
Temporal

Query Languages

Fabio Grandi

fabio.grandi@unibo.it

DISI, Università di Bologna

A short course on Temporal Databases for DISI PhD students, 2016

Credits: most of the materials used is taken from slides prepared by Prof. M. Böhlen (Univ. of Zurich, Switzerland)

Temporal Query Languages

 Data model: DM = (DS, QL)
 DS is a set of data structures

 QL is a language for querying and updating the data
structures

 Example: the relational data model is composed
of relations and SQL (or relational algebra)

 Many extensions of the relational data model and
SQL to support time have been proposed

Relational Algebra for the BCDM

 An algebra provides a procedural/operational
language for a data structure that is suitable for
implementation

 Algebra for the standard relational algebra
operators in BCDM
 Schema: R = (A1, …, An, T)

 Domains: Ai has domain Di and T has domain P(DTT x DVT)
 DTT is the transaction-time domain and DVT is the valid-time domain

 r is an instance relations of schema R

 The operators then have the following signature

Projection in BCDM
 Temporal projection: Project a relation r with non-

timestamp attributes A1, …, An to a subset D of
attributes

 Calculation of timestamps of result tuples
 All chronons in any value-equivalent tuple of r must be

included and no spurious chronons can be introduced

 (automatic coalescence is performed)

 Ex. Projection on the Emp attribute:

Selection in BCDM
 Temporal selection: Select from relation r with

non-timestamp attributes A1, …, An all tuples that
satisfy a predicate P defined on the non-
timestamp attributes

 Ex. Select all tuples of employee Kate:

Union in BCDM
 Temporal union: Compute the union of tuples

from two relations r1 and r2 that are instances of
the same schema (or union-compatible schemas)

 The first clause handles value-equivalent tuples found
in r1 and r2

 The second (third) clause handles those tuples that are
found only in r1 (r2)

Union in BCDM
 Ex. Compute

the union of
relations dept
and emp:

Difference in BCDM
 Temporal difference: Compute those tuples that

are in r1 and not in r2 where the two relations are
instances of the same schema (or union-
compatible schemas)

 The last two lines compute the bitemporal element,
depending on whether a value-equivalent tuple may be
found in r2 or not

Difference in BCDM
 Ex. Compute

the difference
of relations
dept and emp:

Join in BCDM
 Temporal join: Two tuples join if they match on

the join attributes A1, …, An and have overlapping
bitemporal-element timestamps

 r and s are instances over the following schemas:
R(A1, …, An, B1, …, Bl, T) = R(A, B, T)

S(A1, …, An, C1, …, Cm, T) = S(A, C, T)

 The timestamp of a result tuple is the intersection of
the timestamps of the corresponding argument tuples

Join in BCDM
 Ex. Temporal join to compute “Who managed

whom”?:

The timestamp is the

overlap of timestamp

regions of tuples with

matching join attribute

Timeslice Operators in BCDM

 Transaction-timeslice operator: selects the relation
at transaction time t1 (not exceeding the current time)
 Takes a bitemporal relation r as input

and returns a valid-time relation

 Valid-timeslice operator: selects the relation
at valid time t2
 Takes a bitemporal relation r as input

and returns a transaction-time relation

Timeslice Operators in BCDM
 Timeslice operators can be extended for

transaction-time and valid-time relations
 T gets as input a transaction-time relation and returns

a snapshot relation

 V gets as input a valid-time relation and returns a
snapshot relation

 Ex.

 B
12 (dept) = { (Jake,Ship, {5,…,19}), (Jake,Load, {now}) }

 V
7 (

B
12 (dept)) = { (Jake,Ship) }

Sequenced Semantics

 There is a close relationship between a temporal and a
non-temporal database:
 the snapshot of a temporal relation at a time t is a non-temporal

relation

 a temporal relation is a collection of timestamped snapshots

 All non-temporal statements can be evaluated at each
snapshot of a temporal database (“at each time point”)

 There should be a close relationship between a temporal
and a non-temporal statement:
 e.g. a temporal aggregation should resemble a non-temporal

aggregation

 With SQL this is not the case (remember temporal join
versus join)…

Sequenced Semantics

Notations (we assume R is a valid-time relation):

 Relation schema: R(A1, ..., An, TS, TE)

 r is a relation with schema R (instance of R)

 A1, ..., An are the explicit (non-temporal) attributes

 TS, TE are temporal attributes
 TS is the valid time start

 TE is the valid time end

 z(n+2) denotes a tuple of arity n+2

 We assume periods are half open intervals [TS,TE)

 We write T to refer to the period [TS,TE)
 t  T ≡ TS ≤ t < TE

Sequenced Semantics

Notations:

 The timeslice operator  maps a temporal to a non-
temporal relation

 Definition of the timeslice operator:

t(r) = { z(n) | x  r (z.A = x.A /\ x.TS ≤ t < x.TE) }

 Two temporal relations, r and s, are snapshot equivalent
iff for all times t their snapshots are identical

 Definition of snapshot equivalence:

Sequenced Semantics

 Snapshot reducibility reduces the semantics
of temporal operators to the semantics
of the corresponding non-temporal operators

 temporal operator T is snapshot-reducible to the
non-temporal operator  iff for all t:

Sequenced Semantics

 DT = temporal DB

 T = {T, T, T, xT, UT, -T}

 RT = temporal result relation

 t = snapshot at time point t

 Dt = snapshot of DT at time t

  = {, , , x, U, -}

 Rt = result relation at time t

Illustration of snapshot

Reducibility:

Sequenced Semantics

 A temporal relation can be viewed as made up of a
sequence of timestamped snapshot relations

 Mutual consistency of the two viewpoints along the time
axis gives rise to the notion of snapshot reducibility

 If period/element timestamping is adopted, timestamps of
the argument tuples are taken into account when forming
the timestamp associated to the result tuples (e.g.
intersection is used when executing a join)

 Enforcement of snapshot reducibility gives rise to a
sequenced semantics (i.e. “at each time point”) in query
execution [Böhlen, Jensen, Snodgrass]

Non-Sequenced Semantics

 Snapshot reducibility does not apply to queries involving
predicates and functions over the timestamps of argument
relations

 In such queries, snapshots valid at different times
have to be mixed in in order to find the answer

 Hence, their evaluation requires a non-sequenced
semantics

 Such queries give the full temporal expressivity to a
temporal query language (and fully exploits the power of a
temporal database)
 Ex. Find the employees who were programmer

before becoming DBA

 The information about being programmer and about being DBA
must be found by combining (with a join) different snapshots

Beyond Sequenced Semantics [Böhlen]

 Period-based semantics (even in a weak sense) requires
the preservation of the individual timestamp periods
through the application of operators

 Extended snapshot reducibility allows non-sequenced
queries to be executed with a sequenced semantics

 It can be enforced via timestamp propagation (making
copies of timestamp columns to be treated as explicit
attributes)

 Enforcement of change propagation corresponds to a
correct application of a sequenced semantics with true
period-based timestamping (coalescence not automatic)

 It can be implemented via manipulation of lineage sets
(sets of witness lists of argument tuples)

Upward Compatibility [Snodgrass et al.]

 Let M1=(DS1,QL1) and M2=(DS2,QL2) two data models,
then M1 is syntactically upward compatible with M2 if
  db2  DS2  db2  DS1

  q2  QL2  q2  QL1

(a database/query in M2 is also a database/query in M1)

 Let M1=(DS1,QL1) and M2=(DS2,QL2) two data models,
then M1 is upward compatible with M2 if
 M1 is syntactically upward compatible with M2

  db2  DS2, q2  QL2  [[q2(db2)]]M2
= [[q2(db2)]]M1

(evaluating a query on a database instance in M2 gives identical
results if evaluated in M1)

 We will use this notion with M1 = TDB and M2 = Rel. DB…

Upward Compatibility

 A Temporal Query Language (TQL) is upward compatible
with SQL if
 Traditional tables are also legal instances of tables in the

underlying temporal data model

 Traditional SQL queries are also queries in the TQL and give the
same results when evaluated according to the TQL semantics

(TQL and SQL queries give the same results on a non-temporal table)

Upward

Compatible

Queries

Language Design Criteria

 Expressive power
 Suitable for intended applications

 Economy of encoding is relevant

 Clarity
 Syntax should reflect the semantics

 Consistent naming style

 Consistency
 Upward compatibility with standards, e.g. SQL standard

 Systematic (not a new construct per query, no exceptions)

 Orthogonality
 Possibility to freely combine query language constructs

 Zero-One-Infinity principle (the only reasonable numbers in a
programming language design are zero, one, and infinity)

 Closed-form evaluation
 The result of a query is a proper object of the data model

Comparison of Timestamps

 Comparison of Timestamps is part of every temporal
query language

 Many query languages adopt (a variant of) Allen’s 13
period relations:

SQL + Abstract Data Types

 Extend existing language (e.g. SQL) with time data types
and associated predicates and functions
 e.g. predicates for timestamp comparison

 Earliest and (from a language design perspective)
simplest approach

 Has limited impact on existing language and is well
understood technically

 An abstract data type does not offer a systematic way to
generalize snapshot queries to temporal queries

 New and very complex solutions must be invented (i.e.
programmed) to implement common temporal operations:
 Temporal join, temporal aggregates, coalescence…

 Enforcement of key constraints, sequenced semantics…

The IXSQL Approach [Lorentzos et al.]

 IXSQL extends SQL-92 with (time) period data type

 Periods are convenient for representing temporal aspects,
but create difficulties when formulating temporal queries

 IXSQL addresses this problem by normalizing timestamps
so that they are aligned (identical or disjoint):
 Function UNFOLD: decompose a period-timestamped tuple into a

set of point-timestamped tuples (one for each point in the original
period)

 Function FOLD: collapse a set of point timestamped tuples into
value-equivalent tuples timestamped with maximum periods

 General pattern for query processing using fold/unfold:
1. Construct the point-based representation by unfolding the

argument relation(s)

2. Compute the query on point-based representation

3. Fold the result to end up with an period-based representation

The IXSQL Approach

 Example of a temporal join (sequenced semantics):

SELECT DeptName, Location, DeptManager, Salary,
intervsect(Department.T, Employee.T) as T

FROM Employee, Department
WHERE EmpName = DeptManager

AND Department.T overlaps Employee.T
AND Location = 'Miami’

REFORMAT AS FOLD T

 (the REFORMAT AS FOLD instruction, i.e. UNFOLD to
time instants followed by FOLD to time periods, is
necessary for coalescence of tuples in the result)

The IXSQL Approach

 Only two functions, fold and unfold, are added to SQL

 Unfold can be used when needed to formulate queries
about each time point (it is optional and not an invasive
change at query language level)

 Efficient evaluation of queries formulated using fold/unfold
has yet to be resolved

 Neither a purely point-based nor period-based view:
 Sensitive to specific period representation of data (e.g. queries

that do not use fold/unfold)

 Fold/unfold only preserve information of a point-based view
 Normalization step using unfold/fold loses period information

 Fold is not the inverse of unfold (information about the original periods is lost)

 The combination of “at each time point” and periods is not
supported (sequenced semantics with periods cannot be
supported)

The TSQL2 Language

(Temporal SQL-92 Extension)

The TSQL2 Language

Desired features of the underlying data model
that inspired the TSQL2 design:

 TSQL2 should not distinguish between value-equivalent
instances (to provide conceptual simplicity)

 TSQL2 should support only one valid-time dimension

 TSQL2 should support transaction time

 For simplicity, tuple timestamping should be employed

 Event and state tables should be supported

 Valid-time support should include support for both the
past and the future

 Timestamp values should not be limited in range or
precision

The TSQL2 Language

Proper desired features of the query language that
inspired the TSQL2 design:

 TSQL2 should be a consistent, fully upward
compatible extension of SQL-92

 TSQL2 should allow the restructuring of tables on any
set of attributes

 TSQL2 should allow for flexible temporal projection

 Operations in TSQL2 should not accord any explicit
attributes special semantics (e.g. op. relying on keys)

 Temporal support should be optional, on a per-table
basis

The TSQL2 Language

Proper desired features of the query language
that inspired the TSQL2 design:

 User-defined time support should include instants,
periods and intervals

 Existing aggregates should have temporal analogues in
TSQL2

 Multiple calendars and multiple language support should
be present in timestamp I/O and operations

 It should be possible to derive temporal and non-temporal
tables from underlying temporal and non-temporal tables

The TSQL2 Language

Ease of implementation was made a priority in the design:

 TSQL2 tables should be implemented in terms of tables
in some 1NF representational model

 TSQL2 should have an efficiently implementable algebra
that allows for optimization and that is an extension of
the snapshot algebra

 The TSQL2 data model should allow multiple
representational data models

The TSQL2 Language

 Timestamping columns are “hidden columns” with an
implied special semantics and syntactic defaults have
been embedded in order to make the formulation of
common temporal queries easier

 For example, intersection of the valid time of all the
relations involved in a query to be assigned as
timestamps to the results is automatically done, yielding:
 Snapshot reducibility is ensured

 Sequenced semantics is enforced by default

 The implied sequenced semantics can be overridden via
a custom temporal projection or explicit manipulation of
timestamps for temporal selection

Time Representation in TSQL2

 Time representation conforms to the BDCM

 Time is discrete with chronons as base unit

 Available base temporal datatypes:
 Datetime (instant)

 Period

 Interval

 Such datatypes are inherited from the SQL-92
specification but with several flaws fixed

The Datetime Datatype

 Conforms to predefined SQL-92 types: DATE, TIME,
TIMESTAMP (compliant to ISO 8601 standard formats)

 Examples:

DATE '2016-02-29'

DATE 'February 29, 2016'

TIME '21:30:10'

TIME '9:30:10 PM'

TIMESTAMP '2015-12-31 12:00:00.00'

TIMESTAMP 'Noon December 31, 2015'

The Period Datatype

 Represents open/closed time periods

 Examples:

PERIOD '[March 2014]'

PERIOD '(2010]'

PERIOD '[1994-01-01 - 1994-01-31)'

PERIOD '(12:15:00.0 - 12:16:00.0)'

PERIOD '[Midnight July 1, 2013

- September 10, 2014 10:20 AM]'

The Interval Datatype

 Represents unanchored pure durations

 Examples:

INTERVAL '10' YEAR

INTERVAL 'November' DAY

INTERVAL '3' WEEK

INTERVAL '02:30' HOUR TO MINUTE

INTERVAL '-20' SECOND (cf. negative duration)

Mixed Expressions

 A set of any datetime (period) data is an instant set
(temporal element): in any case it is a set of chronons

 Examples:

PERIOD '[2014-01-01 - 2014-06-01]'

+ INTERVAL '10' MONTH

= PERIOD '[2014-11-01 - 2015-04-01]‘

TIMESTAMP ‘2000-01-01 12:30'

+ INTERVAL 'February 2016' DAY

= TIMESTAMP ‘2000-01-30 12:30'

Mixed Expressions

 Further examples:

PERIOD 'March 2014' + INTERVAL '10' DAY

= PERIOD '[2014-03-11 - 2014-04-10]‘

TIMESTAMP '13:30 April 1, 2000'

+ INTERVAL '1' YEAR - INTERVAL '15' MINUTE

= TIMESTAMP '2001-04-01 13:15'

 Special predefined constants:
BEGINNING, FOREVER, INITIATION,
UNTIL_CHANGED, CURRENT_TIMESTAMP,
NOW (possibly with nobind option)

Schema Declaration and Modification

 Temporal definition clause AS… (6 temporal table types)

 Examples:

CREATE TABLE Employee (…)

AS VALID STATE

CREATE TABLE Department (…)

AS VALID AND TRANSACTION

CREATE TABLE Transfer (…)

AS VALID EVENT DAY

ALTER TABLE Employee

ADD TRANSACTION



Temporal Selection

 Selection based on temporal conditions in the WHERE
clause

 Temporal comparison operators
(for datetime, period, instant set and element):
PRECEDES, =, OVERLAPS, MEETS, CONTAINS

 Comparison (<, =, >) and arithmetic (+, -, *) operators for
intervals

 Various functions:
BEGIN(.), END(.), FIRST(.), LAST(.),
INTERSECT(.,.), + , -

 Constructors: PERIOD(.,.)

 Timestamp extractors: VALID(.), TRANSACTION(.)

Temporal Comparison Operators

 The semantics of TSQL2 temporal comparison operators
corresponds to their meaning in natural language
(whereas Allen’s operators have artificial and innatural
names), following the SQL (SEQUEL) philosophy

 X PRECEDES Y iff END(X) < BEGIN(Y)

 X = Y iff X and Y are identical

 X OVERLAPS Y iff X ∩ Y  

 X MEETS Y iff X PRECEDES Y
without any instants in between

 X CONTAINS Y iff X  Y

Temporal Comparison Operators

 The TSQL2 temporal comparison operators can be used
with instants, periods and elements, and also for mixed
comparisons (e.g. elements with instants)

 As to periods, TSQL2 is anyway Allen-complete

 X = Y has been preferred to X EQUALS Y
not to introduce a new keyword

 For the same reason, inverse operators have not been
considered necessary

 X MET_BY Y can be expressed as Y MEETS X

 X FOLLOWS Y can be expressed as Y PRECEDES X

 X DURING Y can be expressed as Y CONTAINS X

Temporal Selection - Examples

 SELECT * FROM Employee
WHERE EmpName = 'Ted'

 SELECT Salary FROM Employee
WHERE VALID(Employee) CONTAINS DATE 'NOW'

 SELECT * FROM Employee
WHERE EmpName = 'Ted'

AND VALID(Employee) OVERLAPS
PERIOD '[2013]' + PERIOD '[2015]'

Temporal Selection - Examples

 SELECT EmpName, Salary
FROM Employee
WHERE FIRST(VALID(Employee)) CONTAINS

PERIOD '[1990-06-15 - 1990-07-15]'

 SELECT EmpName, Salary
FROM Employee
WHERE Job = 'Programmer'

AND LAST(VALID(Employee))
PRECEDES DATE '2014-03-01'

Temporal Projection

 Assignment of a timestamp to the results of a query
done with the VALID (VALID INTERSECT) clause

 Examples:

 SELECT SNAPSHOT EmpName, DateOfBirth
FROM Employee
WHERE Job='Engineer'

 SELECT DISTINCT EmpName
FROM Employee
VALID PERIOD(DateOfBirth, DATE 'FOREVER')
WHERE Job = 'Manager'

Temporal Projection - Examples

 SELECT Department.*, Employee.Salary
FROM Employee, Department
VALID INTERSECT (Employee, Department)
WHERE EmpName = DeptManager

AND VALID(Employee)
OVERLAPS VALID(Department)

AND Location = 'Miami'

 SELECT Department.*, Employee.Salary
FROM Employee, Department
WHERE EmpName = DeptManager

AND Location = 'Miami'

(the same VALID clause as above is understood and,
thus, the overlap is implied; cf. temporal join)

TSQL2 Range Variables

 The TSQL2 range variables generalize the concept of
history variables [Grandi] and allow for temporal
restructuring [Gadia] of a relation. Automatic coalescing
of timestamps is implied

 In the FROM clause:
FROM Employee(EmpName) AS Emp

the variable Emp ranges over groups of tuples of the
relations with the same EmpName attribute value.
Grouping can also be based on periods

 Notice that the clause FROM Employee
is equivalent to FROM Employee AS Employee
that is to FROM Employee(*) AS Employee

TSQL2 Range Variables

 Declaration of range variables (and, thus, grouping) can
be nested:

FROM Employee(EmpName) AS Emp,
Emp(Job) AS E1, E2

is equivalent to:

FROM Employee(EmpName) AS Emp,
Employee(EmpName,Job) AS E1, E2

WHERE E1.EmpName=Emp.EmpName
AND E2.EmpName=Emp.EmpName

(groups are synchronized on the common attributes;
nested declarations are “syntactic sugar”)

TSQL2 Range Variables

 Examples:

SELECT *
FROM Employee(EmpName,Salary) AS Emp
WHERE Salary = 2500

AND CAST(Emp AS INTERVAL YEAR)
>= INTERVAL '2' YEAR

SELECT SNAPSHOT E1.EmpName, BEGIN(VALID(E2))
FROM Employee(EmpName) AS Emp,

Emp(Job,Salary) AS E1, E2
WHERE E1 MEETS E2

AND E1.Job <> E2.Job
AND E1.Salary = E2.Salary

TSQL2 Range Variables

 Examples:

SELECT E1.EmpName, E1.Job
FROM Employee(EmpName) AS Emp,

Emp(Job)(PERIOD) AS E1, E2, E3
WHERE E1 MEETS E2 AND E2 MEETS E3

AND E1.Job <> E2.Job AND E1.Job = E3.Job
AND E2.Job = 'Manager'

SELECT Emp.*
FROM Employee(EmpName) AS Emp,

Emp(Job) AS E1, Emp(Salary) AS E2
WHERE E1.Salary = 2300 AND E2.Job = 'DeptHead'

AND BEGIN(VALID(E2)) - END(VALID(E1))
> INTERVAL '18' MONTH

TSQL2 Modification Operations

 The VALID clause allows for the specification of the
applicability period of the modification

 Examples:

INSERT INTO Employee
VALUES ('Kim', '1982-05-15', 'Engineer', 2500)
VALID PERIOD(DATE '2016-01-01',

NOBIND(DATE 'NOW'))

Employee

EmpName DateOfBirth Job Salary VALID

Kim 15/5/1982 Engineer 2500 [1/1/2016, Now)

TSQL2 Modification Operations

 Examples:

UPDATE Employee
SET Salary = Salary + 200
WHERE EmpName = 'Kim'

AND VALID(Employee)
CONTAINS DATE 'CURRENT_TIMESTAMP'

VALID PERIOD 'February 2016'

Employee

EmpName DateOfBirth Job Salary VALID

Kim 15/5/1982 Engineer 2500 [1/1/2016, 1/2/2016)

Kim 15/5/1982 Engineer 2700 [1/2/2016, 1/3/2016)

Kim 15/5/1982 Engineer 2500 [1/3/2016, Now)

TSQL2 Modification Operations

 Examples:

DELETE FROM Employee
WHERE EmpName = 'Kim'
VALID PERIOD '[2016-06-01 - FOREVER]'

Employee

EmpName DateOfBirth Job Salary VALID

Kim 15/5/1982 Engineer 2500 [1/1/2016, 1/2/2016)

Kim 15/5/1982 Engineer 2700 [1/2/2016, 1/3/2016)

Kim 15/5/1982 Engineer 2500 [1/3/2016, 1/6/2016)

TSQL2 Modifications and Surrogates

 Surrogates are transparent time-invariant identifiers

 Example:

CREATE TABLE
Supplier(ID SURROGATE, Name CHAR PRIMARY KEY,

Address CHAR)
AS VALID;

INSERT INTO Supplier
VALUES (NEW, 'Acme Inc.', 'New York')
VALID PERIOD '[2014-01-01 - FOREVER]'

Supplier

ID Name Address VALID

[S1] Acme Inc. New York [1/1/2014, Forever)

TSQL2 Modifications and Surrogates

INSERT INTO Supplier
SELECT ID, 'New Acme Ltd.', Address
FROM Supplier
WHERE Name = 'Acme Inc.'
VALID PERIOD '[2016-01-01 - FOREVER]'

or: UPDATE Supplier
SET Name = 'New Acme Ltd.'
WHERE ID = (SELECT ID FROM Supplier

WHERE Name = 'Acme Inc.')
VALID PERIOD '[2016-01-01 - FOREVER]'

Supplier

ID Name Address VALID

[S1] Acme Inc. New York [1/1/2014, 1/2/2016)

[S1] New Acme Ltd. New York [1/1/2016, Forever)

TSQL2 Aggregate Functions

 Temporal grouping criteria:

 Partition domain (valid or user-defined, instant or period)

 Partition granularity

 Associated time window (LEADING and TRAILING options)

 Group belonging

 Example:

SELECT Salary
FROM Employee AS Emp1
WHERE Emp1.EmpName = 'Tony'

AND VALID(Emp1) OVERLAPS
(SELECT MIN(VALID(Emp2))
FROM Emp AS Emp2
WHERE Emp2.EmpName = 'Eve')

TSQL2 Aggregate Functions

 Examples:

SELECT EmpName, SUM(WEIGHTED Salary)
FROM Employee(EmpName) AS Emp
GROUP BY VALID(Emp) USING '1' YEAR
HAVING MIN(Salary) > 2500

SELECT AVG(WEIGHTED Salary)
FROM Employee
WHERE EmpName = 'Tony'
GROUP BY VALID(Employee)

USING '1' MONTH LEADING '11' MONTH

Calendars and Calendric Systems

 Calendars and calendric systems composed of multiple
calendars are supported in TSQL2

 Ex. of calendars: Gregorian, Julian, Astronomic,
Traditional_Chinese, US_Fiscal, UniBO_Academic

 Ex. of a calendric system: Russian (Roman till100 B.C.
then Julian till1917, then Gregorian till1929, then
Communist till1931 and then Gregorian again)

 Selection of a calendric system (Gregorian) in TSQL2:

DECLARE CALENDRIC SYSTEM
AS SQL92_CALENDRIC_SYSTEM

Calendars and Calendric Systems

 Calendars are necessary for correct I/O and formatting
of time data, that can be specified via the
DATETIME_FORMAT property, ex.

SET PROPERTY FOR Italian_Calendar WITH VALUES
(' DATETIME_FORMAT ',
' <DAY>/<MONTH>/<YEAR> <HOUR>:<MINUTE>:<SECOND> ')

then '19/02/2016 ' is a correct date literal for the Italian_Calendar

 Time zones and daylight saving are also supported,
e.g. the following expressions are equivalent:

TIME '10:30:25' AT TIME ZONE INTERVAL '1' HOUR

TIME '10:30:25' AT TIME ZONE 'CET'

TIME '10:30:25+01:00'

Calendars and Calendric Systems

 Like in SQL-92, an EXTRACT() operator is also available
to extract components from a temporal expression.

 Examples:

EXTRACT (HOUR FROM TIME '01:27.30 PM')

returns 13

EXTRACT (MONTH FROM DATE 'June 7, 2010')

returns 6

EXTRACT (TIMEZONE_HOUR FROM
TIMESTAMP '2015-05-13 13:27.30-4:00')

returns -4

Temporal Indeterminacy

 Based on a probabilistic approach [Dyreson & Snodgrass]

 An indeterminate instant t = (t- ~ t+, P)
is represented through:

 Its lower (t-) and upper (t+) support

 Its probability distribution P (null outside the support)

 Evaluation of selection predicates involving indeterminate
instants (at a given plausibility level p) is based on the
Before() primitive:

where the precedence probability is evaluated as:

Temporal Indeterminacy

 The probability distribution can be STANDARD (i.e.
UNIFORM or MISSING) or NONSTANDARD

 Non standard distributions are user-defined point by
point such that:

P(i) = 0 if i<t- or i>t+

t-≤i≤t+ P(i)=1

 Non standard distributions samples with predefined
shapes could be provided by the system or made
available by a DBA (e.g. PROBABLY_EARLY,
PROBABLY_VERY_LATE, AROUND etc.)

Temporal Indeterminacy

Example:

CREATE TABLE

Shipment(ParcelNo CHAR PRIMARY KEY, Destination CHAR,

Arrival NONSTANDARD INDETERMINATE DATE)

INSERT INTO Shipment

VALUES ('P102', 'Rome', '2016-02-20 ~ 2016-02-24'

WITH DISTRIBUTION PROBABLY_EARLY)

SELECT * FROM Shipment

WHERE Destination='Paris'

AND VALID(Shipment) OVERLAPS

DATE '2016-03-01' WITH PLAUSIBILITY '95'

Granularities in TSQL2

 Granularities are based on the lattice associated to a
calendar

 TSQL2 extends the mechanism available in SQL-92 for
the INTERVAL datatype, e.g.

INTERVAL DAY TO SECOND
(duration at a granularity between day and second)

 The upper granularity may be expressed as a range, e.g.
INTERVAL '1000' DAY TO SECOND

 TSQL2 allows granularity definitions also for instant and
period datatypes

 A precision specification can also be used, e.g.
TIME MINUTE(2) TO SECOND(3)

The first is a range spec. (102 minutes) the second spec.
is the maximum number of decimal digits (10-3 seconds)

Granularities in TSQL2

 Comparison on operands with different granularities are
effected at the granularity of the left operand

 Explicit granularity conversions are possible by means of
the SCALE and CAST operators, e.g.
 SCALE(DATE '2010-01-01' AS MONTH)

CAST(DATE '2010-01-01' AS MONTH)
both return 'January 2010'

 SCALE(DATE '2010-01-01' AS MINUTE)
returns '2010-01-01 00:00 ~ 2010-01-01 23:59' (indeterm.)

 CAST(DATE '2010-01-01' AS MINUTE)
returns '2010-01-01 00:00' (the first value at the finer gran.)

 SCALE(DATE 'March 2014 ~ April 2014' AS DAY)
returns '2014-03-01 ~ 2014-04-30' (maximizes indet.)

 CAST(DATE 'March 2014 ~ April 2014' AS DAY)
returns '2014-03-01 ~ 2014-04-01' (converts the supports)

The ATSQL Approach

 ATSQL [Böhlen, Jensen & Snodgrass] uses temporal
statement modifiers to add temporal support to SQL

 Statement modifiers are semantic defaults that indicate
“at each time point” without specifying how to compute it

 Provides a systematic way to construct temporal queries
from non-temporal queries:
 1. Formulate the corresponding non-temporal query

 2. Apply a statement modifier

 Example: Temporal join
 Formulate the non-temporal join

 Modifier ensures that the argument timestamps overlap and that
the result timestamp is the intersection of the argument periods

 ATSQL assumes period-timestamped tuples:
 Periods have a meaning beyond a set of points

The ATSQL Approach

 Example (temporal join):

SEQ VT
SELECT Department.*, Employee.Salary
FROM Employee, Department
WHERE EmpName = DeptManager

AND Location = 'Miami'

 The NSEQ VT (“nonsequenced valid time”) modifier
indicates that what follows should be treated as regular
SQL, for example (tuple count):

NSEQ VT
SELECT COUNT(*) FROM Employee

The ATSQL Approach

 A query without a modifier considers only the present
state of the argument relations (i.e. valid at NOW)

 Ensures that legacy queries on non-temporal relations
are unaffected if the non-temporal relations are made
temporal, e.g.

SELECT * FROM Employee

 The modifiers mechanism is independent of the syntactic
complexity of the queries

 The temporal parts are to a large degree separated from
the non-temporal parts of the query

 The semantics of SQL extended with statement
modifiers has been defined

TDB Support in SQL:2011

 The SQL/Temporal chapter was cancelled from the
SQL3 definition in 2001 due to controversy within the
ISO SQL committee (cf. ATSQL vs IXSQL approach)

 New temporal language extensions were recently
submitted to and accepted by the ISO SQL committee
as part of the SQL/Foundation Chapter of the new
SQL:2011 standard

 The ability to create and manipulate temporal tables is
the most important new feature in SQL:2011

TDB Support in SQL:2011

 Valid-time tables, dubbed as “Application-time period
tables”, are supported

 Transaction-time tables, dubbed as “System-versioned
tables”, are supported

 Bitemporal tables, dubbed as “System-versioned
application-time period tables” (!), are supported

 Period timestamping is supported via 2 columns

 Temporal primary key and referential integrity constraints
are supported

 Predicates are defined for querying along valid and
transaction time

Application-time Period Tables

 Application-time period tables are tables that contain a

PERIOD clause (newly-introduced) with a user-defined

period name

 Application-time period tables must contain two (user-

defined) additional columns to store the start and end

time of a period associated with the row

 Values of both start and end columns are set by the

users

 Additional syntax is provided for users to specify primary

key/unique constraints that ensure no two rows with the

same key value have overlapping periods

Creating an Application-time Period Table

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL PRIMARY KEY,

dept_id VARCHAR(10),

start_date DATE NOT NULL, end_date DATE NOT NULL,

PERIOD FOR emp_period (start_date, end_date),

PRIMARY KEY (emp_name, emp_period WITHOUT OVERLAPS),

FOREIGN KEY (dept_id, PERIOD emp_period) REFERENCES

Department (dept_id, PERIOD dept_period))

 PERIOD clause automatically enforces the constraint

end_date > start_date

 The name of the period can be any user-defined name

 The timestamping period is considered open to the right,

i.e. [start_date, end_date)

Querying an Application-time Period Table

 Application-time period tables can be queried using the regular SQL

syntax (temporal selection predicates can be expressed using

comparison conditions over the timestamping columns)

 More user-friendly and Allen-complete period comparators

(reminiscent of the TSQL2 ones) are also available:

CONTAINS, OVERLAPS, EQUALS, PRECEDES, SUCCEEDS,

IMMEDIATELY PRECEDES, IMMDIATELY SUCCEEDS

 Ex. SELECT * FROM Employee

WHERE emp_period CONTAINS PERIOD '2015'

SELECT DISTINCT E1.emp_name, E2.emp_name

FROM Employee E1, E2

WHERE E1.emp_name < E2.emp_name

AND E1.dept_id = E2.dept_id

AND E1.emp_period OVERLAPS E2.emp_period

Modifying an Application-time Period Table

 Regular INSERT, UPDATE, DELETE statements can be used by

explicitly managing values of conventional columns but also of the

timestamping columns

 A more user-friendly new FOR PORTION clause can be used to

specify the applicability period of modifications

 Ex. UPDATE Employee

FOR PORTION OF emp_period

FROM DATE '2015-05-01' TO DATE '2015-06-01'

SET dept_id = 'D5' WHERE emp_name = 'Tom'

DELETE Employee

FOR PORTION OF emp_period

FROM DATE '2016-03-01' TO DATE '9999-12-31'

WHERE emp_name = 'Annabel'

System-versioned Tables

 System-versioned tables are tables that contain a

PERIOD clause with a pre-defined period name

(SYSTEM_TIME) and specify WITH SYSTEM

VERSIONING

 System-versioned tables must contain two additional

(user-defined) columns to store the start and end time

of the SYSTEM_TIME period

 Values of both start and end columns are set by the

system (users are not allowed to supply values)

System-versioned Tables

 Unlike regular tables, system-versioned tables preserve

the old versions of rows as the table is updated

 Rows whose periods intersect the current time are called

current system rows. All others are called historical

system rows

 Only current system rows can be updated or deleted.

System time applicability of modifications cannot be

managed by the user

 All constraints are enforced on current system rows only

Creating a System-versioned Table

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL, dept_id VARCHAR(10),

system_start TIMESTAMP(6) GENERATED ALWAYS AS ROW START,

system_end TIMESTAMP(6) GENERATED ALWAYS AS ROW END,

PERIOD FOR SYSTEM_TIME (system_start, system_end),

PRIMARY KEY (emp_name),

FOREIGN KEY (dept_id) REFERENCES Department (dept_id);

) WITH SYSTEM VERSIONING

 Unlike regular tables, system-versioned tables preserve the old

versions of rows as the table is updated

 PERIOD clause automatically enforces the constraint

system_end > system_start

 The name of the period must be SYSTEM_TIME

 The timestamping period is considered open to the right

Querying a System-versioned Table

 The clause FOR SYSTEM_TIME can be used after the FROM

clause to access past states of a table along transaction time

(rollback queries)

 It comes with three variants:

 FOR SYSTEM_TIME AS OF T (current at T)

 FOR SYSTEM_TIME FROM T1 TO T2 (current in [T1,T2))

 FOR SYSTEM_TIME BETWEEN T1 AND T2 (current in [T1,T2])

 Ex. SELECT * FROM Employee

FOR SYSTEM_TIME

FROM TIME '2011-01-01' TO TIME '2011-12-31‘

SELECT * FROM Employee

FOR SYSTEM_TIME

AS OF TIMESTAMP '2014-04-01 12:30:00'

Creating a System-versioned

Application-time Table

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL PRIMARY KEY,

dept_id VARCHAR(10),

start_date DATE NOT NULL, end_date DATE NOT NULL,

system_start TIMESTAMP(6) GENERATED ALWAYS AS ROW START,

system_end TIMESTAMP(6) GENERATED ALWAYS AS ROW END,

PERIOD FOR emp_period (start_date, end_date),

PERIOD FOR SYSTEM_TIME (system_start, system_end),

PRIMARY KEY (emp_name, emp_period WITHOUT OVERLAPS),

FOREIGN KEY (dept_id, PERIOD emp_period) REFERENCES

Department (dept_id, PERIOD dept_period)

) WITH SYSTEM VERSIONING

Cf. Creating the same Table in TSQL2…

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL PRIMARY KEY,

dept_id VARCHAR(10),

FOREIGN KEY dept_id REFERENCES Department

) AS VALID AND TRANSACTION

In practice, it is the same declaration done with regular SQL

of a snapshot table Employee, simply augmented with the

“AS VALID AND TRANSACTION” bitemporal specification

(that implies the so deprecated syntactic and semantic defaults)

