Temporal
Query Languages

Fabio Grandi

fabio.grandi@unibo.it
DISI, Universita di Bologna

A short course on Temporal Databases for DISI PhD students, 2016
Credits: most of the materials used Is taken from slides prepared by Prof. M. Bohlen (Univ. of Zurich, Switzerland)

Temporal Query Languages

= Data model: DM = (DS, QL)

= DS IS a set of data structures

= QL Is a language for querying and updating the data
structures

= Example: the relational data model is composed
of relations and SQL (or relational algebra)

= Many extensions of the relational data model and
SQL to support time have been proposed

Relational Algebra for the BCDM

An algebra provides a procedural/operational
language for a data structure that Is suitable for
Implementation

Algebra for the standard relational algebra

operators In BCDM

Schema: R = (A, ..., A, T)

Domains: A has domaln D, and T has domain #(D;; X Dy)
D IS the transaction-time domain and D,,; IS the valid-time domain

I'IS an instance relations of schema R
The operators then have the following signature

Projection in BCDM

Temporal projection: Project a relation r with non-
limestamp attributes A,, ..., A, to a subset D of
attriputes

7B(r) = {z(PI+1)|3x € r(z[D] = x[D])A
vy € r(y[D] = z[D] — y[T] C z[T])A

vt € 2[T]3y r(y[D] = 2[D] A t € y{T))}

Calculation of timestamps of result tuples

All chronons in any value-equivalent tuple of r must be
Included and no spurious chronons can be introduced

(automatic coalescence is performed)

EX. Projection on the Emp attribute:

Emp Dept
{(5 ool 5,15) 0,10 0,15

1(5.10),....(5.15).....(9,10),....(9,15),

5, 13),
(10,5) 14,20), (10,5),..., (10,20),...,(14,5),...,(14,20),

(15,10),...,(15,15)....,(19,10),...,(19,15) } (15,10)....,(15,15)....,(19,10),... (19,15),
{(now,10),.. . ,(now,15)} (now,10),. .. ,(now,15) }

{(now,25),...,(now,30)}

Selection iIn BCDM

Temporal selection: Select from relation r with
non-timestamp attributes A,, ..., A, all tuples that
satisfy a predicate P defined on the non-
timestamp attributes

EXx. Select all tuples of employee Kate: [E-aupsmer

Emp Dept

0 r
Jake Ship | {(5.10),....(5.15),....(9,10),...,(9,15), _
(10,5),...,(10,20)....,(14,5),...,(14,20) Emp Dept|

(15,10),...,(15,15),...,(19,10)....,(19,15) } Kate Ship |{(

Jake Load {(now,10),...,(now,15)}
Kate Ship {(now,25),...,(now,30)}

Union in BCDIM

Temporal union: Compute the union of tuples
from two relations r; and r, that are instances of
the same schema (or union-compatible schemas)

r1 U8 = {z("V|(3x € n3y € n(z[A] = x[A] = y[A] A 2[T] = x[T]U y[T])) v

(3x € ry(z[A] = x[A] A (=3y € r(y[A] = X[A]) AZ[T] = x[T])) v
(3y € ra(zlA] = ylA] A (-3x € rs(x[A] = y[A]) A 2[T] = y[T]))}

. The first clause handles value-equivalent tuples found
Inr, and r,

. The second (third) clause handles those tuples that are
found only In ry (r,)

Ex. Compute
the union of
relations dept
and emp:

Union in BCDIM

Emp Dept] T

Jake Ship| {(5.10),....(5.15).....(9,.10),....(9,15),
- (10,5),...,(10,20),...,(14,5),...,(14,20),
(15,10),...,(15,15),...,(19,10),...,(19,15) }

Jake Load {(now,10),. .. ,(now,15)}

Kate Ship {(now,25),. .. ,(now,30)}

Name nst] T |
Jake Ship [{(5,20),....(5,25),...,(9,20),...,(9,25) }
{(5.20),....(5,25),....(9,20),.. . .(9,25) }

result

Jake Ship| {(5,10),....(5,15),....(9,10),....(9,15),
(10,5),...,(10,20),... ,(14,5),...,(14,20),
(15,10),...,(15,15),...,(19,10),...,(19,15),

(5,20),. .. ,(5,25),...,(9,20),...,(9,25) }
Kate Ship {(now,25),. .. ,(now,30)}
Sue Load| {(5,20),...,(5,25),...,(9,20),...,(9,25) }

Difference in BCDM

Temporal difference: Compute those tuples that
are in r; and noet in r, where the two relations are
Instances of the same schema (or union-
compatible schemas)

ry B r = {z{n+1} Ix € -"]_((E[A] :X[A]J A
(Fy € n(z[A] = y[A]) A 2[T] =x[T] —y[T]) v

(—3y € n(z[A]l = y[A]) A 2[T] = x[T])))}

- The last two lines compute the bitemporal element,
depending on whether a value-equivalent tuple may be
found in r, or not

Difference in BCDM

Ex. Compute

the difference
of relations

{(5.10),....(5,15),....(9,10),.. . ,(9,15),
(10,5),...,(10,20),...,(14,5),...,(14,20),
dept and emp: (15,10),...,(15,15),...,(19,10),...,(19,15) }

Jake Load {(now,10),. .. ,(now,15)}

dept _B emp Kate Ship

Jake Ship| {(10,5),...,(10,20),...,(14,5),...,(14,20) }
Jake Load|{(15,10),...,(15,15),... ,(now,10),... ,(now,15) }

Emp Dept
Jake Ship| {(5,10),...,(5,15),...,(9,10),...,(9,15),

(15,10),...,(15,15),...,(19,10),...,(19,15) }
Kate Ship {(now,25),...,(now,30)}

Join in BCDM

Temporal join: Two tuples join If they match on
the join attributes A,, ..., A, and have overlapping
pitemporal-element timestamps

rand s are instances over the following schemas:
R(A, ...,A,B, ...,B, T)=R(A, B, T)
S(A, ...,A,Cy, ...,C.,) =S(A, C, T)

rxf s = {2 (3x € r3y € s(x[A] = y[A] A X[T]Ny[T]#0A
z[A] = x[A] A z[B] = x[B] A z[C] = y[C] A

z[T] =x[T]ny[T]);

. The timestamp of a result tuple is the intersection of
the timestamps of the corresponding argument tuples

Join in BCDM

EX. Temporal join to compute “VWho managed

whom'?:

EKate,Ship::

(Ship,Jean)

(Load,Jean)

—— 3

The timestamp is the
overlap of timestamp
regions of tuples with
matching join attribute

Ewp Dept] T]

Jake Ship| {(5.10),....(5,15),....(9,10),....(9,15),
(10,5),...,(10,20),. .. (14,5).. .. (14,20),
- (15,10),...,(15,15),...,(19,10),...,(19,15) }
{(now,10),. .. ,(now,15)}
{(now,25),...,(now,30)}

Dept Mgr

0 r 0000
Ship Jean|{(10,15),...,(10,30),...,(now,15),... ,(now,30),
{(15,5),...,(15,15),...,(now,5),. .. ,(now,15)}

result

{(10,15),...,(10,20),...,(15,15),...,(15,20),
{(now,10),...,(now,15)}

Kate Ship Jean {(now,25),...,(now,30)}

Timeslice Operators inn BCDM

Transaction-timeslice operator: selects the relation
at transaction time t; (not exceeding the current time)

Takes a bitemporal relation r as input
and returns a valid-time relation

pe (r) = {2 | 3x € r(z[A] = x[A] A 2[T\] = {t|(ts, t2) € X[T]} A 2[T.] # 0)}

Valid-timeslice operator: selects the relation
at valid time t,

Takes a bitemporal relation r as input
and returns a transaction-time relation

7, (r) = {2 | 3x € r(z[A] = x[A] A 2[Te] = {t:(ts,) € x[T]} A 2[T] # 0)}

Timeslice Operators inn BCDM

Timeslice operators can be extended for
transaction-time and valid-time relations

. p! gets as input a transaction-time relation and returns
a snapshot relation

. 1Y gets as input a valid-time relation and returns a
snapshot relation

EX.
Jake Ship 1(5,10),....(5,15),....(9,10),....(9,15),

(10,5),.. ., (10,20),...,(14,5),..., (14,20),

).---.(19.15) }

Jake Load |

Kate Ship }

w2, (dept) = { (Jake,Ship, {5,...,19}), (Jake,Load, {now}) }
pY; (751, (dept)) = { (Jake,Ship) }

Seguenced Semantics

There Is a close relationship between a temporal and a
non-temporal database:

= the snapshot of a temporal relation at a time t Is a non-temporal
relation

= atemporal relation is a collection of timestamped snapshots

All'non-temporal statements can be evaluated at each
snapshot of a temporal database (“at each time point”)

There should be a close relationship between a temporal
and a non-temporal statement:

= e.qg. atemporal aggregation should resemble a non-temporal
aggregation

With SQL this Is not the case (remember temporal join
VErsus join)...

Seguenced Semantics

Notations (we assume R Is a valid-time relation):

= Relation schema: R(A, ..., A, Tg, T¢)
= ris a relation with schema R (instance of R)
= A, ..., A, are the explicit (non-temporal) attributes

= Tg, Tz are temporal attributes
= TgIs the valid time start
= Tgis the valid time end

= 7n#2) denotes a tuple of arity n+2
= \We assume periods are half open intervals [T¢, Tz)

= We write T to refer to the period [T, T¢)
= teT=Tgst<Tg

Sequenced Semantics

Notations:

The timeslice operator t maps a temporal to a non-
temporal relation

Definition of the timeslice operator:
(N ={zW|Ix er(ZA=XANXTs<t<x.Tg)}

Two temporal relations, r and s, are snapshot equivalent
iff for all times t their snapshots are identical

Definition of snapshot equivalence:

r=s iff Vt(re(r) = 7e(s))

Sequenced Semantics

Snapshot reducibility reduces the semantics
of temporal operators to the semantics
of the corresponding non-temporal operators

IS snapshot-reducible to the
iff for all t:

Sequenced Semantics

lllustration of snapshot
Reduciblility:

D' = temporal DB

WT - {GT’ ', 07, xT. UT, _T}
RT = temporal result relation
T, = Snapshot at time point t
D, = snapshot of D' at time 't
v ={o,m0,x, U, -}

R, = result relation at time t

Seguenced Semantics

A temporal relation can be viewed as made up of a
seguence of timestamped snapshot relations

Mutual consistency of the two viewpoints along the time
axis gives rise to the notion of snapshot reducibility

If period/element timestamping is adopted, timestamps of
the argument tuples are taken into account when forming
the timestamp associated to the result tuples (e.g.
Intersection Is used when executing a join)

Enforcement of snapshot reducibility gives rise to a
seguenced semantics (i.e. “at each time point”) in query
execution [Bohlen, Jensen, Snodgrass]

Non-Seguenced Semantics

Snapshot reducibility does not apply to gueries involving
predicates and functions over the timestamps of argument
relations

In such gueries, snapshots valid at different times
have to be mixed In in order to find the answer

Hence, their evaluation requires a non-seguenced
semantics

Such gqueries give the full temporal expressivity to a
temporal guery language (and fully exploits the power of a
temporal database)

= Ex. Find the employees who were programmer
before becoming DBA

= The information about being programmer and about being DBA
must be found by combining (with a join) different snapshots

Beyond Seguenced Semantics [Bohlen]

Period-based semantics (even in a weak sense) requires
the preservation of the individual timestamp periods
through the application of operators

Extended snapshot reducibility allows non-seqguenced
gueries to be executed with a sequenced semantics

It can be enforced via timestamp propagation (making
copies of timestamp columns to be treated as explicit
attributes)

Enforcement of change propagation corresponds to a
correct application of a sequenced semantics with true
period-based timestamping (coalescence not automatic)

It can be Implemented via manipulation of lineage sets
(sets of witness lists of argument tuples)

Upward Compatibility [Snodgrass et al. |

Let M;=(DS;,QL,) and M,=(DS,,QL,) two data models,
then M, Is syntactically: upward compatible with: M, if

= Vdb, e DS, = db, € DS;

= V0,eQL, =0, e QL

(a database/guery in M, Is also a database/query in M,)

Let M;=(DS;,QL,) and M,=(DS,,QL,) two data models,
then M; Is upward compatible with M,, If
= M, Is syntactically upward compatible with M,,

= Vdb, e DS,V g, € QL, = [[g,(db,)]]M2 = [[g,(db,)]]M1

(evaluating a query on a database instance in M, gives identical
results if evaluated in M,)

We will use this notion with M, = TDB and M, = Rel. DB...

Upward Compatibility

A Temporal Query Language (TQL) Is upward compatible
with SOL if
Traditional tables are also legal instances of tables in the
underlying temporal data model

Traditional SQL gueries are also gueries in the TOL and give the
same results when evaluated according to the TQL semantics

(TQL and SQL gueries give the same results on a non-temporal table)

Compatible
Queries

Language Design Criteria

EXpressive power
= Suitable for intended applications
= Economy of encoding IS relevant

Clarity

= Syntax should reflect the semantics

= Consistent naming style

Consistency

= Upward compatibility with standards, e.g. SOL standard

= Systematic (not a new construct per guery, no exceptions)
Orthogonality

= Possibility to freely combine query language constructs

= Zero-One-Infinity principle (the only reasonable numbers in a
programming language design are zero, one, and infinity)

Closed-form evaluation
= The result of a query Is a proper object of the data model

Comparisen of Timestamps

Comparison of Timestamps IS part of every temporal
guery language

Many query languages adopt (a variant of) Allen’s 13
period relations:

X before Y
Y after X

Xequals Y
X meets Y
Ymet_by X

Xoverlaps ¥
Y overlapped_by X

X during ¥
Y contains X

X starts ¥
Y started_by X

X ﬂ.r:isﬁfs Y
Y finished_by X

SOL + Abstract Data Types

Extend existing language (e.g. SQL) with time data types
and associated predicates and functions
= e.g. predicates for timestamp comparison

Earliest and (from a language design perspective)
simplest approach

Has limited impact on existing language and is well
understood technically

An abstract data type does not offer a systematic way to
generalize snapshot queries to temporal gueries

New and very complex solutions must be invented (l.e.
programmed) to Implement common temporal operations:

= Temporal join, temporal aggregates, coalescence...
= Enforcement of key constraints, sequenced semantics...

The IXSOL Approach [Lerentzos et al.]

IXSOL extends SQL-92 with (time) period data type

Periods are convenient for representing temporal aspects,
but create difficulties when formulating temporal queries

IXSOL addresses this problem by normalizing timestamps
so that they are aligned (identical or disjoint):

= Function UNFOLD: decompose a period-timestamped tuple into a
Set of point-timestamped tuples (one for each point in the original
period)

= Function FOLD: collapse a set of point timestamped tuples into
value-equivalent tuples timestamped with maximum periods

General pattern for guery processing using fold/unfold:

1. Construct the point-based representation by unfolding the
argument relation(s)

2. Compute the query on point-based representation
3. Fold the result to end up with an period-based representation

The IXSQL Approach

= Example of a temporal join (seqguenced semantics):

SELECT DeptName, Location, DeptManager, Salary,
intervsect(Department.T, Employee.T) as T
FROM Employee, Department
WHERE EmpName = DeptManager
AND Department. T overlaps Employee. T
AND' Location = ‘Miamr’
REFORMAT AS FOLD T

= (the REFORMAT AS FOLD Instruction, i.e. UNFOLD to
time instants followed by FOLD to time periods, IS
necessary for coalescence of tuples in the result)

The IXSQL Approach

Only two functions, fold and unfold, are added to SQL

Unfold can be used when needed to formulate queries
about each time point (it Is optional and not an invasive
change at guery language level)

Efficient evaluation of queries formulated using fold/unfold
has yet to be resolved

Neither a purely point-based nor period-based view:

= Sensitive to specific period representation of data (e.g. queries
that do not use fold/unfold)

= Fold/unfold only preserve information of a point-based view
Normalization step using unfold/fold loses period information
Fold is not the inverse of unfold (information about the original periods is lost)

= The combination of “at each time point” and periods is not
supported (seguenced semantics with periods cannot be
supported)

The TSOQL2 Language
(Temporal SOL-92 Extension)

The TSOL2 Language

Desired features of the underlying data model
that inspired the TSOL?2 design:

= TSOQL2 should not distinguish between value-equivalent
Instances (to provide conceptual simplicity)

= TSOQL2 should support only one valid-time dimension
= TSQL?2 should support transaction time

= [or simplicity, tuple timestamping should be employed
= Event and state tables should be supported

= Valid-time support should include support for both the
past and the future

= Timestamp values should not be limited in range or
precision

The TSOL2 Language

Proper desired features of the guery language that
Inspired the TSQL2 design:

= TSQL2 should be a consistent, fully upward
compatible extension off SQL-92

= TSOQL2 should allow the restructuring of tables on any
Set of attributes

= TSQL2 should allow for flexible temporal projection

= Operations In TSQL2 should not accord any explicit
attributes special semantics (e.g. op. relying on keys)

= Temporal support should be optional, on a per-table
basis

The TSOL2 Language

Proper desired features of the guery language
that inspired the TSOL?2 design:

= User-defined time support should include instants,
periods and intervals

= EXisting aggregates should have temporal analogues In
TSQL2

= Multiple calendars and multiple language support should
be present in timestamp I/O and operations

= |t should be possible to derive temporal and non-temporal
tables from underlying temporal and non-temporal tables

The TSOL2 Language

Ease of implementation was made a priority in the design:

= TSQL2 tables should be implemented in terms of tables
iIn some LNF representational model

= TSOQL2 should have an efficiently implementable algebra
that allows for optimization and that is an extension of
the snapshot algebra

= The TSQL2 data model should allow multiple
representational data models

The TSOL2 Language

= Timestamping columns are “hidden columns”™ with an
Implied special semantics and syntactic defaults have
been embedded in order to make the formulation of
common temporal gueries easier

= [For example, intersection of the valid time of all the
relations involved in a query to be assigned as
timestamps to the results is automatically done, yielding:
= Snapshot reduciblility Is ensured
= Seguenced semantics Is enforced by default

= The implied sequenced semantics can be overridden via
a custom temporal projection or explicit manipulation of
timestamps for temporal selection

Time Representation in TSQL2

Time representation conforms to the BDCM
Time Is discrete with chronons as base unit

Available base temporal datatypes:
= Datetime (instant)

= Period

= |nterval

Such datatypes are inherited from the SQL-92
specification but with several flaws fixed

T'he Datetime Datatype

= Conforms to predefined SQL-92 types: DATE, TIME,
TIMESTAMP (compliant to ISO 8601 standard formats)

= Examples:

DATE 2016-02-29
DATE ‘February 29, 2016

TIME 21:30:10°
TIME 9:30:10 PM’*

TIMESTAMP '2015-12-31 12:00:00.00"
TIMESTAMP ‘Noon December 31, 2015

The Period Datatype

= Represents open/closed time periods

= Examples:

PERIOD ‘[March 2014]

PERIOD '(2010]

PERIOD '[1994-01-01 - 1994-01-31)'
PERIOD '(12:15:00.0 - 12:16:00.0)"

PERIOD ‘[Midnight July 1, 2013
- September 10, 2014 10:20 AM]'

The Interval Datatype

= Represents unanchored pure durations

= Examples:
INTERVAL '10" YEAR
INTERVAL ‘November' DAY
INTERVAL ‘3" WEEK
INTERVAL '02:30°' HOUR TO MINUTE
INTERVAL "-20° SECOND (cf. negative duration)

Mixed Expressions

= A set of any datetime (period) data Is an instant set
(temporal element): in any case It Is a set of chronons

= Examples:

PERIOD '[2014-01-01 - 2014-06-01]
+ INTERVAL '10' MONTH
= PERIOD '[2014-11-01 - 2015-04-01]

TIMESTAMP "2000-01-01 12:30°
+ INTERVAL ‘February 2016 DAY
= TIMESTAMP 2000-01-30 12:30"

Mixed Expressions

= Further examples:

PERIOD ‘March 2014" + INTERVAL '10" DAY
= PERIOD [2014-03-11 - 2014-04-10]

TIMESTAMP "13:30 April 1, 2000
+ INTERVAL 1" YEAR - INTERVAL 15" MINUTE

= TIMESTAMP "2001-04-01 13:15°

= Special predefined constants:
BEGINNING, FOREVER, INITIATION,
UNTIL CHANGED, CURRENT TIMESTAMP,
NOW (possibly with nobind option)

Schema Declaration and Modification

= Temporal definition clause AS... (6 temporal table types)
= Examples:

CREATE TABLE Employee (...)
AS VALID STATE

CREATE TABLE Department (...)
AS VALID AND TRANSACTION

CREATE TABLE Transfer (...)
AS VALID EVENT DAY

ALTER TABLE Employee
ADD TRANSACTION

Temporal Selection

Selection based on temporal conditions in the WHERE
clause

Temporal comparison operators
(for datetime, period, instant set and element):
PRECEDES, =, OVERLAPS, MEETS, CONTAINS

Comparison (<, =, >) and arithmetic (+, -, *) operators for
Intervals

Various functions:
BEGIN(.), END(.), FIRST(.), LAST(.),
INTERSECT(.,.), + , -

Constructors: PERIOD(.,.)
Timestamp extractors: VALID(.), TRANSACTION(.)

Temporal Comparison Operators

The semantics of TSQL2 temporal comparison operators
corresponds to their meaning in natural language
(whereas Allen’s operators have artificial and innatural
names), following the SQL (SEQUEL) philosophy

X PRECEDES Y iff END(X) < BEGIN(Y)
X=Y iff X and Y are identical
X OVERLAPS Y TXNY =&

X MEETS Y Iff X PRECEDES Y

without any instants in between
X CONTAINS Y IfXoY

Temporal Comparison Operators

The TSQL2 temporal comparison operators can be used
with instants, periods and elements, and also for mixed
comparisons (e.g. elements with instants)

As to periods, TSQL2 is anyway Allen-complete

X =Y has been preferred to X EQUALS Y
not to introduce a new keyword

For the same reason, Inverse operators have not been
considered necessary

= XMET BY Y can be expressed as Y MEETS X
= X FOLLOWS Y can be expressed as Y PRECEDES X
= X DURING Y can be expressed as Y CONTAINS X

Temporal Selection - Examples

= SELECT * FROM Employee
WHERE EmpName = "Ted'

= SELECT Salary FROM Employee
WHERE VALID(Employee) CONTAINS DATE 'NOW!

= SELECT * FROM Employee
WHERE EmpName = "Ted
AND VALID(Employee) OVERLAPS
PERIOD '[2013]" + PERIOD ‘'[2015]'

Temporal Selection - Examples

= SELECT EmpName, Salary.
FROM Employee
WHERE FIRST(VALID(Employee)) CONTAINS
PERIOD ‘[1990-06-15 - 1990-07-15]'

= SELECT EmpName, Salary
FROM Employee
WHERE Job = ‘Programmer’
AND LAST(VALID(Employee))
PRECEDES DATE '2014-03-01"

Temporal Projection

Assignment of a timestamp to the results of a query
done with the VALID (VALID INTERSECT) clause

Examples:

SELECT SNAPSHOT EmpName, DateOfBirth
FROM Employee
WHERE Job="Engineer

SELECT DISTINCT EmpName

FROM Employee

VALID PERIOD(DateOfBirth, DATE 'FOREVER')
WHERE Job = ‘Manager

Temporal Projection - Examples

= SELECT Department.*, Employee.Salary
FROM Employee, Department
VALID INTERSECT (Employee, Department)
WHERE EmpName = DeptManager
AND VALID(Employee)
OVERLAPS VALID(Department)
AND' Location = ‘MiamI'

= SELECT Department.*, Employee.Salary
FROM Employee, Department
WHERE EmpName = DeptManager
AND Location = ‘Miami'

(the same VALID clause as above Is understood and,
thus, the overlap Is implied; cf. temporal join)

TSOL2 Range Variables

= The TSQL2 range variables generalize the concept of
history variables [Grandi| and allow for temporal
restructuring [Gadia] of a relation. Automatic coalescing
of timestamps IS implied

= |n the FROM clause:
FROM Employee(EmpName) AS Emp
the variable Emp ranges over groups of tuples of the
relations with the same EmpName attribute value.
Grouping can also be based on periods

= Notice that the clause FROM Employee
IS equivalent to FROM Employee AS Employee
that Is to FROM Employee(*) AS Employee

TSOL2 Range Variables

= Declaration of range variables (and, thus, grouping) can
be nested:

FROM Employee(EmpName) AS Emp,
Emp(Job) AS E1, E2

IS equivalent to:

FROM Employee(EmpName) AS Emp,
Employee(EmpName,Job) AS E1, E2
WHERE EL.EmpName=Emp.EmpName
AND E2.EmpName=Emp.EmpName

(groups are synchronized on the common attributes;
nested declarations are “syntactic sugar”)

TSOL2 Range Variables

= Examples:

SELEGI
FROM Employee(EmpName,Salary) AS Emp

WHERE Salary = 2500
AND CAST(Emp AS INTERVAL YEAR)

>= INTERVAL 2" YEAR

SELECT SNAPSHOT E1.EmpName, BEGIN(VALID(E2))
FROM Employee(EmpName) AS Emp,
Emp(Job,Salary) AS E1, E2
WHERE E1 MEETS E2
AND E1.Job <> E2.Job
AND E1.Salary = E2.Salary

TSOL2 Range Variables

= Examples:

SELECT EL.EmpName, E1.Job
FROM Employee(EmpName) AS Emp,
Emp(Job)(PERIOD) AS E1, E2, E3
WHERE E1 MEETS E2 AND E2 MEETS E3
AND E1.Job <> E2.Job AND E1.Job = E3.Job

AND E2.Job = ‘Manager

SELECT Efos
FROM Employee(EmpName) AS Emp,
Emp(Job) AS E1, Emp(Salary) AS E2
WHERE E1.Salary = 2300 AND E2.Job = 'DeptHead’
AND BEGIN(VALID(E2)) - END(VALID(EL))
> INTERVAL '18' MONTH

TSOL2 Modification Operations

= The VALID clause allows for the specification of the
applicability period of the modification

= Examples:

INSERT INTO Employee

VALUES (‘Kim*, '1982-05-15', ‘Engineer*, 2500)

VALID PERIOD(DATE '2016-01-01",
NOBIND(DATE ‘NOW")))

Employee

EmpName DateOfBirth Job Salary VALID

15/5/1982 Engineer 2500 [1/1/2016, Now)

TSOL2 Modification Operations

= Examples:

UPDATE Employee
SET Salary = Salary + 200
WHERE EmpName = "'Kim'
AND VALID(Employee)
CONTAINS DATE 'CURRENT _TIMESTAMP!

VVALID PERIOD ‘February 2016
Employee

EmpName DateOfBirth Job Salary | VALID
15/5/1982 Engineer [1/1/2016, 1/2/2016)
15/5/1982 Engineer [1/2/2016, 1/3/2016)

15/5/1982 Engineer [1/3/2016, Now)

TSOL2 Modification Operations

= Examples:

DELETE FROM Employee
WHERE EmpName = "'Kim'
VVALID PERIOD '[2016-06-01 - FOREVER]'

Employee

EmpName DateOfBirth Job Salary | VALID
| 15/5/1982 Engineer [1/1/2016, 1/2/2016)

15/5/1982 Engineer [1/2/2016, 1/3/2016)
15/5/1982 Engineer [1/3/2016, 1/6/2016)

TSOL2 Maodifications and Surrogates

= Surrogates are transparent time-invariant identifiers
= Example:

CREATE TABLE

Supplier(ID SURROGATE, Name CHAR PRIMARY KEY,
Address CHAR)

AS VALID;

INSERT INTO Supplier
VALUES (NEW, '‘Acme Inc.’, ‘New York')
VALID PERIOD ‘[2014-01-01 - FOREVERY]'

Supplier
ID NElE Address VALID

[S1] Acme Inc. New York [1/1/2014, Forever)

TSOL2 Maodifications and Surrogates

INSERT INTO Supplier
SELECT ID, '‘New Acme Ltd.', Address

FROM Supplier
WHERE Name = "Acme Inc.’
VALID PERIOD ‘[2016-01-01 - FOREVER]'

or: UPDATE Supplier
SET Name = ‘New Acme Ltd.'
WHERE ID = (SELECT ID FROM Supplier
WHERE Name = 'Acme Inc.")

VALID PERIOD ‘[2016-01-01 - FOREVER]'

Supplier
ID Name Address \V/A\R(D
[1/1/2014, 1/2/2016)

[S1] Acme Inc. New York

[S1] New Acme Ltd. New York [1/1/2016, Forever)

TSOQL2 Aggregate Functions

= Temporal grouping criteria:
= Partition domain (valid or user-defined, instant or period)
= Partition granularity
= Associated time window (LEADING and TRAILING options)
= Group belonging
= Example:
SELECT Salary
FROM Employee AS Emp1l
WHERE Empl.EmpName = "Tony
AND VALID(Empl) OVERLAPS
(SELECT MIN(VALID(Emp2))

FROM Emp AS Emp?2
WHERE Emp2.EmpName = 'Eve')

TSOQL2 Aggregate Functions

= Examples:

SELECT EmpName, SUM(WEIGHTED Salary)
FROM Employee(EmpName) AS Emp
GROUP BY VALID(Emp) USING '1' YEAR
HAVING MIN(Salary) > 2500

SELECT AVG(WEIGHTED Salary)
FROM Employee
WHERE EmpName = "Tony'
GROUP BY VALID(Employee)
USING 1" MONTH LEADING ‘11" MONTH

Calendars and Calendric Systems

Calendars and calendric systems composed of multiple
calendars are supported in TSQL2

EX. of calendars: Gregorian, Julian, Astronomic,
Traditional_Chinese, US_Fiscal, UniBO_Academic

EX. of a calendric system: Russian (Roman till100 B.C.
then Julian till1917, then Gregorian till1929, then
Communist till1931 and then Gregorian again)

Selection of a calendric system (Gregorian) in TSQL2:

DECLARE CALENDRIC SYSTEM
AS SQL92 CALENDRIC _SYSTEM

Calendars and Calendric Systems

= Calendars are necessary for correct I1/O and formatting
of time data, that can be specified via the
DATETIME_FORMAT property, ex.

SET PROPERTY FOR ltalian_Calendar WITH VALUES
(" DATETIME_FORMAT ',
" <DAY>/<KMONTH>/<YEAR> <HOUR>:<MINUTE>:<SECOND>")

then '19/02/2016 ' Is a correct date literal for the Italian_Calendar

= Time zones and daylight saving are also supported,
e.g. the following expressions are equivalent:

TIME '10:30:25' AT TIME ZONE INTERVAL '1' HOUR
TIME '10:30:25' AT TIME ZONE 'CET"
TIME '10:30:25+01:00'

Calendars and Calendric Systems

= |ike in SQL-92, an EXTRACT() operator Is also available
to extract components from a temporal expression.

= Examples:
EXTRACT (HOUR FROM TIME '01:27.30 PM")

returns 13
EXTRACT (MONTH FROM DATE 'June 7, 2010"
returns 6

EXTRACT (TIMEZONE_HOUR FROM
TIMESTAMP "2015-05-13 13:27.30-4:00)

returns -4

Temporal Indeterminacy.

Based on a probabilistic approach [Dyreson & Snodgrass]

An Indeterminate instant t = (t ~ t*, P)
IS represented through:

lts lower () and upper (t") support
Its probability distribution P (null outside the support)
Evaluation of selection predicates involving indeterminate

iInstants (at a given plausibility level p) is based on the
Before() primitive:

< ty] > p/100

where the precedence probabillity is evaluated as:
Pr|t, <t1,] = Z Pi(1)P(7)

Temporal Indeterminacy.

= The probability distribution can be STANDARD (i.e.
UNIFORM or MISSING) or NONSTANDARD

= Non standard distributions are user-defined point by
point such that:

P@() =0 IfI<t or i>t*
2t<istt P(i)=1
= Non standard distributions samples with predefined
shapes could be provided by the system or made

available by a DBA (e.g. PROBABLY EARLY,
PROBABLY VERY_ LATE, AROUND etc.)

Temporal Indeterminacy.

Example:

CREATE TABLE
Shipment(ParcelNe CHAR PRIMARY KEY, Destination CHAR,

Arrival NONSTANDARD INDETERMINATE DATE)

INSERT INTO Shipment
VALUES (‘P102', 'Rome’, '2016-02-20 ~ 2016-02-24'
WITH DISTRIBUTION PROBABLY_ EARLY)

SELECT * FROM Shipment
WHERE Destination='Paris’

AND VALID(Shipment) OVERLAPS
DATE '2016-03-01' WITH PLAUSIBILITY '95'

Granularities in TSQL?2

Granularities are based on the lattice associated to a
calendar

TSQL2 extends the mechanism available in SQL-92 for
the INTERVAL datatype, e.g.

INTERVAL DAY TO SECOND
(duration at a granularity between day and second)

The upper granularity may be expressed as a range, e.g.
INTERVAL '1000" DAY TO SECOND

TSOL2 allows granularity definitions also for instant and
period datatypes

A precision specification can also be used, e.g.
TIME MINUTE(2) TO SECOND(3)

The first is a range spec. (10? minutes) the second spec.
IS the maximum number of decimal digits (102 seconds)

Granularities in TSQL?2

= Comparisen on operands with different granularities are
effected at the granularity of the left operand

= Explicit granularity conversions are possible by means of
the SCALE and CAST operators, €.g.

= SCALE(DATE ‘2010-01-01" AS MONTH)
CAST(DATE '2010-01-01" AS MONTH)
both return '‘January 2010

= SCALE(DATE 2010-01-01" AS MINUTE)
returns "2010-01-01 00:00 ~ 2010-01-01 23:59" (indeterm.)

= CAST(DATE '2010-01-01" AS MINUTE)
returns '2010-01-01 00:00' (the first value at the finer gran.)

= SCALE(DATE ‘March 2014 ~ April 2014"' AS DAY)
returns '2014-03-01 ~ 2014-04-30' (maximizes indet.)

= CAST(DATE 'March 2014 ~ April 2014' AS DAY)
returns '2014-03-01 ~ 2014-04-01' (converts the supports)

The ATSOQL Approach

ATSOL [Bohlen, Jensen & Snodgrass]| uses temporal
statement modifiers to add temporal support to SQOL

Statement modifiers are semantic defaults that indicate
“at each time point” without specifying how to compute it

Provides a systematic way to construct temporal queries
from non-temporal gueries:

= 1. Formulate the corresponding non-temporal query.

= 2. Apply a statement modifier

Example: Temporal join

= Formulate the non-temporal join

= Modifier ensures that the argument timestamps overlap and that
the result timestamp Is the intersection of the argument periods

ATSOQL assumes period-timestamped tuples:
= Periods have a meaning beyond a set of points

The ATSOQL Approach
= Example (temporal join):

SEQ VT

SELECT Department.*, Employee.Salary

FROM Employee, Department

WHERE EmpName = DeptManager
AND Location = ‘Miami'

= The NSEQ VT (*nonsequenced valid time”) modifier
Indicates that what follows should be treated as regular
SQL, for example (tuple count):

NSEQ VT
SELECT COUNT((*) FROM Employee

The ATSOQL Approach

A query without a modifier considers only the present
state of the argument relations (i.e. valid at NOW)

Ensures that legacy queries on non-temporal relations
are unaffected If the non-temporal relations are made
temporal, e.g.

SELECT * FROM Employee

The modifiers mechanism is independent of the syntactic
complexity of the queries

The temporal parts are to a large degree separated from
the non-temporal parts of the query

The semantics of SQL extended with statement
modifiers has been defined

TDB Support in SQL:201.1

= The SQL/Temporal chapter was cancelled from the
SQL3 definition in 2001 due to controversy within the
ISO SOL committee (cf. ATSQL vs IXSQL approach)

= New temporal language extensions were recently
submitted to and accepted by the ISO SQL committee
as part of the SQL/Foundation Chapter of the new
SQL:2011 standard

= The ability to create and manipulate temporal tables is
the most important new feature in SQL:2011

TDB Support in SQL:201.1

Valid-time tables, dubbed as “Application-time period
tables”, are supported

Transaction-time tables, dubbed as “System-versioned
tables”, are supported

Bitemporal tables, dubbed as “System-versioned
application-time period tables™ (1), are supported

Period timestamping Is supported via 2 columns

Temporal primary key and referential integrity constraints
are supported

Predicates are defined for querying along valid and
transaction time

Application-time Period Tables

Application-time period tables are tables that contain a
PERIOD clause (newly-introduced) with a user-defined
period name

Application-time period tables must contain two (user-
defined) additional columns to store the start and end
time of a period associated with the row

Values of both start and end columns are set by the
USEers

Additional syntax Is provided for users to specify primary
key/unigue constraints that ensure no two rows with the
same key value have overlapping periods

Creating an Applicatien-time Period Table

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL PRIMARY KEY,

dept_1d VARCHAR(10),

start_date DATE NOT NULL, end_date DATE NOT NULL,
PERIOD FOR emp_period (start_date, end_date),

PRIMARY KEY (emp_name, emp_period WITHOUT OVERLAPS),
FOREIGN KEY (dept_id, PERIOD emp_period) REFERENCES
Department (dept_id, PERIOD dept_period))

= PERIOD clause automatically enforces the constraint
end_date > start_date

= The name of the period can be any user-defined name

= The timestamping period Is considered open to the right,
l.e. [start_date, end_date)

Quenrying an Application-time Period Table

Application-time period tables can be queried using the regular SQL
syntax (temporal selection predicates can be expressed using
comparisen conditions over the timestamping columns)

More user-friendly and Allen-complete period comparators
(reminiscent of the TSQL2 ones) are also available:

CONTAINS, OVERLAPS, EQUALS, PRECEDES, SUCCEEDS,
IMMEDIATELY PRECEDES, IMMDIATELY SUCCEEDS

Ex. SELECT * FROM Employee
WHERE emp_period CONTAINS PERIOD ‘2015

SELECT DISTINCT El.emp_name, E2.emp_name
FROM Employee E1, E2
WHERE El.emp _name < E2.emp_name

AND E1.dept_id = E2.dept_Id

AND El.emp_period OVERLAPS E2.emp_period

Modifying an Application-time Period Table

= Regular INSERT, UPDATE, DELETE statements can be used by
explicitly managing values of conventional columns but also of the
timestamping columns

= A more user-friendly new FOR PORTION clause can be used to
specify the applicability period of modifications

= Ex. UPDATE Employee
FOR PORTION OF emp_period
FROM DATE '2015-05-01' TO DATE '2015-06-01"
SET dept_id ='D5' WHERE emp_name = Tom'

DELETE Employee
FOR PORTION OF emp_period

FROM DATE '2016-03-01' TO DATE '9999-12-31"
WHERE emp_name ="'Annabel’

System-versioned Tables

= System-versioned tables are tables that contain a
PERIOD clause with a pre-defined period name
(SYSTEM_TIME) and specify WITH SYSTEM
VERSIONING

= System-versioned tables must contain two additional
(user-defined) columns to store the start and end time
of the SYSTEM_TIME period

= Values of both start and end columns are set by the
system (users are not allowed to supply values)

System-versioned Tables

Unlike regular tables, system-versioned tables preserve
the old versions of rows as the table Is updated

Rows Whose periods intersect the current time are called
current system rows. All others are called historical
System rows

Only current system rows can be updated or deleted.
System time applicability of modifications cannot be
managed by the user

All constraints are enforced on current system rows only

Creating a System-versioned Table

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL, dept_id VARCHAR(10),
system_start TIMESTAMP(6) GENERATED ALWAYS AS ROW START,
system_end TIMESTAMP(6) GENERATED ALWAYS AS ROW END,
PERIOD FOR SYSTEM_TIME (system_start, system_end),

PRIMARY KEY (emp_name),

FOREIGN KEY (dept_id) REFERENCES Department (dept_id);

) WITH SYSTEM VERSIONING

= Unlike regular tables, system-versioned tables preserve the old
versions of rows as the table is updated

= PERIOD clause automatically enforces the constraint
system_end > system_ start

= The name of the period must be SYSTEM_TIME
= The timestamping period is considered open to the right

Querying a System-versioned Table

The clause FOR SYSTEM_TIME can be used after the FROM

clause to access past states of a table along transaction time
(rellback queries)

It comes with three variants:

FOR SYSTEM_TIME AS OF T (current at T)
FOR SYSTEM_TIME FROM T1 TO T2 (current in [T1,T2))
FOR SYSTEM_TIME BETWEEN T1 AND T2 (current in [T1,T2])

Ex. SELECT * FROM Employee
FOR SYSTEM_TIME

FROM TIME 2011-01-01" TO TIME '2011-12-31°

SELECT * FROM Employee
FOR SYSTEM_ TIME

AS OF TIMESTAMP '2014-04-01 12:30:00°

Creating a System-versioned
Application-time Table

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL PRIMARY KEY,

dept_id VARCHAR(10),

start_date DATE NOT NULL, end_date DATE NOT NULL,
system_start TIMESTAMP(6) GENERATED ALWAYS AS ROW START,
system_end TIMESTAMP(6) GENERATED ALWAYS AS ROW END,
PERIOD FOR emp_period (start_date, end_date),

PERIOD FOR SYSTEM_TIME (system_start, system_end),
PRIMARY KEY (emp_name, emp_period WITHOUT OVERLAPS),
FOREIGN KEY (dept_id, PERIOD emp_period) REFERENCES
Department (dept_id, PERIOD dept_period)

) WITH SYSTEM VERSIONING

Cf. Creating the same Table in TSQL2...

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL PRIMARY KEY,
dept_id VARCHAR(10),

FOREIGN KEY dept_id REFERENCES Department

) AS VALID AND TRANSACTION

In practice, it Is the same declaration done with regular SQL
of a snapshot table Employee, simply augmented with the

“AS VALID AND TRANSACTION" bitemporal specification
(that implies the so deprecated syntactic and semantic defaults)

