
Temporal

Query Languages

Fabio Grandi

fabio.grandi@unibo.it

DISI, Università di Bologna

A short course on Temporal Databases for DISI PhD students, 2016

Credits: most of the materials used is taken from slides prepared by Prof. M. Böhlen (Univ. of Zurich, Switzerland)

Temporal Query Languages

 Data model: DM = (DS, QL)
 DS is a set of data structures

 QL is a language for querying and updating the data
structures

 Example: the relational data model is composed
of relations and SQL (or relational algebra)

 Many extensions of the relational data model and
SQL to support time have been proposed

Relational Algebra for the BCDM

 An algebra provides a procedural/operational
language for a data structure that is suitable for
implementation

 Algebra for the standard relational algebra
operators in BCDM
 Schema: R = (A1, …, An, T)

 Domains: Ai has domain Di and T has domain P(DTT x DVT)
 DTT is the transaction-time domain and DVT is the valid-time domain

 r is an instance relations of schema R

 The operators then have the following signature

Projection in BCDM
 Temporal projection: Project a relation r with non-

timestamp attributes A1, …, An to a subset D of
attributes

 Calculation of timestamps of result tuples
 All chronons in any value-equivalent tuple of r must be

included and no spurious chronons can be introduced

 (automatic coalescence is performed)

 Ex. Projection on the Emp attribute:

Selection in BCDM
 Temporal selection: Select from relation r with

non-timestamp attributes A1, …, An all tuples that
satisfy a predicate P defined on the non-
timestamp attributes

 Ex. Select all tuples of employee Kate:

Union in BCDM
 Temporal union: Compute the union of tuples

from two relations r1 and r2 that are instances of
the same schema (or union-compatible schemas)

 The first clause handles value-equivalent tuples found
in r1 and r2

 The second (third) clause handles those tuples that are
found only in r1 (r2)

Union in BCDM
 Ex. Compute

the union of
relations dept
and emp:

Difference in BCDM
 Temporal difference: Compute those tuples that

are in r1 and not in r2 where the two relations are
instances of the same schema (or union-
compatible schemas)

 The last two lines compute the bitemporal element,
depending on whether a value-equivalent tuple may be
found in r2 or not

Difference in BCDM
 Ex. Compute

the difference
of relations
dept and emp:

Join in BCDM
 Temporal join: Two tuples join if they match on

the join attributes A1, …, An and have overlapping
bitemporal-element timestamps

 r and s are instances over the following schemas:
R(A1, …, An, B1, …, Bl, T) = R(A, B, T)

S(A1, …, An, C1, …, Cm, T) = S(A, C, T)

 The timestamp of a result tuple is the intersection of
the timestamps of the corresponding argument tuples

Join in BCDM
 Ex. Temporal join to compute “Who managed

whom”?:

The timestamp is the

overlap of timestamp

regions of tuples with

matching join attribute

Timeslice Operators in BCDM

 Transaction-timeslice operator: selects the relation
at transaction time t1 (not exceeding the current time)
 Takes a bitemporal relation r as input

and returns a valid-time relation

 Valid-timeslice operator: selects the relation
at valid time t2
 Takes a bitemporal relation r as input

and returns a transaction-time relation

Timeslice Operators in BCDM
 Timeslice operators can be extended for

transaction-time and valid-time relations
 T gets as input a transaction-time relation and returns

a snapshot relation

 V gets as input a valid-time relation and returns a
snapshot relation

 Ex.

 B
12 (dept) = { (Jake,Ship, {5,…,19}), (Jake,Load, {now}) }

 V
7 (

B
12 (dept)) = { (Jake,Ship) }

Sequenced Semantics

 There is a close relationship between a temporal and a
non-temporal database:
 the snapshot of a temporal relation at a time t is a non-temporal

relation

 a temporal relation is a collection of timestamped snapshots

 All non-temporal statements can be evaluated at each
snapshot of a temporal database (“at each time point”)

 There should be a close relationship between a temporal
and a non-temporal statement:
 e.g. a temporal aggregation should resemble a non-temporal

aggregation

 With SQL this is not the case (remember temporal join
versus join)…

Sequenced Semantics

Notations (we assume R is a valid-time relation):

 Relation schema: R(A1, ..., An, TS, TE)

 r is a relation with schema R (instance of R)

 A1, ..., An are the explicit (non-temporal) attributes

 TS, TE are temporal attributes
 TS is the valid time start

 TE is the valid time end

 z(n+2) denotes a tuple of arity n+2

 We assume periods are half open intervals [TS,TE)

 We write T to refer to the period [TS,TE)
 t T ≡ TS ≤ t < TE

Sequenced Semantics

Notations:

 The timeslice operator maps a temporal to a non-
temporal relation

 Definition of the timeslice operator:

t(r) = { z(n) | x r (z.A = x.A /\ x.TS ≤ t < x.TE) }

 Two temporal relations, r and s, are snapshot equivalent
iff for all times t their snapshots are identical

 Definition of snapshot equivalence:

Sequenced Semantics

 Snapshot reducibility reduces the semantics
of temporal operators to the semantics
of the corresponding non-temporal operators

 temporal operator T is snapshot-reducible to the
non-temporal operator iff for all t:

Sequenced Semantics

 DT = temporal DB

 T = {T, T, T, xT, UT, -T}

 RT = temporal result relation

 t = snapshot at time point t

 Dt = snapshot of DT at time t

 = {, , , x, U, -}

 Rt = result relation at time t

Illustration of snapshot

Reducibility:

Sequenced Semantics

 A temporal relation can be viewed as made up of a
sequence of timestamped snapshot relations

 Mutual consistency of the two viewpoints along the time
axis gives rise to the notion of snapshot reducibility

 If period/element timestamping is adopted, timestamps of
the argument tuples are taken into account when forming
the timestamp associated to the result tuples (e.g.
intersection is used when executing a join)

 Enforcement of snapshot reducibility gives rise to a
sequenced semantics (i.e. “at each time point”) in query
execution [Böhlen, Jensen, Snodgrass]

Non-Sequenced Semantics

 Snapshot reducibility does not apply to queries involving
predicates and functions over the timestamps of argument
relations

 In such queries, snapshots valid at different times
have to be mixed in in order to find the answer

 Hence, their evaluation requires a non-sequenced
semantics

 Such queries give the full temporal expressivity to a
temporal query language (and fully exploits the power of a
temporal database)
 Ex. Find the employees who were programmer

before becoming DBA

 The information about being programmer and about being DBA
must be found by combining (with a join) different snapshots

Beyond Sequenced Semantics [Böhlen]

 Period-based semantics (even in a weak sense) requires
the preservation of the individual timestamp periods
through the application of operators

 Extended snapshot reducibility allows non-sequenced
queries to be executed with a sequenced semantics

 It can be enforced via timestamp propagation (making
copies of timestamp columns to be treated as explicit
attributes)

 Enforcement of change propagation corresponds to a
correct application of a sequenced semantics with true
period-based timestamping (coalescence not automatic)

 It can be implemented via manipulation of lineage sets
(sets of witness lists of argument tuples)

Upward Compatibility [Snodgrass et al.]

 Let M1=(DS1,QL1) and M2=(DS2,QL2) two data models,
then M1 is syntactically upward compatible with M2 if
 db2 DS2 db2 DS1

 q2 QL2 q2 QL1

(a database/query in M2 is also a database/query in M1)

 Let M1=(DS1,QL1) and M2=(DS2,QL2) two data models,
then M1 is upward compatible with M2 if
 M1 is syntactically upward compatible with M2

 db2 DS2, q2 QL2 [[q2(db2)]]M2
= [[q2(db2)]]M1

(evaluating a query on a database instance in M2 gives identical
results if evaluated in M1)

 We will use this notion with M1 = TDB and M2 = Rel. DB…

Upward Compatibility

 A Temporal Query Language (TQL) is upward compatible
with SQL if
 Traditional tables are also legal instances of tables in the

underlying temporal data model

 Traditional SQL queries are also queries in the TQL and give the
same results when evaluated according to the TQL semantics

(TQL and SQL queries give the same results on a non-temporal table)

Upward

Compatible

Queries

Language Design Criteria

 Expressive power
 Suitable for intended applications

 Economy of encoding is relevant

 Clarity
 Syntax should reflect the semantics

 Consistent naming style

 Consistency
 Upward compatibility with standards, e.g. SQL standard

 Systematic (not a new construct per query, no exceptions)

 Orthogonality
 Possibility to freely combine query language constructs

 Zero-One-Infinity principle (the only reasonable numbers in a
programming language design are zero, one, and infinity)

 Closed-form evaluation
 The result of a query is a proper object of the data model

Comparison of Timestamps

 Comparison of Timestamps is part of every temporal
query language

 Many query languages adopt (a variant of) Allen’s 13
period relations:

SQL + Abstract Data Types

 Extend existing language (e.g. SQL) with time data types
and associated predicates and functions
 e.g. predicates for timestamp comparison

 Earliest and (from a language design perspective)
simplest approach

 Has limited impact on existing language and is well
understood technically

 An abstract data type does not offer a systematic way to
generalize snapshot queries to temporal queries

 New and very complex solutions must be invented (i.e.
programmed) to implement common temporal operations:
 Temporal join, temporal aggregates, coalescence…

 Enforcement of key constraints, sequenced semantics…

The IXSQL Approach [Lorentzos et al.]

 IXSQL extends SQL-92 with (time) period data type

 Periods are convenient for representing temporal aspects,
but create difficulties when formulating temporal queries

 IXSQL addresses this problem by normalizing timestamps
so that they are aligned (identical or disjoint):
 Function UNFOLD: decompose a period-timestamped tuple into a

set of point-timestamped tuples (one for each point in the original
period)

 Function FOLD: collapse a set of point timestamped tuples into
value-equivalent tuples timestamped with maximum periods

 General pattern for query processing using fold/unfold:
1. Construct the point-based representation by unfolding the

argument relation(s)

2. Compute the query on point-based representation

3. Fold the result to end up with an period-based representation

The IXSQL Approach

 Example of a temporal join (sequenced semantics):

SELECT DeptName, Location, DeptManager, Salary,
intervsect(Department.T, Employee.T) as T

FROM Employee, Department
WHERE EmpName = DeptManager

AND Department.T overlaps Employee.T
AND Location = 'Miami’

REFORMAT AS FOLD T

 (the REFORMAT AS FOLD instruction, i.e. UNFOLD to
time instants followed by FOLD to time periods, is
necessary for coalescence of tuples in the result)

The IXSQL Approach

 Only two functions, fold and unfold, are added to SQL

 Unfold can be used when needed to formulate queries
about each time point (it is optional and not an invasive
change at query language level)

 Efficient evaluation of queries formulated using fold/unfold
has yet to be resolved

 Neither a purely point-based nor period-based view:
 Sensitive to specific period representation of data (e.g. queries

that do not use fold/unfold)

 Fold/unfold only preserve information of a point-based view
 Normalization step using unfold/fold loses period information

 Fold is not the inverse of unfold (information about the original periods is lost)

 The combination of “at each time point” and periods is not
supported (sequenced semantics with periods cannot be
supported)

The TSQL2 Language

(Temporal SQL-92 Extension)

The TSQL2 Language

Desired features of the underlying data model
that inspired the TSQL2 design:

 TSQL2 should not distinguish between value-equivalent
instances (to provide conceptual simplicity)

 TSQL2 should support only one valid-time dimension

 TSQL2 should support transaction time

 For simplicity, tuple timestamping should be employed

 Event and state tables should be supported

 Valid-time support should include support for both the
past and the future

 Timestamp values should not be limited in range or
precision

The TSQL2 Language

Proper desired features of the query language that
inspired the TSQL2 design:

 TSQL2 should be a consistent, fully upward
compatible extension of SQL-92

 TSQL2 should allow the restructuring of tables on any
set of attributes

 TSQL2 should allow for flexible temporal projection

 Operations in TSQL2 should not accord any explicit
attributes special semantics (e.g. op. relying on keys)

 Temporal support should be optional, on a per-table
basis

The TSQL2 Language

Proper desired features of the query language
that inspired the TSQL2 design:

 User-defined time support should include instants,
periods and intervals

 Existing aggregates should have temporal analogues in
TSQL2

 Multiple calendars and multiple language support should
be present in timestamp I/O and operations

 It should be possible to derive temporal and non-temporal
tables from underlying temporal and non-temporal tables

The TSQL2 Language

Ease of implementation was made a priority in the design:

 TSQL2 tables should be implemented in terms of tables
in some 1NF representational model

 TSQL2 should have an efficiently implementable algebra
that allows for optimization and that is an extension of
the snapshot algebra

 The TSQL2 data model should allow multiple
representational data models

The TSQL2 Language

 Timestamping columns are “hidden columns” with an
implied special semantics and syntactic defaults have
been embedded in order to make the formulation of
common temporal queries easier

 For example, intersection of the valid time of all the
relations involved in a query to be assigned as
timestamps to the results is automatically done, yielding:
 Snapshot reducibility is ensured

 Sequenced semantics is enforced by default

 The implied sequenced semantics can be overridden via
a custom temporal projection or explicit manipulation of
timestamps for temporal selection

Time Representation in TSQL2

 Time representation conforms to the BDCM

 Time is discrete with chronons as base unit

 Available base temporal datatypes:
 Datetime (instant)

 Period

 Interval

 Such datatypes are inherited from the SQL-92
specification but with several flaws fixed

The Datetime Datatype

 Conforms to predefined SQL-92 types: DATE, TIME,
TIMESTAMP (compliant to ISO 8601 standard formats)

 Examples:

DATE '2016-02-29'

DATE 'February 29, 2016'

TIME '21:30:10'

TIME '9:30:10 PM'

TIMESTAMP '2015-12-31 12:00:00.00'

TIMESTAMP 'Noon December 31, 2015'

The Period Datatype

 Represents open/closed time periods

 Examples:

PERIOD '[March 2014]'

PERIOD '(2010]'

PERIOD '[1994-01-01 - 1994-01-31)'

PERIOD '(12:15:00.0 - 12:16:00.0)'

PERIOD '[Midnight July 1, 2013

- September 10, 2014 10:20 AM]'

The Interval Datatype

 Represents unanchored pure durations

 Examples:

INTERVAL '10' YEAR

INTERVAL 'November' DAY

INTERVAL '3' WEEK

INTERVAL '02:30' HOUR TO MINUTE

INTERVAL '-20' SECOND (cf. negative duration)

Mixed Expressions

 A set of any datetime (period) data is an instant set
(temporal element): in any case it is a set of chronons

 Examples:

PERIOD '[2014-01-01 - 2014-06-01]'

+ INTERVAL '10' MONTH

= PERIOD '[2014-11-01 - 2015-04-01]‘

TIMESTAMP ‘2000-01-01 12:30'

+ INTERVAL 'February 2016' DAY

= TIMESTAMP ‘2000-01-30 12:30'

Mixed Expressions

 Further examples:

PERIOD 'March 2014' + INTERVAL '10' DAY

= PERIOD '[2014-03-11 - 2014-04-10]‘

TIMESTAMP '13:30 April 1, 2000'

+ INTERVAL '1' YEAR - INTERVAL '15' MINUTE

= TIMESTAMP '2001-04-01 13:15'

 Special predefined constants:
BEGINNING, FOREVER, INITIATION,
UNTIL_CHANGED, CURRENT_TIMESTAMP,
NOW (possibly with nobind option)

Schema Declaration and Modification

 Temporal definition clause AS… (6 temporal table types)

 Examples:

CREATE TABLE Employee (…)

AS VALID STATE

CREATE TABLE Department (…)

AS VALID AND TRANSACTION

CREATE TABLE Transfer (…)

AS VALID EVENT DAY

ALTER TABLE Employee

ADD TRANSACTION

Temporal Selection

 Selection based on temporal conditions in the WHERE
clause

 Temporal comparison operators
(for datetime, period, instant set and element):
PRECEDES, =, OVERLAPS, MEETS, CONTAINS

 Comparison (<, =, >) and arithmetic (+, -, *) operators for
intervals

 Various functions:
BEGIN(.), END(.), FIRST(.), LAST(.),
INTERSECT(.,.), + , -

 Constructors: PERIOD(.,.)

 Timestamp extractors: VALID(.), TRANSACTION(.)

Temporal Comparison Operators

 The semantics of TSQL2 temporal comparison operators
corresponds to their meaning in natural language
(whereas Allen’s operators have artificial and innatural
names), following the SQL (SEQUEL) philosophy

 X PRECEDES Y iff END(X) < BEGIN(Y)

 X = Y iff X and Y are identical

 X OVERLAPS Y iff X ∩ Y

 X MEETS Y iff X PRECEDES Y
without any instants in between

 X CONTAINS Y iff X Y

Temporal Comparison Operators

 The TSQL2 temporal comparison operators can be used
with instants, periods and elements, and also for mixed
comparisons (e.g. elements with instants)

 As to periods, TSQL2 is anyway Allen-complete

 X = Y has been preferred to X EQUALS Y
not to introduce a new keyword

 For the same reason, inverse operators have not been
considered necessary

 X MET_BY Y can be expressed as Y MEETS X

 X FOLLOWS Y can be expressed as Y PRECEDES X

 X DURING Y can be expressed as Y CONTAINS X

Temporal Selection - Examples

 SELECT * FROM Employee
WHERE EmpName = 'Ted'

 SELECT Salary FROM Employee
WHERE VALID(Employee) CONTAINS DATE 'NOW'

 SELECT * FROM Employee
WHERE EmpName = 'Ted'

AND VALID(Employee) OVERLAPS
PERIOD '[2013]' + PERIOD '[2015]'

Temporal Selection - Examples

 SELECT EmpName, Salary
FROM Employee
WHERE FIRST(VALID(Employee)) CONTAINS

PERIOD '[1990-06-15 - 1990-07-15]'

 SELECT EmpName, Salary
FROM Employee
WHERE Job = 'Programmer'

AND LAST(VALID(Employee))
PRECEDES DATE '2014-03-01'

Temporal Projection

 Assignment of a timestamp to the results of a query
done with the VALID (VALID INTERSECT) clause

 Examples:

 SELECT SNAPSHOT EmpName, DateOfBirth
FROM Employee
WHERE Job='Engineer'

 SELECT DISTINCT EmpName
FROM Employee
VALID PERIOD(DateOfBirth, DATE 'FOREVER')
WHERE Job = 'Manager'

Temporal Projection - Examples

 SELECT Department.*, Employee.Salary
FROM Employee, Department
VALID INTERSECT (Employee, Department)
WHERE EmpName = DeptManager

AND VALID(Employee)
OVERLAPS VALID(Department)

AND Location = 'Miami'

 SELECT Department.*, Employee.Salary
FROM Employee, Department
WHERE EmpName = DeptManager

AND Location = 'Miami'

(the same VALID clause as above is understood and,
thus, the overlap is implied; cf. temporal join)

TSQL2 Range Variables

 The TSQL2 range variables generalize the concept of
history variables [Grandi] and allow for temporal
restructuring [Gadia] of a relation. Automatic coalescing
of timestamps is implied

 In the FROM clause:
FROM Employee(EmpName) AS Emp

the variable Emp ranges over groups of tuples of the
relations with the same EmpName attribute value.
Grouping can also be based on periods

 Notice that the clause FROM Employee
is equivalent to FROM Employee AS Employee
that is to FROM Employee(*) AS Employee

TSQL2 Range Variables

 Declaration of range variables (and, thus, grouping) can
be nested:

FROM Employee(EmpName) AS Emp,
Emp(Job) AS E1, E2

is equivalent to:

FROM Employee(EmpName) AS Emp,
Employee(EmpName,Job) AS E1, E2

WHERE E1.EmpName=Emp.EmpName
AND E2.EmpName=Emp.EmpName

(groups are synchronized on the common attributes;
nested declarations are “syntactic sugar”)

TSQL2 Range Variables

 Examples:

SELECT *
FROM Employee(EmpName,Salary) AS Emp
WHERE Salary = 2500

AND CAST(Emp AS INTERVAL YEAR)
>= INTERVAL '2' YEAR

SELECT SNAPSHOT E1.EmpName, BEGIN(VALID(E2))
FROM Employee(EmpName) AS Emp,

Emp(Job,Salary) AS E1, E2
WHERE E1 MEETS E2

AND E1.Job <> E2.Job
AND E1.Salary = E2.Salary

TSQL2 Range Variables

 Examples:

SELECT E1.EmpName, E1.Job
FROM Employee(EmpName) AS Emp,

Emp(Job)(PERIOD) AS E1, E2, E3
WHERE E1 MEETS E2 AND E2 MEETS E3

AND E1.Job <> E2.Job AND E1.Job = E3.Job
AND E2.Job = 'Manager'

SELECT Emp.*
FROM Employee(EmpName) AS Emp,

Emp(Job) AS E1, Emp(Salary) AS E2
WHERE E1.Salary = 2300 AND E2.Job = 'DeptHead'

AND BEGIN(VALID(E2)) - END(VALID(E1))
> INTERVAL '18' MONTH

TSQL2 Modification Operations

 The VALID clause allows for the specification of the
applicability period of the modification

 Examples:

INSERT INTO Employee
VALUES ('Kim', '1982-05-15', 'Engineer', 2500)
VALID PERIOD(DATE '2016-01-01',

NOBIND(DATE 'NOW'))

Employee

EmpName DateOfBirth Job Salary VALID

Kim 15/5/1982 Engineer 2500 [1/1/2016, Now)

TSQL2 Modification Operations

 Examples:

UPDATE Employee
SET Salary = Salary + 200
WHERE EmpName = 'Kim'

AND VALID(Employee)
CONTAINS DATE 'CURRENT_TIMESTAMP'

VALID PERIOD 'February 2016'

Employee

EmpName DateOfBirth Job Salary VALID

Kim 15/5/1982 Engineer 2500 [1/1/2016, 1/2/2016)

Kim 15/5/1982 Engineer 2700 [1/2/2016, 1/3/2016)

Kim 15/5/1982 Engineer 2500 [1/3/2016, Now)

TSQL2 Modification Operations

 Examples:

DELETE FROM Employee
WHERE EmpName = 'Kim'
VALID PERIOD '[2016-06-01 - FOREVER]'

Employee

EmpName DateOfBirth Job Salary VALID

Kim 15/5/1982 Engineer 2500 [1/1/2016, 1/2/2016)

Kim 15/5/1982 Engineer 2700 [1/2/2016, 1/3/2016)

Kim 15/5/1982 Engineer 2500 [1/3/2016, 1/6/2016)

TSQL2 Modifications and Surrogates

 Surrogates are transparent time-invariant identifiers

 Example:

CREATE TABLE
Supplier(ID SURROGATE, Name CHAR PRIMARY KEY,

Address CHAR)
AS VALID;

INSERT INTO Supplier
VALUES (NEW, 'Acme Inc.', 'New York')
VALID PERIOD '[2014-01-01 - FOREVER]'

Supplier

ID Name Address VALID

[S1] Acme Inc. New York [1/1/2014, Forever)

TSQL2 Modifications and Surrogates

INSERT INTO Supplier
SELECT ID, 'New Acme Ltd.', Address
FROM Supplier
WHERE Name = 'Acme Inc.'
VALID PERIOD '[2016-01-01 - FOREVER]'

or: UPDATE Supplier
SET Name = 'New Acme Ltd.'
WHERE ID = (SELECT ID FROM Supplier

WHERE Name = 'Acme Inc.')
VALID PERIOD '[2016-01-01 - FOREVER]'

Supplier

ID Name Address VALID

[S1] Acme Inc. New York [1/1/2014, 1/2/2016)

[S1] New Acme Ltd. New York [1/1/2016, Forever)

TSQL2 Aggregate Functions

 Temporal grouping criteria:

 Partition domain (valid or user-defined, instant or period)

 Partition granularity

 Associated time window (LEADING and TRAILING options)

 Group belonging

 Example:

SELECT Salary
FROM Employee AS Emp1
WHERE Emp1.EmpName = 'Tony'

AND VALID(Emp1) OVERLAPS
(SELECT MIN(VALID(Emp2))
FROM Emp AS Emp2
WHERE Emp2.EmpName = 'Eve')

TSQL2 Aggregate Functions

 Examples:

SELECT EmpName, SUM(WEIGHTED Salary)
FROM Employee(EmpName) AS Emp
GROUP BY VALID(Emp) USING '1' YEAR
HAVING MIN(Salary) > 2500

SELECT AVG(WEIGHTED Salary)
FROM Employee
WHERE EmpName = 'Tony'
GROUP BY VALID(Employee)

USING '1' MONTH LEADING '11' MONTH

Calendars and Calendric Systems

 Calendars and calendric systems composed of multiple
calendars are supported in TSQL2

 Ex. of calendars: Gregorian, Julian, Astronomic,
Traditional_Chinese, US_Fiscal, UniBO_Academic

 Ex. of a calendric system: Russian (Roman till100 B.C.
then Julian till1917, then Gregorian till1929, then
Communist till1931 and then Gregorian again)

 Selection of a calendric system (Gregorian) in TSQL2:

DECLARE CALENDRIC SYSTEM
AS SQL92_CALENDRIC_SYSTEM

Calendars and Calendric Systems

 Calendars are necessary for correct I/O and formatting
of time data, that can be specified via the
DATETIME_FORMAT property, ex.

SET PROPERTY FOR Italian_Calendar WITH VALUES
(' DATETIME_FORMAT ',
' <DAY>/<MONTH>/<YEAR> <HOUR>:<MINUTE>:<SECOND> ')

then '19/02/2016 ' is a correct date literal for the Italian_Calendar

 Time zones and daylight saving are also supported,
e.g. the following expressions are equivalent:

TIME '10:30:25' AT TIME ZONE INTERVAL '1' HOUR

TIME '10:30:25' AT TIME ZONE 'CET'

TIME '10:30:25+01:00'

Calendars and Calendric Systems

 Like in SQL-92, an EXTRACT() operator is also available
to extract components from a temporal expression.

 Examples:

EXTRACT (HOUR FROM TIME '01:27.30 PM')

returns 13

EXTRACT (MONTH FROM DATE 'June 7, 2010')

returns 6

EXTRACT (TIMEZONE_HOUR FROM
TIMESTAMP '2015-05-13 13:27.30-4:00')

returns -4

Temporal Indeterminacy

 Based on a probabilistic approach [Dyreson & Snodgrass]

 An indeterminate instant t = (t- ~ t+, P)
is represented through:

 Its lower (t-) and upper (t+) support

 Its probability distribution P (null outside the support)

 Evaluation of selection predicates involving indeterminate
instants (at a given plausibility level p) is based on the
Before() primitive:

where the precedence probability is evaluated as:

Temporal Indeterminacy

 The probability distribution can be STANDARD (i.e.
UNIFORM or MISSING) or NONSTANDARD

 Non standard distributions are user-defined point by
point such that:

P(i) = 0 if i<t- or i>t+

t-≤i≤t+ P(i)=1

 Non standard distributions samples with predefined
shapes could be provided by the system or made
available by a DBA (e.g. PROBABLY_EARLY,
PROBABLY_VERY_LATE, AROUND etc.)

Temporal Indeterminacy

Example:

CREATE TABLE

Shipment(ParcelNo CHAR PRIMARY KEY, Destination CHAR,

Arrival NONSTANDARD INDETERMINATE DATE)

INSERT INTO Shipment

VALUES ('P102', 'Rome', '2016-02-20 ~ 2016-02-24'

WITH DISTRIBUTION PROBABLY_EARLY)

SELECT * FROM Shipment

WHERE Destination='Paris'

AND VALID(Shipment) OVERLAPS

DATE '2016-03-01' WITH PLAUSIBILITY '95'

Granularities in TSQL2

 Granularities are based on the lattice associated to a
calendar

 TSQL2 extends the mechanism available in SQL-92 for
the INTERVAL datatype, e.g.

INTERVAL DAY TO SECOND
(duration at a granularity between day and second)

 The upper granularity may be expressed as a range, e.g.
INTERVAL '1000' DAY TO SECOND

 TSQL2 allows granularity definitions also for instant and
period datatypes

 A precision specification can also be used, e.g.
TIME MINUTE(2) TO SECOND(3)

The first is a range spec. (102 minutes) the second spec.
is the maximum number of decimal digits (10-3 seconds)

Granularities in TSQL2

 Comparison on operands with different granularities are
effected at the granularity of the left operand

 Explicit granularity conversions are possible by means of
the SCALE and CAST operators, e.g.
 SCALE(DATE '2010-01-01' AS MONTH)

CAST(DATE '2010-01-01' AS MONTH)
both return 'January 2010'

 SCALE(DATE '2010-01-01' AS MINUTE)
returns '2010-01-01 00:00 ~ 2010-01-01 23:59' (indeterm.)

 CAST(DATE '2010-01-01' AS MINUTE)
returns '2010-01-01 00:00' (the first value at the finer gran.)

 SCALE(DATE 'March 2014 ~ April 2014' AS DAY)
returns '2014-03-01 ~ 2014-04-30' (maximizes indet.)

 CAST(DATE 'March 2014 ~ April 2014' AS DAY)
returns '2014-03-01 ~ 2014-04-01' (converts the supports)

The ATSQL Approach

 ATSQL [Böhlen, Jensen & Snodgrass] uses temporal
statement modifiers to add temporal support to SQL

 Statement modifiers are semantic defaults that indicate
“at each time point” without specifying how to compute it

 Provides a systematic way to construct temporal queries
from non-temporal queries:
 1. Formulate the corresponding non-temporal query

 2. Apply a statement modifier

 Example: Temporal join
 Formulate the non-temporal join

 Modifier ensures that the argument timestamps overlap and that
the result timestamp is the intersection of the argument periods

 ATSQL assumes period-timestamped tuples:
 Periods have a meaning beyond a set of points

The ATSQL Approach

 Example (temporal join):

SEQ VT
SELECT Department.*, Employee.Salary
FROM Employee, Department
WHERE EmpName = DeptManager

AND Location = 'Miami'

 The NSEQ VT (“nonsequenced valid time”) modifier
indicates that what follows should be treated as regular
SQL, for example (tuple count):

NSEQ VT
SELECT COUNT(*) FROM Employee

The ATSQL Approach

 A query without a modifier considers only the present
state of the argument relations (i.e. valid at NOW)

 Ensures that legacy queries on non-temporal relations
are unaffected if the non-temporal relations are made
temporal, e.g.

SELECT * FROM Employee

 The modifiers mechanism is independent of the syntactic
complexity of the queries

 The temporal parts are to a large degree separated from
the non-temporal parts of the query

 The semantics of SQL extended with statement
modifiers has been defined

TDB Support in SQL:2011

 The SQL/Temporal chapter was cancelled from the
SQL3 definition in 2001 due to controversy within the
ISO SQL committee (cf. ATSQL vs IXSQL approach)

 New temporal language extensions were recently
submitted to and accepted by the ISO SQL committee
as part of the SQL/Foundation Chapter of the new
SQL:2011 standard

 The ability to create and manipulate temporal tables is
the most important new feature in SQL:2011

TDB Support in SQL:2011

 Valid-time tables, dubbed as “Application-time period
tables”, are supported

 Transaction-time tables, dubbed as “System-versioned
tables”, are supported

 Bitemporal tables, dubbed as “System-versioned
application-time period tables” (!), are supported

 Period timestamping is supported via 2 columns

 Temporal primary key and referential integrity constraints
are supported

 Predicates are defined for querying along valid and
transaction time

Application-time Period Tables

 Application-time period tables are tables that contain a

PERIOD clause (newly-introduced) with a user-defined

period name

 Application-time period tables must contain two (user-

defined) additional columns to store the start and end

time of a period associated with the row

 Values of both start and end columns are set by the

users

 Additional syntax is provided for users to specify primary

key/unique constraints that ensure no two rows with the

same key value have overlapping periods

Creating an Application-time Period Table

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL PRIMARY KEY,

dept_id VARCHAR(10),

start_date DATE NOT NULL, end_date DATE NOT NULL,

PERIOD FOR emp_period (start_date, end_date),

PRIMARY KEY (emp_name, emp_period WITHOUT OVERLAPS),

FOREIGN KEY (dept_id, PERIOD emp_period) REFERENCES

Department (dept_id, PERIOD dept_period))

 PERIOD clause automatically enforces the constraint

end_date > start_date

 The name of the period can be any user-defined name

 The timestamping period is considered open to the right,

i.e. [start_date, end_date)

Querying an Application-time Period Table

 Application-time period tables can be queried using the regular SQL

syntax (temporal selection predicates can be expressed using

comparison conditions over the timestamping columns)

 More user-friendly and Allen-complete period comparators

(reminiscent of the TSQL2 ones) are also available:

CONTAINS, OVERLAPS, EQUALS, PRECEDES, SUCCEEDS,

IMMEDIATELY PRECEDES, IMMDIATELY SUCCEEDS

 Ex. SELECT * FROM Employee

WHERE emp_period CONTAINS PERIOD '2015'

SELECT DISTINCT E1.emp_name, E2.emp_name

FROM Employee E1, E2

WHERE E1.emp_name < E2.emp_name

AND E1.dept_id = E2.dept_id

AND E1.emp_period OVERLAPS E2.emp_period

Modifying an Application-time Period Table

 Regular INSERT, UPDATE, DELETE statements can be used by

explicitly managing values of conventional columns but also of the

timestamping columns

 A more user-friendly new FOR PORTION clause can be used to

specify the applicability period of modifications

 Ex. UPDATE Employee

FOR PORTION OF emp_period

FROM DATE '2015-05-01' TO DATE '2015-06-01'

SET dept_id = 'D5' WHERE emp_name = 'Tom'

DELETE Employee

FOR PORTION OF emp_period

FROM DATE '2016-03-01' TO DATE '9999-12-31'

WHERE emp_name = 'Annabel'

System-versioned Tables

 System-versioned tables are tables that contain a

PERIOD clause with a pre-defined period name

(SYSTEM_TIME) and specify WITH SYSTEM

VERSIONING

 System-versioned tables must contain two additional

(user-defined) columns to store the start and end time

of the SYSTEM_TIME period

 Values of both start and end columns are set by the

system (users are not allowed to supply values)

System-versioned Tables

 Unlike regular tables, system-versioned tables preserve

the old versions of rows as the table is updated

 Rows whose periods intersect the current time are called

current system rows. All others are called historical

system rows

 Only current system rows can be updated or deleted.

System time applicability of modifications cannot be

managed by the user

 All constraints are enforced on current system rows only

Creating a System-versioned Table

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL, dept_id VARCHAR(10),

system_start TIMESTAMP(6) GENERATED ALWAYS AS ROW START,

system_end TIMESTAMP(6) GENERATED ALWAYS AS ROW END,

PERIOD FOR SYSTEM_TIME (system_start, system_end),

PRIMARY KEY (emp_name),

FOREIGN KEY (dept_id) REFERENCES Department (dept_id);

) WITH SYSTEM VERSIONING

 Unlike regular tables, system-versioned tables preserve the old

versions of rows as the table is updated

 PERIOD clause automatically enforces the constraint

system_end > system_start

 The name of the period must be SYSTEM_TIME

 The timestamping period is considered open to the right

Querying a System-versioned Table

 The clause FOR SYSTEM_TIME can be used after the FROM

clause to access past states of a table along transaction time

(rollback queries)

 It comes with three variants:

 FOR SYSTEM_TIME AS OF T (current at T)

 FOR SYSTEM_TIME FROM T1 TO T2 (current in [T1,T2))

 FOR SYSTEM_TIME BETWEEN T1 AND T2 (current in [T1,T2])

 Ex. SELECT * FROM Employee

FOR SYSTEM_TIME

FROM TIME '2011-01-01' TO TIME '2011-12-31‘

SELECT * FROM Employee

FOR SYSTEM_TIME

AS OF TIMESTAMP '2014-04-01 12:30:00'

Creating a System-versioned

Application-time Table

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL PRIMARY KEY,

dept_id VARCHAR(10),

start_date DATE NOT NULL, end_date DATE NOT NULL,

system_start TIMESTAMP(6) GENERATED ALWAYS AS ROW START,

system_end TIMESTAMP(6) GENERATED ALWAYS AS ROW END,

PERIOD FOR emp_period (start_date, end_date),

PERIOD FOR SYSTEM_TIME (system_start, system_end),

PRIMARY KEY (emp_name, emp_period WITHOUT OVERLAPS),

FOREIGN KEY (dept_id, PERIOD emp_period) REFERENCES

Department (dept_id, PERIOD dept_period)

) WITH SYSTEM VERSIONING

Cf. Creating the same Table in TSQL2…

CREATE TABLE Employee

(emp_name VARCHAR(50) NOT NULL PRIMARY KEY,

dept_id VARCHAR(10),

FOREIGN KEY dept_id REFERENCES Department

) AS VALID AND TRANSACTION

In practice, it is the same declaration done with regular SQL

of a snapshot table Employee, simply augmented with the

“AS VALID AND TRANSACTION” bitemporal specification

(that implies the so deprecated syntactic and semantic defaults)

