states are lost)

 Emp

 UPDATE Emp
SET Salary = 3400
WHERE Name = ꞌAnnꞌ;

 DELETE Emp
WHERE Name = ꞌTomꞌ

Name Dept Salary

Tom SE 2300

Ann DB 3200

Name Dept Salary

Ann DB 3400

No trace of the previous

salary of Ann is maintained

No memory of an employee

named Tom is kept

Emp



Limitations of Traditional DBs

 Traditional databases are snapshot, i.e. only the most 
recent state of the modeled reality is represented

 In order to maintain data histories, time columns can be 
added to the relation schema (tuple timestamps)

 Emp

Name Dept Salary Start End

Tom SE 2300 1/1/12 1/1/16

Ann DB 3200 1/1/10 1/1/15

Ann DB 3400 1/1/15 Now



Limitations of Traditional DBs

 However, implementing a temporal data model is much 
more that adding a couple of columns to a table

(e.g. there is no support for temporal integrity constraints, 
including the notion of a temporal key)

 Morever, the SQL query language provides very limited 
support for expressing temporal queries

(e.g. temporal queries like a temporal join are very 
complex and error-prone to express in plain SQL)



A case study: Temporal join

Given the two relations

Emp Dept

For each employee, find the history of the budget of the 
department they worked in

(two tuples join iff they match on the non temporal attributes
and their timestamps overlap)

Name Dept Salary Start End

Tom SE 2300 1/1/12 1/1/16

Ann DB 3200 1/1/10 1/1/15

Ann DB 3400 1/1/15 Now

DName Budget Start End

SE 100K 1/1/08 1/1/14

SE 140K 1/1/14 Now

DB 200K 1/1/10 1/1/13

DB 220K 1/1/13 Now



A case study: Temporal join

Name Dept Budget Start End

Tom SE 100K 1/1/12 1/1/14

Tom SE 140K 1/1/14 1/1/16

Ann DB 200K 1/1/10 1/1/13

Ann DB 220K 1/1/13 1/1/15

Ann DB 220K 1/1/15 Now

2008  2009  2010  2011  2012  2013  2014 2015  2016                         Time

(SE, 2300)

(DB, 3200)                                (DB,3400)

(100K)                                (140K)

(200K)                                (220K)

Tom

Ann

SE

DB



A case study: Temporal join

SELECT Name, Dept, Budget, E.Start, E.End

FROM Emp AS E, Dept AS D WHERE Dept = DName

AND D.Start <= E.Start AND E.End <= D.End

UNION

SELECT Name, Dept, Budget, E.Start, D.End

FROM Emp AS E, Dept AS D WHERE Dept = DName

AND E.Start > D.Start

AND D.End < E.End AND E.Start < D.End

UNION

SELECT Name, Dept, Budget, D.Start, E.End

FROM Emp AS E, Dept AS D WHERE Dept = DName

AND D.Start > E.Start

AND E.End < D.End AND D.Start < E.End

UNION

SELECT Name, Dept, Budget, D.Start, D.End

FROM Emp AS E, Dept AS D WHERE Dept = DName

AND D.Start >= E.Start AND D.End <= E.End

E

E

E

E

D

D

D

D



A case study: Temporal join

If we give up to time values in the result:

SELECT Name, Dept, Budget

FROM Emp AS E, Dept AS D WHERE Dept = DName

AND D.Start <= E.End AND E.Start <= D.End

Name Dept Budget Start End

Tom SE 100K 1/1/12 1/1/14

Tom SE 140K 1/1/14 1/1/16

Ann DB 200K 1/1/10 1/1/13

Ann DB 220K 1/1/13 1/1/15

Ann DB 220K 1/1/15 Now



A case study: Temporal join

With CASE statements to compute timestamp intersection

(if overlap [S1,E1] ∩ [S2,E2] = [max{S1,S2},min{E1,E2}] ):

SELECT Name, Dept, Budget,

CASE WHEN D.Start < E.Start

THEN E.Start ELSE D.Start

END,

CASE WHEN D.End < E.End

THEN D.End ELSE E.End

END

FROM Emp AS E, Dept AS D WHERE Dept = DName

AND D.Start <= E.End AND E.Start <= D.End



A case study: Temporal join

The last two tuples are value-equivalent and could be

coalesced (but how can it be done with SQL?):

Name DName Budget Start End

Tom SE 100K 1/1/12 1/1/14

Tom SE 140K 1/1/14 1/1/16

Ann DB 200K 1/1/10 1/1/13

Ann DB 220K 1/1/13 1/1/15

Ann DB 220K 1/1/15 Now

Name DName Budget Start End

Tom SE 100K 1/1/12 1/1/14

Tom SE 140K 1/1/14 1/1/16

Ann DB 200K 1/1/10 1/1/13

Ann DB 220K 1/1/13 Now



Coalescing in pure SQL92

Coalesce the relation with schema R(X,S,E):
X=non temporal part; S=Start; E=End;

Use nested NOT EXISTS for universal quantification

Search for two (possibly the same) 
value-equivalent tuples F (first) and L (last)

Ensure that there are no “time holes” between F.S and L.E
i.e. all start points M.S of value-equivalent
tuples M (mid) are extended (towards F.S) 
by another value-equivalent tuple A1 

Ensure that the interval between F.S and L.E is maximal
i.e. check via hypothetical value-equivalent tuple A2



Coalescing in pure SQL89

SELECT DISTINCT F.X, F.S, L.E

FROM R F, R L 

WHERE F.S < L.E AND F.X = L.X

AND NOT EXISTS 

(  SELECT *  FROM R M 

WHERE M.X = F.X AND F.S < M.S AND M.S < L.E

AND NOT EXISTS

( SELECT *  FROM R A1    

WHERE A1.X = F.X AND A1.S < M.S AND M.S <= A1.E ) )

AND NOT EXISTS 

(  SELECT *  FROM R A2 

WHERE A2.X = F.X

AND ( A2.S < F.S AND F.S <= A2.E 

OR  A2.S <= L.E AND L.E < A2.E )  ) 



Limitations of Traditional DBMSs

 Traditional (non-temporal) DBMSs provide inadequate 
support for temporal aspects:
 The data model and query language are basically “snapshot”

 No built-in facilities for temporal integrity constraints (e.g. 
enforcement of a temporal key) are available

 Temporal queries are very difficult to express and understand if 
expressed with non-temporal SQL

 No support for the execution of temporal queries is provided in the 
query engines nor temporal access structures are available 
(traditional solutions reveal themselves inefficient) 

In a temporal DBMS:
 The data model more accurately reflects the reality

 Temporal attributes might have a special semantics

 Queries shall be simpler with SQL temporal extensions



History of TDB research

We can distinguish 4 overlapping phases:

 1956–1985: Concept development, considering the 
multiple kinds of time and conceptual modeling

 1978–1994: Design of query languages

 1988–present: Implementation aspects, including 
storage structures, operator algorithms, and temporal 
indexes

 1993–present: Consolidation phase

- Consensus glossary of temporal database concepts

- TSQL2 language design initiative

- Query language test suite



The Turning Point

 In the early 90’s Temporal Databases were already a 
quite consolidated research field:
 Around 800 scientific papers published

 Around 100 scientists active in the field

 Topic present in all main DB conferences

 The question then was: although temporal features are a 
recognized application requirement and lots of theoretical
and practical technical contributions are available, why
temporal features are still completely absent in current
commercial DB systems? (and in the standard SQL92)

 One answer had to be found in the large diversity of the 
solutions proposed in the literature



The TDB Workshop

 A milestone in the settlement of the matter has been the 
ARPA/NSF TDB Workshop held in Arlington, TX in 1993

 The main artificer of the workshop and of many other
things were happening has been Richard T. Snodgrass of
the University of Arizona at Tucson (already well known in 
the community for his pioneering works in the field)

 The idea was to put together for a big 3-day brainstorming 
representatives of all the research groups involved in the 
field, in order to try to build consensus and draw the 
directions of future research efforts for the next decades



The Pre-workshop Initiatives

 The TDB workshop was preceded by some preliminary
initiatives coordinated by Rick Snodgrass, involving
remote cooperation between researchers spread all over
the world and communicating via email

 The Temporal Database Glossary (e.g., to have a 
common language on which understand and frame 
different research solutions)

 The Temporal Query Test Suite (e.g., to have a shared
benchmark on which compare the expressiveness and 
user-friendliness of different temporal languages)

 These remote cooperation efforts were also the feasibility 
testbed for the future TSQL2 design initiative



The Consensus Glossary Effort

 The effort was initiated in early 1992: a first embryo
of the glossary was published on SIGMOD Record in 
September 1992 and as final chapter of the first book on 
Temporal Databases (Clifford, Tansel, Gadia, Jajodia, 
Segev & Snodgrass Eds.) published by
Benjamin/Cummings in 1993

 The first mature version of the “Consensus Glossary” with
100 entries was included in the Workshop proceedings
and discussed at the TDB Workshop (+ Addendum)

 All glossary entries were proposed, discussed, debated, 
refined and finally voted via email messaging; each
individual who had contributed significantly were included
as author of the glossary document



The Consensus Glossary Effort

 After the TDB Workshop, an editorial board was set up to
supervise a revision of the glossary based on the input 
from the Workshop:

James Clifford, Ramez Elmasri, Shashi K. Gadia, Pat 
Hayes, Sushil Jajodia and Christian S. Jensen 

 A revised version was then made available as a TR and 
released to the general public via publication on SIGMOD 
Record in March 1994. The editorial board members
appeared listed as editors before the other glossary
authors (19)



The Consensus Glossary of TDB Concepts

 The effort was aimed at recommending standard 
definitions and names for concepts of common use within
the TDB research community

 Two sets of criteria were defined:
 All included concepts were judged against 4 relevance criteria

(concepts specific, well-defined, well-understood, widely used)

 Naming of concepts was resolved using 9 evaluation criteria
(names orthogonal, easy to write, widely accepted, open-ended, 
without homonyms, conservative, consistent, intuitive, precise)

 Three categories of concepts were defined:
 Of general database interest (e.g., valid or transaction time)

 Of temporal database interest (e.g., temporal selection/projection)

 Of specialized interest (e.g., temporally indeterminate)



The February 1998 Glossary Version

 In 1997, a Dagstuhl Seminar on TDBs was organized by
Oren Etzion, Sushil Jajodia and Suri Sripada

 One of the by-products of the Seminar was the revision of
the Consensus Glossary, also in the light of new available
technical results and of the feedback received by the first 
published version from the academic and industrial worlds

 The revision, coordinated by Christian S. Jensen and 
Curtis E. Dyreson, produced a new version of the 
glossary that was included in the new TDB book coming
out from the Seminar and published by Springer-Verlag in 
1998



The Temporal Query Test Suite

 The goal was to provide a comprehensive consensus
benchmark for temporal query languages

 The benchmark is semantic, and can be used to compare 
expressiveness and user-friendliness of different
languages

 A full classification of queries was defined according to
output/selection taxonomies; 3x10 query classes were
defined and each contributing author was assigned a 
partition of classes to develop query examples

 The TSQL Benchmark has been published in the TDB 
Workshop proceedings and then included as a chapter
in the TSQL2 book (with TSQL2 example queries)



The TSQL2 Initiative

 Rick Snodgrass circulated in May 1992 a white paper
(TSQL: A Design Approach) soliciting the research
community to join the efforts to develop a consensual
proposal of temporal extension to the SQL92 standard 
query language

 After the TDB workshop, Rick proposed with an email to
the workshop attendees the fulfillment of some 
standardization efforts involving the SQL92 temporal
extension

 A TSQL2 Language Design Committee (the core thereof
was made of the members of the TDB Workshop WG B) 
was set up, after a general invitation sent to the 
community



The TSQL2 Language Design Committee

 The TSQL2 Committee was made of 18 members
including the coordinator, featuring representatives from
universities, research and industrial labs:

Richard T. Snodgrass (chair), Ilsoo Ahn, Gadi Ariav, Don 
Batory, James Clifford, Curtis E. Dyreson, Ramez
Elmasri, Fabio Grandi, Christian S. Jensen, Wolfgang 
Käfer, Nick Kline, Krishna Kulkarni, T.Y. Cliff Leung, Nikos
Lorentzos, John F. Roddick, Arie Segev, Michael D. Soo, 
Suryanarayana M. Sripada

 Starting from August 1993, all the language features were
proposed, discussed, debated, refined and finally voted
by all committee members via email messaging



The TSQL2 Language Specification

 A preliminary TSQL2 specification was released in 
January 1994 and a synopsis published in the March 
1994 issue of ACM SIGMOD Record

 Also taking into account feedbacks received, a final
specification (a 71-page TR) was released in in
September 1994; a tutorial of the language was also
published on SIGMOD Record

 The TSQL2 full specification, enriched with a collection of
commentaries explaining the different aspects of the 
language design and other supporting materials, was
publised as a book by Kluwer in 1995 (674+xxiv pages)



The TSQL2 Follow-Ups

 The direct successor  of TSQL2, ATSQL [Böhlen, Jensen 
& Snodgrass 2000] introduced statement modifiers to 
override defaults and distinguish between sequenced and 
non-sequenced semantics of execution

 ATSQL became SQL/Temporal, a formal proposal of 
SQL92 temporal extension submitted in 1995 to the 
standardization committees to be included as Part 7 
of the SQL3 standard under development

 Addition of valid-time and transaction-time were approved 
by ANSI in 1996 and forwarded to ISO at the beginning of 
1997



The TSQL2 Follow-Ups

 The main criticism against TSQL2 and its successors 
involved the adoption of implicit timestamp columns and 
statement modifiers [Darwen & Date 2006]

 Hence, a “European” counterproposal, based on the 
temporal language IXSQL [Lorentzos & Mitsoupoulos
1997] supporting a generic interval data type, was also 
submitted to ISO in 1995

 Disagreements within ISO lead to cancellation of the 
temporal extension project but concepts and constructs 
from SQL/Temporal were then restored for SQL:2011



Recent History

 TDBs are still an active research area today

 Over 2000 papers produced over the past two decades

 New application domains with the need for new 
operations
 spatio-temporal and moving-object databases 

(e.g. mobile-phone or GPS tracking to monitor employees, 
company cars and equipment)

 data streams

 data warehousing

 TDB techniques extended to other collateral fields 
(e.g. XML, Semantic Web)



Recent History

During recent years lots of efforts from companies:

• Oracle 9i, 2001: temporal extensions through workspace 

manager, time travel

• SAP HANA, 2010: history tables

• IBM DB2 10, 2010: Current and history tables, business 

time, system time, time travel

• Teradata 13.10, 2010: time travel, parts of ANSI 

SQL/Temporal

• SQL:2011 standard with temporal extensions

Third-party free or open-source tools are also available 

to add TDB facilities to mainstream DBMSs 

(incl. PostgreSQL, MySQL, SQL Server and Sybase)



Time Domains

and Calendars



Time Domain

 Time domain/ontology
 Specifies the building blocks of time

 Time is generally modeled as an arbitrary set of instants/points 
with an imposed total order, e.g. ( IN, ≤ )

 Additional axioms introduce more refined models of time

 Structure of time
 Linear time

 Total order

 Time advances from past to future in a step-by-step fashion

 Branching time (possible future or hypothetical model)
 Partial order

 Time is linear from the past to now, where it then divides into several time 
lines

 Along any future path, additional branches may exist

 Structure is a tree rooted at now



Time Domain

 Structure of time
 Discrete time

 Chronons (or temporal atoms, time quanta) 
are non-decomposable units of time with a positive duration

 Chronon is the smallest duration of time that can be represented

 Isomorphic to natural numbers

 Dense Time
 Between any two chronons another chronon exists

 Isomorphic to rational numbers

 Continuous time
 Dense and no “gaps” between consecutive chronons

 Chronons are durationless

 Isomorphic to the real numbers



Time Domain

 Boundness of time
 Time can be bounded in the past and/or in the future,

i.e. first and/or last time instant exists

 Time can be bound on one end (typically the past)
and unbounded on the other end (typically the future)

 Relative (unanchored) versus absolute (anchored) time
 “9 AM, January 1, 2016” is an absolute time

 “9 hours” is a relative time (duration)



“Now”

 “Now” is a noun/adverb meaning “at the present time”

 A distinguished timestamp value in many temporal data 
models
 Is a time instant rather than an interval or period

 Reserved words for now: CURRENT_DATE, CURRENT_TIME, 
CURRENT_TIMESTAMP, UC (Until Changed)

 Treated as a constant (variable?!) that is assigned a specific time
during query or update evaluation

 As time advances, the interpretation of now also changes to 
reflect the new current time

 In the state-of-the-art
 No DBMS allows to store NOW as a timestamp

 There exist no solutions that do date computations with NOW



“Now”

 Common use of now
 Indicate that a fact is valid until the current time (or until changed)

 Ann began working in the DB department on 1/1/15

 Ann is in the DB department until we learn otherwise

 Why use Now?
 If the ground time were used, the terminating time of tuples that

continue to be valid has to be updated as time advances

 How to identify such tuples could be a costly process 

 Determining the duration of periods yields meaningful results
(e.g. impossible if we would use a Null value instead)

Name Dept Start End

Ann DB 1/1/15 Now



Time Domain - Summarizing

 Humans perceive time as continuous
and time is assumed continuous in classical physics

 A discrete linear unbounded time model is generally 
used in temporal databases for several practical reasons:
 Measures of time are generally reported in terms of chronons

 Natural language references are compatible with chronons
e.g. 1:30 pm means over some period/chronon around this time

 Chronons allow easily modeling of durative events

 Any implementation needs a discrete encoding of time

 Time keeps on growing without an upper bound

 It may be a problem to represent continuous evolution 
(e.g. movement) in a discrete model



Timestamps - Instants

 An instant is a point on the time line which is modeled by 
an instant timestamp that stores the number of a granule
 e.g. SemesterStart(EngUniBO2, 22/2/2016)

 WasBorn(Einstein, 1879)

 An instant timestamp records that an instant is located 
sometimes during that particular granule

 The exact instant represented by an instant timestamp is 
never precisely known; only the granule during which it is 
located is known
 Two instants represented by the same granule might be different

 An instant is a point on a time-line, whereas a granule is a 
(short) segment of a time-line



Timestamps - Instants

 We assume that chronons, which are the smallest 
possible granule, are still bigger than instants

 Distinction between chronons and instants captures the 
reality of measurements
 All mesaurements are imprecise with respect to instants

 We simply cannot measure individual instants: instants are “too 
small”

 We assign instants to the chronon that contains them

 Instant timestamps can be represented in a relational 
table with a single column



Timestamps - Periods

 A period is a duration of time that is anchored between 
two instants and is modeled by a period timestamp
 e.g.  Emp(John, Clerk, 1/6/2012 – 31/12/2013)

 Seminar(TDB1, 5/2/16 10:00 – 5/2/16 13:00)

 A period timestamp is the composition of two instant 
timestamps, where the start precedes or is equal to the 
end

 We assume that the starting and ending timestamp are at 
the same granularity level

 We either use two instant timestamps S, E or a period 
timestamp (S-E, [S,E), [S,E]).

 Periods can be closed, half-open or open: [2003,2005], 
[2003,2005), (2003,2005)



Timestamps - Periods

 Instant timestamps can be represented in a relational 
table with two columns

 Closed to the left and open to the right intervals are 
usually assumed in TDBs

the timestamp of the fact “John worked as clerk”
is [1/6/2012, 1/1/2014) = [1/6/2012,31/12/2013], 
i.e. the last day he worked as clerk is December 31, 2013

Name Job Start End

John Clerk 1/6/12 1/1/14



Timestamps - Elements

 A temporal element is a set of time periods
 e.g. holiday(Jim, { 1/8/15 – 20/8/15, 20/12/15 – 8/1/16 })

 Mathematically, a temporal element is more attractive 
than a period because a closed algebra can be defined: 
subtraction and union of temporal elements yields a 
temporal element again (it does not with periods)

 In the real world temporal elements are used rarely



Timestamps - Intervals

 A temporal interval is an unanchored duration of time and 
is modeled by an interval timestamp
 e.g. trip(Milan-SanFrancisco, 20 hours)

 holidays(employee, 30 days)        

 The length of an interval is known, but not its starting or 
ending instants

 An interval timestamp is a count of granules, e.g. 10 days



Periods versus Intervals

 In mathematics and physics, we define the period as the 
repetition interval of a periodic phenomena (e.g. sine and 
cosine functions have a period of 2π), i.e. as a pure 
duration

 What we defined as period is exactly what in mathematics 
is called interval (e.g. a time interval in physics)

 Our somehow “counterintuitive” definition of periods and 
intervals is due to their introduction as SQL92 datatypes

 TDB researchers are very sorry for this... 



Granularities

 The aim of the introduction of granularities is twofold:
 Coarser granules are often more convenient than smaller 

granules, e.g. 20 years versus 7305 days

 The exact date is not known at a smaller granularity, e.g. we know 
that the date is April 2015 but do not have an exact day        

 The goal when defining granularities (and calendars) 
is to not enumerate all time points but to have a compact 
definition of real world granularities

 A compact definition can be used as a starting point for 
compact representations, efficient implementations, etc.

 We give an algebraic definition of natural granularities



Time Granularity

 Granularity: Intuitively, a discrete unit of measure for a 
temporal datum that supports a user-friendly 
representation of time, e.g.
 birthdates are typically measured at granularity of days

 business appointments at granularity of hours (or half-hours)

 train schedules at granularity of minutes

 Mixed granularities are of basic importance to modeling 
real-world temporal data

 Mixing granularities create problems
 What are the semantics of operations with operands at differing 

granularities?

 How to convert from one granularity to another?

 How expensive is maintaining and querying times at different 
granularities?



Time Granularity

 Example: Airline flight database

Departures Vacations

 Data are stored at different granularities
 Flight departures are recorded at granularity of minutes

 Vacations are stored at granularity of days, each tuple storing a 
period of days

Flight Time

100 2015-08-01 12:30

55 2015-09-10 11:15

256 2016-01-01 16:40

Vacation Time

Christmas [2015-12-24, 2016-01-01]

Easter [2015-04-02, 2015-04-07]

Summer [2015-08-01, 2015-08,30]



Time Granularity

 Query: Which flights left during the Christmas 
vacation?

SELECT *

FROM Vacations V, Departures D

WHERE Vacation = ‘Christmas'

AND V.Time OVERLAPS D.Time

 Problems:
 Query processor needs to know the relationship 

between minutes and days

 Is overlaps evaluated at granularity of days or at 
granularity of minutes?



Time Granularity

 Granularity: More formally, a partitioning of the time line 
(chronons) into a finite set of segments, called granules

 The partitioning scheme of a granularity is specified by
 the length (or size) of each granule and

 an anchor point, where the partitioning begins

 The timeline is partitioned into granules, each the size of 
the partitioning length, beginning from the anchor point, 
and extending forwards and backwards



Time Granularity

 The granules are labeled with their distance from the 
anchor point

 Labels do not have to be contiguous

 A granularity maps a label to the corresponding set of 
chronons

 Assume granularity Week. Let the chronons be Day

 Then the granule “week 2” represents the chronons
{8, 9, 10, 11, 12, 13, 14}, 
i.e. Week(2) = {8, 9, 10, 11, 12, 13, 14}



Time Granularity

 Properties of a granularity
 A granularity creates a discrete image, in terms of granules, of a 

(possibly continuous) time-line

 The smallest possible granularity is that of a chronon, the largest 
is the entire time-line

 Within a given granularity, the set of granules is well-ordered
 Beginning and forever are the least and greatest values, respectively

 The partitioning can be complete (e.g., weeks, month) or 
incomplete (e.g., business weeks, holidays)

 The length of the granules can be fixed or variable
 In reality, partitioning by using a single, fixed length is impractical, and most 

common granularities divide the time-line into partitions of differing length

 A year has 365 or 366 days

 A month varies between 28, 29, 30, and 31 days



Granularity Operations

 Group(G, StartIndex, NumGrans)

 Start at granule StartIndex and repeatedly group 
NumGrans granules into one granule

 Example:
 Week = Group(Day,1,7)



Granularity Operations

 Alter(G2,G1,l,k,m)

 Intuition: periodically expand/shrink granules of G1 in 
terms of granules of G2.

 Partition G1 into groups of m granules; each l-th granule 
of G1 has k extra/fewer ticks

 Example:
 G = Alter(Day,Week,2,-1,3)

 Examples: leap years, leap seconds



Granularity Operations

 Shift(G,m)

 Shifting operation allows to shift the index set G by m 
positions

 Example:
 EDT = Shift(GMT,5)



Granularity Operations

 Subset(G,m,n)

 Takes all the granules of G whose labels are in the 
interval from m to n

 Example:
 20thCenturyYears = Subset(Year,1900,1999)



Granularity Operations

 Select-down(G1,G2,k,l)

 Selects granules of G1 by picking up l granules starting 
from the k-th one in each set of granules of G1 contained 
in one granule of G2

 Example:
 Sunday = Select-down(Day,Week,7,1)



Granularity Operations

 Select-up(G1,G2)

 Selects the granules of G1 that contain one or more 
granules of G2

 Example:
 FirstWeekOfMonth = Select-up(Week,FirstDayOfMonth)



Granularity Operations

 Combine(G1,G2)

 Combine all the granules of G1 into one granule if they 
are contained within one granule of G2

 Example:
 BMonth = Combine(BDay,Month)



Granularity Operations

 Union(G1,G2), Difference(G1,G2), Intersection(G1,G2)

 The new granularity is the union, difference, intersection 
of the input granules

 Condition: if two granules of the two operands are non-
disjoint (considering the underlying time) then they must 
be the same

 Example:
 WeekendDay = union(Sunday, Saturday)

 MondayAndFirstDayOfMonth =
intersect(Monday, FirstDayOfMonth)



Calendars

 A calendar is a collection of granularities that
 is generated from a single bottom granularity, and

 defines all non-bottom granularities in terms of granularity 
operations

 Calendars define granularities and determine the 
mapping between human-meaningful/readable time 
values and an underlying time line
 e.g. the Gregorian Calendar defines the granularities second, 

minute, hour, day, week, fortnight, month, year, and decade

 e.g. “December 9, 1921” in the Gregorian calendar represents a 
specific set of time line chronons (a segment of the time line)



Calendars

 Calendars incorporate the cultural, legal, religious and 
even business orientation of the user to define the time 
values that are of interest, e.g.
 Gregorian calendar

 Business calendar
 Useful calendar for tax or payroll applications

 Days are the same as in the Gregorian calendar, but the Business calendar 
has a five day (work) week

 The Business calendar year is divided into four quarters (Fall, Winter, Spring, 
Summer)

 For tax purposes, the Business calendar year starts with the Fall quarter

 Astronomy calendar
 A year has 365.25 days

 A century is precisely 36525 days long

 Origin is noon on January 1, 4713 B.C.

 The Gregorian calendar date “June 24, 1994” is 2449527.5 in the Astronomy 
calendar



Lattice of Granularities

 Within a calendar, granularities are related in the sense 
that one granularity may be a finer parititioning of another
 e.g. days are a finer partitioning of months or weeks

 weeks are not a finer partitioning of months



Lattice of Granularities

 With respect to finer
partitioning, a set of
granularities forms a lattice

 The top element, ┬, is the
maximal granularity of time, 
i.e. the entire time-line

 The bottom element, ┴, is
the granularity of time-line
clock (chronons)



Lattice of Granularities

 A multi-calendar system
 Granularities in different calendars are woven together into a 

single lattice



Lattice of Granularities

 Mappings between different
granularities in a lattice have to
be provided plus an anchor
point
 Regular versus irregular

mappings

 Complete versus incomplete
mappings/partitioning

 The properties of the
mapping decide about
efficient algorithms



Granule Conversion



Granule Conversion

 We need to convert granules in order to process data 
measured at different granularities

 Granularity conversions are used to
 Find the week of a particular day

 Find the first Monday of a particular month

 Find the last day of a particular fiscal year

 Find the moon phase of a particular day

 There is always a common ancestor granularity that the 
source and target granularities can be defined on (the 
bottom granularity qualifies but more efficient ones might 
exist)

 A granularity conversion consists of two steps:
 Convert the source granule to a set of granules in the ancestor 

granularity (down conversion)

 Convert the granules from step 1 to granules of the target 
granularity (up conversion)



Cast Function

 Current database systems provide the CAST function 
CAST(T, G) to Convert a timestamp T into granularity level G

 Uses the mappings between different granularities

 Examples: 

CAST( '1994-06-01', CENTURY) = '20'

CAST( '1994-06-01', YEAR) = '1994'

CAST( '1994-06-01', DAY) = '1994-06-01'

CAST( '1994-06-01', HOUR) = '1994-06-01 00'

 Conversion from coarser to finer granularity
 The cast function always chooses the first granule from the set of 

granules corresponding to the coarser timestamp

 This avoids indeterminate results

 SCALE function is similar, but produces an indeterminate 
result (a set of granules) when converting from a coarser 
to a finer granularity


