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Abstract: A general method that can be used for the study of a discrete and finite random variable is presented.
The method is based on the introduction of a transform of the probability density function, called ~y-transform.
A formula for computing the factorial moments directly from the y-transform is derived. Moreover, it is shown
how the ~y-transform can be simply derived owing to its physical meaning for several combinatorial problems.
Examples and applications relevant for computer science are provided.
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1 Introduction

Several modeling problems relevant for performance
evaluation of information processing and retrieval sys-
tems [1, 2, 3, 6,7, 13, 14] imply the study of a discrete
and finite random variable. Although such problems
may allow a simple determination of the expected
value of the random variable involved, the probabil-
ity density function is usually difficult to compute
and be handled for the evaluation of higher-order mo-
ments. As a matter of fact, even very simple prob-
lems yield complex probability distributions, involv-
ing alternating-sign summations with binomial coef-
ficients, owing to their relationship with the principle
of inclusion and exclusion [12]. The determination of
the moments from such distributions is not straightfor-
ward; even the evaluation of the variance may result
in a very hard task.

A common method for the study of a (non nega-
tive) discrete random variable X consists in using the
probability generating function, defined as

G(z) = E[*] = > 2" f(2),

x>0

ey

where f(z) is the probability density function of X,
and which can also be regarded as a z-transform of the
function f(-). Using standard techniques, G(z) can be
formally derived from the nature of the problem under
study. Hence, f(x) and all the factorial moments of X
can be computed thanks to:

flz) =
E[X?] =

2
3)
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where the notations [x"*] A and =™ stand for the coef-
ficient of 2" in A and for m-th falling factorial power
of x, respectively.

One way to prove formula (3) is through Taylor
series expansions. Since

flz) =

we have:

E[X1] = Za’j Lz)jG(:H-j)(z)

| i
R

1 —z)! o
_ Z 7' Z (j!)G(r—&-H-j)(Z)
7>0
(r+1)
= Z Gi'(o) = ¢ )
>0 "

Although the probability generating function ap-
proach is a very general methodology, we put for-
ward the claim that it might not be the most conve-
nient when dealing with a finite random variable, that
takes values only in a finite set and, thus, has only a
finite number of nonnull moments. We would rather
explore the possibility that a methodology based on
a finite Newton series [10] (involving finite summa-
tions and differences) could be more appropriate than
the above one based on a Taylor expansion (involving
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derivatives and formally infinite summations). Sup-
porting such a claim has been the main motivation of
this work, which will show the practical consequences
that arise from it.

Our alternative approach is based on the intro-
duction in Section 2 of a new transform, called ~-
transform, which we defined in [7] and that satisfies
the above mentioned “finiteness” requirements. The
adoption of the ~-transform as finite calculus’s an-
swer to the probability generating function is the sub-
ject of Section 3: owing to a combinatorial identity
demonstrated in Sec. 2, we will show how the new
transform allows a fast determination of all the facto-
rial moments of a discrete and finite random variable;
moreover, the physical meaning of the new transform
is explained, which will allow a direct derivation of
its expression in the context of a given combinatorial
problem. Examples and outstanding applications are
presented in Sections 4 and 5. Conclusions can finally
be found in Section 6.

2 Preliminaries

2.1 The gamma-transform

Let f(-) be a fixed function defined in {0, 1,...,n},
then its y-transform is defined in {0, 1,...,n} by:

(6)

2.2 Antitransformation formula

The corresponding inversion formula is given by:

f@) = (Z) i(—l)j(j’)wx—j) ™

Jj=0

and can be demonstrated as follows. It can be ob-
served from (6) that (y) is a polynomial function of
degree n in y and, thus, it can be expressed as a finite
Newton series:

W) = Z(i)A%(O) ®)
=0
Comparing (6) with (8) yields:
f@) = (Z)M(O) ©)

Eq. (7) can easily be obtained from (9) when explicit-
ing the z-th difference.
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2.3 A combinatorial identity

A fundamental identity involving the ~-transform is
the subject of the next Theorem.

Theorem 1 If f(-) is a fixed function defined in
{0,1,...,n}, then the following combinatorial iden-
tity holds:

ixﬂf@:) = n* T(—l)l’(?)v(n—z’) (10)
=0

=0
where () is the y-transform of f(-).

Proof: Owing to the definition of the r-th difference,
the right-hand side of (10) can be rewritten as:

n= A" ~y(n —r)
-y n(Z - :) A®(0)
x=0

n
- Zw<n> A7 (0) (1n
=0 x
In the above, the first equality is obtained by com-
puting A" y(n — r) from Eq. (8). The final expres-
sion (11) equals the left-hand side of (10), thanks to
Eq. (9). O
In order to support our claim, it can be noticed

how (7) and (10) can actually represent finite calcu-
lus’s counterpart of (4) and (5), respectively.

3 Probabilistic interpretation

3.1 Evaluation of the moments

Let X be a discrete random variable with values in
{0,1,...,n} and probability density function f(x).
All the moments of X can be computed from the ~y-
transform of f(-) as stated by the following Corollary
of Theorem 1.

Corollary 2 Given a discrete random variable X
with values in {0,1, ... ,n}, its r-th factorial moment
is provided by:

S (- a2
=0

where (-) is the gamma-transform of the probability
density function of X.

Proof: It immediately follows from the definition of
the expected value and Theorem 1. O
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Obviously, all the standard moments can be com-
puted from (12) thanks to:

£

s=0

E[X"] =

where {'} is a Stirling number of the second kind. For
instance, this entails:

E[X] = n[l—7(n—1)] (13)
ok = ntln-2)-~*n-1)
+nlyn—1)—y(n-2) 14

which are very simple formulae.

3.2 Physical meaning

An important physical meaning can be given to the
~-transform of the probability density function of a
discrete and finite random variable, as stated by the
following Theorem.

Theorem 3 Let X be a random variable with values
in{0,1,...,n} and probability density function f(x).
X can be regarded as the number of successes occur-
ring in an experiment composed of a set N of n indis-
tinguishable trials, effected as if the successful trials
were randomly selected in N'. Let Y C N be a subset
of trials fixed before the experiment and let Pr[))| be
the probability that the experiment be effected as if the
successes could only be selected from Y. Then it can
be shown that:

PiY] =

where (-) is the y-transform of the probability den-
sity function of X and y is the cardinality of the set
V.

7(y)

Proof: Since in general the experiment can provide
any number X € {0,1,...,n} of successes, Pr[)]
can be determined by means of the total probability
Theorem as follows:

Prly] = > Pr[Y|X =] Pr[X = ]
=0

Since all the trials are indistinguishable and, thus, (")
is the number of ways of choosing the = successes in
a set of m trials, we have:

§
Pry] = 3~ f(a)

Y

=0
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Moreover, also the inversion formula (7) can be
proved with only probabilistic arguments, as shown in
the following. Let Pr[X”] be the probability that the
successful trials only be selected in the set X”, then as
a consequence of the principle of inclusion and exclu-
sion we have:

Pr[X = z]
= > |PrX]—- > P+
XCN x'cx
[X|== | X! |=x—1

(1Y P 4 (<17 Prig)
P
= Y Y Y P\ ] (1)
RN

Owing to the physical meaning of 7(-), the probabil-
ity Pr[X \ J] is exactly v(z — j). Hence, thanks to
the indistinguishability of trials (summations reduce
to counts of equal quantities), it can easily be verified
that (15) equals the right-hand side of (7).

3.3 Relationship with G(z)

The following relationship between the ~y-transform
and the probability generating function G(z) can also
be shown:

G(z) =

an (”) dA—-2)"74()  16)

j=0 \J

In order to prove it, it is sufficient to show that
the density function (7) can be derived from (16) as
f(z) = [2*]G(2). By means of the binomial Theo-
rem and with simple manipulations, Eq. (16) can be
rewritten as:

n Mn 7 o i .
6 = >(0) e (1o
— i) “— J
1=0 7=0
which evidences the [2!]G(z) term.
An inverse relationship can be derived as follows.

Since v(y) is a non-decreasing function (with v(0) =
f(0) and y(n) = 1) and since from (16) we have:

i@w) = i@v(n—j) -

2"G(1/2)
j=o \/ =0

where also G(1/2) is usually a function of n; letting

g(x) = AT[2"G(1/2)](0)
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we can write:

ifg(n) =1
if g(0) = 1

9(y)
") { g9(n —y)
Moreover, it can also be shown that the probabil-
ity generating function approach can be derived as a
limit of the ~y-transform theory when the discrete ran-
dom variable involved is not limited. For instance,
consider the y-transform definition (6): since

)
-

we can let n,y — oo (maintaining constant the ratio
y/n = z) obtaining:

Fy/n—i/n
H 1—i/n

lim =
n,Yy—00

Y(y) = G(2)

owing to definition (1). All the other formulae con-
cerning G(z) can also be obtained from the corre-
sponding ones concerning 7(y) by taking the same
limit. This is another point in favour of our initial
claim.

4 Examples

Examples of application of the ~y-transform approach
are provided in this Section. Its use is shown here in
evaluating the factorial moments of a random variable
with well-known distributions.

4.1 Uniform distribution

Let X be uniformly distributed in {0,1,...,n}:

1
n+1

f(x)

The ~y-transform of the density function can be evalu-

ated as:
Y
T

1 n
PPy
T
1

n+1l—y

owing to identity (5.33) of [10].
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Applying Corollary 2 to compute the factorial
moments, we obtain:

E[X

as identity (5.41) of [10] can be used in the last step.

4.2 Binomial distribution

If we consider a random variable X following a bino-
mial distribution:
x

(with p+¢q = 1), we can easily obtain the y-transform
as:

f(@)

n
Yy _
() Z( )pxq” g
X

=0

q"

owing to the binomial Theorem.
Applying Corollary 2 we easily obtain:

w3 (7)o
=0
ntp”

E[X

4.3 Hypergeometric distribution
If X has a hypergeometric distribution:

ny (N —n
z)\k—=x
N
k
we can easily compute the y-transform:
= \z k—x

N
k
y+N-—n
k
N
k

/(@)

v(y)

22
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owing to Vandermonde’s convolution formula.
By applying Corollary 2 we obtain:

E[XT] =

= nt————== = !

which is the value usually found in the literature.

4.4 Beta-binomial distribution
If X is a beta-binomial random variable:

flx) = <n> I'(a+3) T(z+a)(n+8—1)

x ) T(a)T(B) F'(n+a+ B)

we can compute the ~y-transform of the density func-
tion as follows:

(o + ) z”: (y) (x4 a)T(n+ 8 —z)

W) = x F'n+a+p)

D()D(B) =
Mla+p)'(n+p—x)
(B)T

rGr(n+a+p—2)

In the above, the summation is a hypergeometric
which can be evaluated as a Vandermonde’ s convo-
lution [10] (also the one in the next paragraph).

The factorial moments of X can be computed as:

T _ Tr(a+ﬁ) S 7 r F(/B—i_Z)
BIXT = " =15 ;(_1) (z) T(a+B+1)
I MNa+r)I'(a+pB)
MNa)N(a+p+7)

S Applications

The utility of the ~y-transform approach lies in the
fact that some estimation problems can be described
by “complex” distributions which do in fact have a
simple ~y-transform. Not only are the moments easy
to compute from the ~y-transform in these cases, but
also the «y-transform can be directly and easily derived
from the nature of the problem. This class of problems
includes several modeling and estimation problems
relevant for performance evaluation of information re-
trieval and database management systems, which are
briefly referenced and analyzed in this Section.
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In general, since (y) is a probability, it can be
noticed that it could also be expressed as:

_ Y

where 1 (y) represents the number of ways in which
the experiment considered could be effected by select-
ing the successes only in a subset of y trials. Further-
more, if the experiment considered is composed of m
independent subexperiments, (y) can conveniently
be expressed as:

a7

) = T ()
k=1

where 7 (y) is the probability that the k-th subexper-
iment be effected by selecting the successes only in a
subset of y trials (which is also independent of k if the
subexperiments are indistinguishable). In this case,
Eq. (17) and (18) can be combined yielding:

o Ye(y)

(19)

with an obvious meaning of 1(+).

5.1 Set union problem

Let AV be a set with cardinality n, let S, (1 < k <
m) be a random subset of A/ with cardinality s, and
X the random variable denoting the cardinality of the
union set Y = | J;* Sk.

Considering the inclusion of an element of A in
U to be a successful trial, the selections of the sub-
sets 51, . . ., Sy, can be regarded as mutually indepen-
dent subexperiments. The ~y-transform of the proba-
bility density function of X can be derived according
to Eq. (19), since ¥ (y) = (S?i) is the number of ways
in which the elements of Sy can be selected only in a
subset of N with cardinality y, yielding:

()
24

Therefore, the probability density function of X is:

- ity

Y(y)

(20)
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By means of Corollary 2, we can easily derive the ex-
pected value and the variance of X as:

E[X] = n[l—ﬁ(l—‘jﬁ)] @1
ok = nQLﬁ<1_Z€)(1_nS—k1>_

;ﬁ (1 - Z“) (1 - ns_’“ 1)] (22)

Set union problems of interest for computer sci-
ence are numerous. For instance, X can be regarded
as the number of “1” bits in a binary word of n bits
resulting from the inclusive “or” of m words, where
sy, 1s the number of “1” bits in the k-th word to be
“or”-ed. Thus, the set union problem is equivalent to
the estimation of the signature weight as generated by
the superimposed coding technique adopted in “mul-
tiple” m signature files [1]. The estimation is needed
for performance evaluation of such organizations used
for information retrieval applications. The equiva-
lence of (20) with the density function published in
[1] was shown in [9]. It was also noticed that the
method sketched in [1] and developed in [11] through
Markov chains and heavy matrix manipulations lead
to a slightly less handy formula than (20). Moreover,
as far as we know, no other authors derived a closed
formula like Eq. (22) for the evaluation of the variance
of X, which is indeed necessary, for instance, for an
accurate evaluation of the false drop probability as we
have shown in [9].

An interesting case also arises when s, = s for
each k (the subexperiments are indistinguishable), and
X represents the number of “1” bits in the more “clas-
sical” superimposed codes adopted for information re-
trieval [13]. The density function and the expected
value of X which can be derived in this way agree
with those presented in [13].

Moreover, if s = 1 then X represents the number
of distinct objects selected in sampling with replace-
ment m objects from a population of n. For example,
X may represent the number of blocks accessed in a
file (with a total number of n blocks) during the re-
trieval of m records that are not necessarily distinct.
The expected value which derives from (21) agrees
with Cérdenas’ formula [3]. For an expression of the
underlying density function see, for instance, [4, 6]. A
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comparison of the v-transform approach to this sim-
ple problem with alternative methods (namely combi-
natorial calculus, the principle of inclusion and exclu-
sion, generating functions and Markov chains) can be
found in [7]. Such a comparison highlights the valu-
ability of the new approach from a practical point of
view, as it saves heavy computations which are other-
wise needed for the evaluation of the probability den-
sity function and of higher-order moments.

5.2 Group inclusion problem

An even more general problem with important appli-
cations to information processing is described in the
following. Let Q be a set with cardinality ¢ com-
posed of n groups of objects, each of size g (namely
q = gn). We now define X as the number of dis-
tinct groups represented by the elements included in
the union & = ;- S, where each Sy, is a random
subset of Q with cardinality s;. From another point
of view, X is the number of distinct elements in a ran-
dom subset of a multiset in which all the n distinct
objects appear g times.

In this case, Eq. (19) can still be used with

Yi(y) = (1Y), yielding:

and, thus,

()
E[X] = n 1—]‘[87’“ (24)
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An interesting case takes place when m = 1 and
X represents the number of blocks accessed in a file
(with a total number of n blocks) during the retrieval
of s; distinct records. The expected value agrees with
Yao’s formula [14]. Derivations of the distribution of
X in this case can be found, for instance, in [2, 4, 6].

5.3 Yet another cell visit problem

Let us finally consider an application that cannot be
reduced to an inclusion-exclusion problem but that
can effectively be described though in terms of the
~-transform. Assume we have D distinct objects dis-
tributed into n cells, with the constraint that each cell
contains exactly d distinct objects (D < d n). Let X
be the random variable counting the number of all the
cells which contain at least one of m distinct objects
randomly selected out of D. For example, X repre-
sents the number of blocks accessed in a file (com-
posed of n blocks) during the retrieval of m distinct
data values in the presence of data duplication and of
uniform clustering of the data [8]. Under these hy-
potheses, d represents the number of distinct data val-
ues contained in any block. This problem can be de-
scribed as an experiment in which trials correspond to
cells, and successes to cells to be visited. Therefore,
~(y) represents the probability that n — y of the cells
have been excluded a priori from the result. Once
these cells have been fixed, each of them has the same
probability of being excluded from the result, which

can be evaluated as
D—d
m

= 26
q D (26)
m
if the m objects are distinct, and
d m
= |1-—= 27
q ( D) 27)

if they are not. In both cases, the ~y-transform of the
density function has the form
W) = ¢
and represents a particular case of binomial distribu-
tion. Notice that, in such a case, the experiment can
be considered to be composed of n (indistinguishable)
Bernoulli trials, each of which produces a success or
a failure. The outcomes are in this case the successes
of the repeated trials. Thus, v(y) can be expressed
as the probability that a fixed subset (with cardinality
n — y) of the n trials always lead to a failure (being
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q the probability of a failure). Hence, for a binomial
distribution, the transform ~(y) has a feasible expres-
sion of the form ¥ (y)/¢¥(n) only if p = ¢ = 1/2.
In such a case we have 1(y) = 2Y, since in each
of the y independent selections of an outcome to be
included in the result we have exactly two choices
with the same probability: to choose a success (out-
come included) or to choose a failure (outcome ex-
cluded). When p # ¢, we could formally define 1(y)
as (1/q)Y, but this represents a non-feasible number of
events (1/¢ can be an irrational number as well). On
the other hand, if we consider an experiment which
can be described by means of the principle of inclu-
sion and exclusion, it is always possible to find out a
physical meaning of ¢(y), by virtue of Theorem 3.

In particular, if the m objects are distinct, the
probability density function for our cell visit problem
from (26) becomes:

()|
) <DT; d> * (DT; d)
() 1L E)

The expected value and variance of X can then be

computed as:
(D ] d)
m
11— 7

n—x

(28)

EX] = n 5 (29)
()
(D - d) <D - d)
0% = S LA R WA )

) LG

Else, if the m objects are not distinct, the proba-
bility density function from (27) becomes:
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The expected value and variance of X can then be

computed as:
d m
1— =
(-5 ]

()] @

In both cases, the expected values agree with those
derived in [5, 8].

E[X] = (32)

6 Conclusion

In this paper, we put forward the claim that the clas-
sical approach for the study of a discrete random
variable based on the probability generating function
could not be the most appropriate when the random
variable is finite. In such a case, we proposed an al-
ternative approach based on the introduction of a new
transform, named ~y-transform, of the probability den-
sity function. We have shown how, substituting an ap-
proach based on Taylor expansions (involving deriva-
tives and formally infinite summations) with an ap-
proach based on finite Newton series (involving fi-
nite summations and differences), the probability den-
sity function and all the factorial moments of a finite
random variable can easily be computed from the ~y-
transform. We have also shown how the probability
generating function approach can be obtained back as
a limit of the ~-transform theory when the domain
of the discrete random variable becomes unlimited,
which completes the support of our claim.

Moreover, we also shown how the expression of
the ~-transform can be simply derived owing to its
physical meaning for several combinatorial problems.
Several examples of its useful application to modeling
problems relevant for performance evaluation of in-
formation processing and retrieval systems were pro-
vided, showing how the ~-transform approach looks
really attractive in such domains.
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Errata Corrigenda

Erratum (at page 19)

flz) =

G @

we have:

E[XY = Z Z

x>r ]>0

=ZZ

i>0 U >0

(r+1)
= Z*G N CAIORRE:

]
>0 7!

G(wﬂ) (2)

G(r+z+y)( )

Erratum (at page 25)

Assume we have D distinct objects distributed into n
cells, with the constraint that each cell contains ex-
actly d distinct objects (D < dn). Let X be the
random variable counting the number of all the cells
which contain at least one of m distinct objects ran-
domly selected out of D.

Erratum (at page 26)

E[X] = n{(l—é)m] (32)

Correction
G(””)(O)
fla) = =
= :L"Z I+J 4)
]>0
we have:
E[XT] = Z Z G(xﬂ)
z>r ]>0
S PRIl
1>0 ]>0
(r+1)
= ZGi'(O) = G &)
>0 2!
Correction

Assume we have N objects with D distinct types dis-
tributed into n cells, with the constraint that each cell
contains representatives of exactly d distinct object
types (N > dn). Let X be the random variable count-
ing the number of all the cells which contain at least
one representative of m distinct object types randomly
selected out of D.

Correction

E[X]

I
| —|

[a—y

|
N

[a—y

|
Ol =
~——
3
—_

~
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]
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