
Temporal

Data Models

Fabio Grandi

fabio.grandi@unibo.it

DISI, Università di Bologna

A short course on Temporal Databaes for DISI PhD students, 2016

Credits: most of the materials used is taken from slides prepared by Prof. M. Böhlen (Univ. of Zurich, Switzerland)

Temporal Data Models

 Data model: DM = (DS, QL)
 DS is a set of data structures

 QL is a language for querying and updating the data
structures

 Example: the relational data model is composed
of relations and SQL (or relational algebra)

 Many extensions of the relational data model to
support time have been proposed

Temporal Data Models

 Several modeling aspects have to be considered
 Different Time dimensions

 Different Timestamp types

 Tuple versus Attribute timestamping
(Ungrouped versus Grouped model?)

 Point-based versus Period-based model
(Atelic versus Telic data?)

 The different modeling aspects lead to subtle and
difficult issues. There are pros and cons in all
cases (no consensus can be reached)

Time Dimensions

 Time in a TDB is multi-dimensional:

 valid time, transaction time, event/decision time,
publication time, efficacy time, “user-defined” time

 Different time dimensions are of practical interest in
different application fields

 The key question is: which time aspects are sufficiently
important so that they should be supported by the
database system?

 There is a broad consensus that transaction time and
valid time are the most important time dimensions

Valid Time

 Valid time is the time a fact was/is/will be true in the
modeled reality or mini-world
 A fact is a statement that is either true or false

 A relation is a collection of facts

 Example: John has been hired on October 1, 2014

 Valid time captures the time-varying states of the mini-world

 All facts have a valid time by definition, however, it might not be
recoreded in the database

 Valid time is independent of the recording of the fact in a database

 Valid time is either bounded (does not extend until infinity) or
unbounded (extends until infinity)

 Future facts can be represented (stated or forecasted)

Transaction Time

 Transaction time is the time when a fact is current/present
in the database as stored data
 Example: the fact “John was hired on October 1, 2014” was stored

in the DB on October 5, 2014, and has been deleted on March 31,
2015

 Transaction time has a duration: from insertion to deletion, with
multiple insertions and deletions being possible for the same fact

 With transaction time deletions of facts are purely logical
 the fact remains in the database, but ceases to be part of the database

current state.

 Transaction time captures the time-varying states of the database

 Always bounded on both ends
 Starts when the database is created (nothing was stored before)

 Does not extend past now (no facts are known to have been stored in the
future)

 Basis for supporting accountability and “traceability” requirements,
e.g. in financial, medical, legal applications

 Should be supplied and managed automatically by the DBMS

Dimensions of Time

 A data model can support none, one, two, or more of
these time dimensions
 Snapshot data model: None of the time dimensions is supported

 Represents a single snapshot of the reality and the database

 Valid time data model: Supports only valid time

 Transaction time data model: Supports only transaction time

 Bitemporal data model: Supports valid time and transaction time

 In a former terminology [Snodgrass & Ahn 1986]:
 Historical DB → valid-time DB

 Rollback DB → transaction-time DB

 Temporal DB → bitemporal DB

 A DB where snapshot, transaction-time, valid-time and
bitemporal relations coexist can be called a multi-
temporal database

Temporal Relations

 A pictorial representation of the 4 kinds of
temporal table and evolution along the time axes

snapshot table transaction-time table

valid-time table bitemporal table

Dimensions of Time

 Which time dimensions are needed by an application?
(what can be done and what cannot be done?)

 Consider the following example involving the career of an
employee:

1. John was hired as a programmer (PRG)
with initial salary 2000 at time 1;

2. John’s salary was raised to 3000 at time 3
(but recorded in the DB at time 4);

3. John became a database administrator (DBA)
at time 6.

 Notice that 2. involves a retroactive update

In a Transaction-time DB

1. John was hired as a programmer (PRG)
with initial salary 2000 at time 1;

2. John’s salary was raised to 3000 at time 3
(but recorded in the DB at time 4);

3. John became a database administrator (DBA)
at time 6.

Emp

The time of the change 2. is incorrectly represented

Name Job Salary TT

John PRG 2000 [1,3]

John PRG 3000 [4,5]

John DBA 3000 [6,Now]

Name Job Salary TT

John PRG 2000 [1,3]

John PRG 3000 [4,Now]

Name Job Salary TT

John PRG 2000 [1,Now]

In a Valid-time DB

1. John was hired as a programmer (PRG)
with initial salary 2000 at time 1;

2. John’s salary was raised to 3000 at time 3
(but recorded in the DB at time 4);

3. John became a database administrator (DBA)
at time 6.

Emp

The validity of changes is correctly represented but
there is no way to know that change 2. was retroactive

Name Job Salary VT

John PRG 2000 [1,2]

John PRG 3000 [3,5]

John DBA 3000 [6,Now]

Name Job Salary VT

John PRG 2000 [1,2]

John PRG 3000 [3,Now]

Name Job Salary VT

John PRG 2000 [1,Now]

In a Bitemporal DB

1. John was hired as a programmer (PRG)
with initial salary 2000 at time 1;

2. John’s salary was raised to 3000 at time 3
(but recorded in the DB at time 4);

3. John became a database administrator (DBA)
at time 6.

VT

TT

1

1

PRG, 2000

4

6

3 6

PRG, 3000

DBA, 3000

corner under the diagonal

(i.e. VT.Start < TT.Start):

retroactive transaction

In a Bitemporal DB

1. John was hired as a programmer (PRG)
with initial salary 2000 at time 1;

2. John’s salary was raised to 3000 at time 3
(but recorded in the DB at time 4);

3. John became a database administrator (DBA)
at time 6.

Emp

Name Job Salary TT VT

John PRG 2000 [1,3] [1,Now]

John PRG 2000 [4,Now] [1,2]

John PRG 3000 [4,5] [3,Now]

John PRG 3000 [6,Now] [3,5]

John DBA 3000 [6,Now] [6,Now]

Name Job Salary TT VT

John PRG 2000 [1,3] [1,Now]

John PRG 2000 [4,Now] [1,2]

John PRG 3000 [4,Now] [3,Now]

Name Job Salary TT VT

John PRG 2000 [1,Now] [1,Now]

Choice of Temporal Dimensions

 A Transaction-time DB allows user to only effect
immediate (on-time) transactions; proactive transactions
are physically impossible and retroactive transactions
store data histories with a wrong “validity”

 A Valid-time DB allows users to execute retro-/pro-active
transactions (validity of modifications aka applicability
period is expressed by users via the DML); after its
execution, there is no way to know whether a transaction
was immediate or retro/pro-active

 A Bitemporal DB allows users to execute retro-/proactive
transactions and to keep track of their execution in the DB

Other Time Dimensions

 Event Time [Chakravarthy & Kim 94] aka
Decision Time [Nascimento & Eich 95]

 Considering the event E causing the change of some data
with some validity (in the mini-world and in the DB):

 E occurs at time T in the mini-world (Decision/Event Time)

 E occurs at time Tꞌ ≥ T in the DB (Transaction Time)

 E/D-T vs VT (=,<,>): current, futuristic, past due

 TT vs VT (=,<,>): immediate, proactive, retroactive

 E/D-T vs TT (=,<,>): instantaneous, late, N/A

 In specific application domains, other time dimensions
can be of interest (e.g. Efficacy time in the legal field)

Event vs State Temporal Relations

 Moreover, in a TDB there can be two kinds of
temporal relations:
 Event tables, with instant timestamps

(store information about facts without duration)

 State tables, with period or element timestamps

 Event table are suitable to store measures,
sensor data, departure/transit/arrival times

Departures

Departures
Flight Time

100 2015-08-01 12:30

55 2015-09-10 11:15

256 2016-01-01 16:40

Temporal Relations

 In the following, we focus on state tables

 An implicit continuity assumption is often done
(data values as produced by an insertion or update are
assumed to persist until they are changed or deleted, e.g.
salary of an employee)

Emp

Name Dept Salary Time

Tom SE 2300 [1/1/12, 1/1/16)

Ann DB 3200 [1/1/10, 1/1/15)

Ann DB 3400 [1/1/15, Now]

Timestamping

 A timestamp is a value that is associated with data in a
database
 Captures some temporal aspect, e.g. valid time, transaction time

 Represented as one or more attributes/columns of a relation

 Three different types of timestamps are widely used
 Time points

 Time periods

 Temporal elements

 Two different ways of timestamping
 Tuple timestamping

 Attribute timestamping

 Temporally grouped models are not based on
timestamping (but adopt a functional approach similar to
attribute timestamping though)

Timestamping

 Example: Videogame store where customers, identified

by a CustID, rent videogames, identified by a GameNo.

Consider the following rentals during May 2015:

 On 3rd of May, customer C101 rents game G1234 for three days

 On 5th of May, customer C102 rents game G1245 for 3 days

 From 9th to 12th of May, customer C102 rents game G1234

 From 19th to 20th of May, and again from 21st to 22nd of May,

customer C102 rents game G1245

 These rentals are stored in a relation CheckOut which is

graphically illustrated below

(C101, G1234) (C102, G1245)

(C102, G1245) (C102, G1234) (C102, G1245)

Tuple Timestamping with Points

 Point-based data model:
each tuple is timestamped
with a time point/instant
 Most basic and simple data model

 Timestamps are atomic values that
can be easily compared, using
=, <>, >, <, >=, <=

 Multiple tuples are used if a fact is
valid at several time points

 Syntactically different relations store
different information

 Provides an abstract view of a DB
and is not meant for physical
implementation

 Conceptual simplicity and
computational complexity make it
popular for theoretical studies

CustID GameNo Time

C101 G1234 3

C101 G1234 4

C101 G1234 5

C102 G1245 5

C102 G1245 6

C102 G1245 7

C102 G1234 9

C102 G1234 10

C102 G1234 11

C102 G1234 12

C102 G1245 19

C102 G1245 20

C102 G1245 21

C102 G1245 22

Tuple Timestamping with Points

 The reconstruction of the
original relation is not always
possible

 The table on the previous slide
makes it impossible to
determine if C102 rented
G1245 once or twice in the
period from 19 to 22

 Additional attributes are
required, e.g. Rental to
represent the individual rentals

 It is difficult to predict when an
additional attribute is needed

Rental CustID GameNo Time

R1 C101 G1234 3

R1 C101 G1234 4

R1 C101 G1234 5

R2 C102 G1245 5

R2 C102 G1245 6

R2 C102 G1245 7

R3 C102 G1234 9

R3 C102 G1234 10

R3 C102 G1234 11

R3 C102 G1234 12

R4 C102 G1245 19

R4 C102 G1245 20

R5 C102 G1245 21

R5 C102 G1245 22

Tuple Timestamping with Periods

 Period-based (interval-based) data model:
each tuple is timestamped with a time period

CheckOut

 Timestamps are atomic values that can be compared
using Allen’s 13 basic relationships between periods
(before, meets, during, etc.)
 More convenient than comparing the endpoints of the periods

 The benefits of Allen’s predicates are relatively small

CustID GameNo Time

C101 G1234 [3,5]

C102 G1245 [5,7]

C102 G1234 [9,12]

C102 G1245 [19,20]

C102 G1245 [21,22]

Tuple Timestamping with Periods

 The start and end of an interval are distinguished change
points

 The Rental attribute is not needed to distinguish different

 checkouts

 Multiple tuples are used if a fact is valid over disjoint time
periods

 Cannot model a single checkout with a gap

 The most popular model from an implementation
perspective (even in SQL89, with two columns Start, End)

 Time periods are not closed under all set operations
 Ex. subtracting [5, 7] from [1, 9] returns a set of periods

{ [1, 4], [8, 9] }

Tuple Timestamping

with Temporal Elements

 Data model with temporal elements:
each tuple is timestamped with a temporal element,
that is a finite set of time periods

CheckOut CheckOut

 The full history of a fact is stored in one tuple

 Usually the periods of a temporal element must be disjoint
and non-adjacent (i.e. element = union of maximal disjoint
periods). This makes it similar to point timestamps

CustID GameNo Time

C101 G1234 { [3,5] }

C102 G1245 { [5,7], [19,22] }

C102 G1234 { [9,12] }

CustID GameNo Time

C101 G1234 [3,5]

C102 G1245 [5,7] U [19,22]

C102 G1234 [9,12]

Attribute Timestamping

 Attribute value timestamping: each attribute value is
timestamped with a set of time points/periods

 All information about a real-world object is captured in a
single tuple
 e.g. all information about a customer in a tuple of the relation

below; each tuple is timestamped with a temporal element,
that is a finite set/union of time periods

CheckOut

CustID Rental GameNo

C101 { [3,5] } R1 { [3,5] } G1234 { [3,5] }

C102 { [5,7], [9,12], [19,22] } R2 { [5,7] }

R3 { [9,12] }

R4 { [19,20] }

R5 { [21,22] }

G1245 { [5,7], [19,22] }

G1234 { [9,12] }

Attribute Timestamping

 Notice that a single tuple may record multiple facts
 e.g. the second tuple records the following facts: rental

information for customer C102 for the games G1245 and G1234,
and four different checkouts

CheckOut

 Non-first-normal-form (N1NF) data model

 In a previous terminology:

 Homogeneous model → tuple timestamping

 Inhomogeneous model → attribute timestamping

CustID Rental GameNo

C101 { [3,5] } R1 { [3,5] } G1234 { [3,5] }

C102 { [5,7], [9,12], [19,22] } R2 { [5,7] }

R3 { [9,12] }

R4 { [19,20] }

R5 { [21,22] }

G1245 { [5,7], [19,22] }

G1234 { [9,12] }

Attribute Timestamping

 Different groupings of the information into tuples are
possible for attribute-value timestamping
 Information about other objects is spread across several tuples

(e.g. information about videogames)

 e.g. regrouping the CheckOut table on GameNo in the example
below

CheckOut

(such an operation is, in general, problematic!)

CustID Rental GameNo

C101 { [3,5] }

C102 { [9,12] }

R1 { [3,5] }

R3 { [9,12] }

G1234 { [3,5], [9,12] }

C102 { [5,7], [19,22] } R2 { [5,7] }

R4 { [19,20] }

R5 { [21,22] }

G1245 { [5,7], [19,22] }

Temporally Grouped Model

 In a temporally grouped (or history-oriented) data model
 the temporal dimension is implicit in the structure of data

representation

 data objects are substituted by their histories (ID not necessary)

 attributes can be regarded as partial functions that map time into
data domains

 Temporal models based on addition of timestamping
columns can be considered ungrouped

Rental CustID GameNo

R1 { [3,5] } → C101 { [3,5] } → G1234

R2 { [5,7] } → C102 { [5,7] } → G1245

R3 { [9,12] } → C102 { [9,12] } → G1234

R4 { [19,20] } → C102 { [19,20] } → G1245

R5 { [21,22] } → C102 { [21,22] } → G1245

Temporally Grouped Model

 A temporally grouped model is strictly more expressive
than an ungrouped data model
 Ex. If we project the CheckOut relation on CustID:

 A temporally grouped model is difficult to implement
 History IDs (e.g. surrogates) are needed to represent grouped

data in a 1NF relation

 Operations (e.g. join) are problematic to define with HIDs

 A N1NF (e.g. XML) database would be needed

CustID

{ [3,5] } → C101

{ [5,7] } → C102

{ [9,12] } → C102

{ [19,20] } → C102

{ [21,22] } → C102

We still know that such tuples involve 5

different rentals: the last two tuples do

not merge as they belong to different

groups (i.e. checkouts)

In an ungrouped models the last two

tuples can be coalesced and we lose

such information

Point- versus Period-based Data Model

 In a point-based data model, truth value of facts
is associated to time points

 Tuple timestamping with periods (or elements)
can be used as a compact representation or
normalization tool
 Adjacent or overlapping value-equivalent tuples can be

coalesced to obtain a canonical representation

 A fact true in [S,E] is true at any instant t[S,E]

 In a period-based (or interval-based) data model,
period timestamps are first-class objects and
truth value of facts can be associated to whole
time periods

Period-based Data Model

 In a weak interpretation, period timestamps are
first-class objects

 Although the truth value of facts is point-based,
it is important to preserve (e.g. for
lineage/provenance management) the
individuality of period boundaries through
operations, as they are reminiscent of change
events (initiation and termination)
 Ex. promotion or retirement for salary changes

 In a strong interpretation, period timestamps are
used to represent telic facts

Atelic versus Telic Temporal Data

 Atelic data is temporal data that describe facts that do not
involve a goal or culmination (e.g. have a job, salary)

 Atelic data enjoy the downward and upward inheritance
properties
 Downward inheritance: fact valid in period T is also valid in any

subset of T (and at any instant of T)

 Upward inheritance: a fact valid in consecutive or overlapping
periods T1 and T2 is also valid in T1 U T2

 Telic data are temporal data for which downward and
upward inheritance properties do not hold

 Telic data represent accomplishments or achievements

 Examples of telic facts:
 the Golden Gate bridge was built from January 1933 to April 1937

 John had a phleboclysis of 500mg of drug X from 10:30 to 11:45

The Bitemporal Conceptual Data Model

 The goal of the Bitemporal Conceptual Data Model
(BCDM) is to capture the essential semantics of time-
varying relations
 The BCDM is not intended for presentation, storage, or query

evaluation purposes

 The goal of the BCDM is similar to the goal of abstract temporal
databases

 Chomicki [2009] proposed the notions of abstract and concrete
temporal databases to separate semantics and representation

 Semantics associated with periods is not possible in the
BCDM (it is a point-based data model)

The Bitemporal Conceptual Data Model

 Bitemporal Conceptual Data Model (BCDM)
 Supports valid time and transaction time

 Both time domains are linear and discrete
 Valid-time domain: DVT = { t1, t2, …, tk }

 Transaction-time domain: DTT = { tꞌ1, tꞌ2, …, tꞌj } U {now}

 A bitemporal chronon is a pair of a transaction-time chronon and a
valid-time chronon
 (ti , tj)  DTT x DVT

 "tiny rectangle" in the two-dimensional space

 A bitemporal element is a set of bitemporal chronons

 Timestamp attribute T with domain of bitemporal elements

 Explicit (non-timestamp) attributes
 Names: DA = { A1, A2, …, An }

 BCDM schema: (A1, A2, …, An,T)

 BCDM tuple: (a1, a2, …, an, tb)

 Value-equivalent tuples (tuples with identical explicit attributes)
are not allowed
 the full history of a fact is contained in a single tuple

The Bitemporal Conceptual Data Model

 Example: Consider a relation recording
empolyee/department information
 Employee Jake was hired in the shipping department for the

period from time 10 to time 15

 This fact became current in the database at time 5

 Arrows indicate that the tuple has not been deleted yet

The Bitemporal Conceptual Data Model

 Example (contd.)
 The personnel office discovers that Jake had really been hired

from time 5 to time 20

 The database is corrected beginning at time 10

 Later on at time 15 the HR department has been informed that the
original time was correct

The Bitemporal Conceptual Data Model

 Example (contd.) At time point 19 the following updates are
performed (updates shall become effective at time 20):

 Jake was not in the shipping department, but in the loading
department
 The fact (Jake,Ship) is removed from the current state, and the fact

(Jake,Load) is inserted

 A new employee Kate is hired for the shipping department for the
time from 25 to 30

The Bitemporal Conceptual Data Model
 After the updates the bitemporal relation contains 3 facts and is given

below

deptEmp Dept T

Jake Ship {(5,10),…,(5,15),…,(9,10),…,(9,15),

(10,5),…,(10,20),…,(14,5),…,(14,20),

(15,10),…,(15,15),…,(19,10),…,(19,15)}

Jake Load {(now,10),…,(now,15)}

Kate Ship {(now,25),…,(now,30)}

Updates in the BCDM

 Update operations
 New facts with a given valid timestamp are inserted to a relation

with now as transaction time chronon

 As time passes by, the bitemporal elements associated with
current facts are updated

 Facts are (logically) deleted by removing the chronons containing
now

Updates in the BCDM

 Insert: Record in a relation r a currently unrecorded fact
(a1, a2, …, an) with validity tv

 Three cases are distinguished:
1. If (a1, a2, …, an) was never recorded, a new tuple is appended

2. If (a1, a2, …, an) was part of some previously current state, the
tuple recording is updated

3. If (a1, a2, …, an) is already current in the database, a modification
is required (and the insertion is rejected)

Updates in the BCDM

 ts_update: Special routine to add new chronons as time
goes by
 Applied to all bitemporal relations at each clock tick

 Updates the timestamps to include the new transaction-time value

 Each bitemporal chronon with a transaction time of now produces
an appended bitemporal chronon with now replaced with the
current transaction time

 Example: Department relation at time 19 and 20

Updates in the BCDM

 Delete: Logical removal of a tuple from the current valid-
time state
 Delete all chronons (now, cv) from the timestamp of the tuple

(cv is some valid-time chronon)

 The timestamp is not expanded by subsequent invocations of
ts_update, and the tuple will not appear in future valid-time states

 Modify: Modification of a current tuple

Updates in the BCDM

 Example: The istance of the department relation
dept is created by the following sequence of
commands

Operation TT

insert(dept, ("Jake","Ship"), [10,15]) 5

modify(dept, ("Jake","Ship"), [5,20]) 10

modify(dept, ("Jake","Ship"), [10,15]) 15

delete(dept, ("Jake","Ship")) 20

insert(dept, ("Jake","Load"), [10,15]) 20

insert(dept, ("Kate","Ship"), [25,30]) 20

Concrete Temporal Data Models

 The abstract Bitemporal Conceptual Data Model
needs conversion into a representational or
concrete temporal data model to be implemented
in a DBMS

 The BCDM is a unifying framework for studying
and comparing different temporal data models

 Mappings have been provided for most of the
concrete temporal data models proposed in the
literature

Tuple Timestamped Model [Snodgrass]

 Supports valid time and transaction time

 Adds four atomic-valued attributes to each relation
 Start and end point of the valid time: Vs ,Ve

 Start and end point of the transaction time: Ts ,Te

 Schema: R = (A1, . . . , An, Ts ,Te ,Vs ,Ve)

 Timestamping attributes Ts, Te, Vs, Ve have been also
called differently (e.g. In, Out, From, To, respectively)

 Ts, Te (Vs, Ve, resp.) represent the endpoints of a
transaction (valid, resp.) time period, which is usually
considered open to the right

 Hence Ts ,Te ,Vs ,Ve represent the bitemporal chronons
(a bitemporal chronon is a two-dimensional time point)
of the corresponding rectangular region [Ts,Te) x [Vs,Ve)

 1NF relations

Tuple Timestamped Model

 A closed region in a two dimensional space (TT x VT)
must be represented by a set of rectangles
 any bitemporal chronon in x.T is contained in at least one

rectangle

 each bitemporal chronon in a rectangle is contained in x.T

 Various coverings of a 2D area are possible:
 Overlapping versus non-overlapping rectangles

 Partitioning by transaction time versus partitioning by valid time

Partitioning by TT (VT) yields maximal segments in VT (TT) direction

Tuple Timestamped Model

 Example: Department relation in the tuple timestamped
data model, using partitioning by transaction time

dept

Once the partitioning criterion has been chosen, a unique
mapping from the BCDM is defined

Emp Dept Ts Te Vs Ve

Jake Ship 5 10 10 15

Jake Ship 10 15 5 20

Jake Ship 15 20 10 15

Jake Load 20 Now 10 15

Kate Ship 20 Now 25 30

Backlog-based Data Model [Jensen]

 Supports valid time and transaction time

 Adds four atomic-valued attributes to each relation
 Start and end point of the valid time (Vs ,Ve)

 Transaction time when the tuple was inserted into the backlog (T)

 An operation which is either insert or delete (Op)

 Schema: R = (A1, . . . , An, Vs ,Ve ,T, Op)

 Tuples in backlogs are never updated, i.e. backlogs are
append-only 1NF relations

 The fact in an insertion request is current starting at the
transaction’s timestamp and until a matching delete
request is recorded

T is the commit time of the transaction executing Op

Backlog-based Data Model

 Example: Department relation in the backlog-based data
model

dept

Implicitly does partitioning by TT in mapping from the BCDM

Emp Dept Ts Te T Op

Jake Ship 10 15 5 I

Jake Ship 10 15 10 D

Jake Ship 5 20 10 I

Jake Ship 5 20 15 D

Jake Ship 10 15 15 I

Jake Ship 10 15 20 D

Jake Load 10 15 20 I

Kate Ship 25 30 20 I

Attribute Timestamped Data Model [Gadia]

 Supports valid time and transaction time

 Schema:

R = ({(TT1 x VT1, A1)}, . . . , {(TTn x VTn, An)})

 A tuple is composed of n sets
 Each set element is composed of a bitemporal period

(e.g. [Ts,Te) x [Vs,Ve)) and an attribute value

 N1NF relations (e.g. suitable to OODB or XML)

 A relation might be restructured (regrouped) on different
attributes
 For example, group by department rather than employee yields

facts for each department

Attribute Timestamped Data Model

 Example: Department relation in the attribute
timestamped data model

dept

Emp Dept

[5,10) × [10,15) Jake

[10,15) × [5,20) Jake

[15,20) × [10,15) Jake

[20,Now) × [10,15) Jake

[5,10) × [10,15) Ship

[10,15) × [5,20) Ship

[15,20) × [10,15) Ship

[20,Now) × [10,15) Load

[20,Now) × [25,30) Kate [20,Now) × [25,30) Ship

Attribute Timestamped Data Model

 Temporal elements can also be used as timestamps

dept

The mapping from the BCDM is univocally defined once we
have chosen the form of the periods (e.g. closed or open
to the right)

Emp Dept

{ [5,10) × [10,15), Jake

[10,15) × [5,20),

[15,20) × [10,15),

[20,Now) × [10,15) }

{ [5,10) × [10,15), Ship

[10,15) × [5,20),

[15,20) × [10,15) }

{ [20,Now) × [10,15) } Load

{ [20,Now) × [25,30) } Kate { [20,Now) × [25,30) } Ship

