The γ-transform:
 A New Approach to the Study of a Discrete and Finite Random Variable

Fabio Grandi

Department of Computer Science and Engineering (DISI)
Alma Mater Studiorum - University of Bologna, Italy
fabio.grandi@unibo.it

ASM 2014 — Florence, Italy — November 22-24, 2014

Outline of the Talk

- Introduction and Motivation
- The γ-transform Theory
- Definitions and properties
- Probabilistic interpretation and physical meaning
- Connection with probability generating function
- Examples
- Applications
- Conclusion

Introduction and Motivation (1)

A common method for studying a discrete r.v. X defined in $\{0,1,2, \ldots\}$ with p.d.f. $f(x)$ is through the probability generating function:

$$
G(z)=\sum_{x \geq 0} z^{x} f(x)
$$

In fact, being $G^{(r)}(z)=\sum_{k \geq r} k^{r} z^{k-r} f(k)$ (where k^{r} is the r-th falling factorial power of k), all the factorial moments of X can easily be derived from $G(z)$ as:

$$
\mathrm{E}\left[X^{r}\right]=G^{(r)}(1)
$$

and the p.d.f. can be reconstructed via the inversion formula:

$$
f(x)=\left[z^{x}\right] G(z)=\frac{G^{(x)}(0)}{x!}
$$

Introduction and Motivation (2)

In several cases of interest for data management:

- we are interested in the estimation of some characteristic values via the evaluation of the moments (e.g., $\mathrm{E}[X]$ and σ_{X}^{2}) of a r.v.

Introduction and Motivation (2)

In several cases of interest for data management:

- we are interested in the estimation of some characteristic values via the evaluation of the moments (e.g., $\mathrm{E}[X]$ and σ_{X}^{2}) of a r.v.
- the r.v. under study is limited $(X \in\{0,1, \ldots, n\})$

Introduction and Motivation (2)

In several cases of interest for data management:

- we are interested in the estimation of some characteristic values via the evaluation of the moments (e.g., $\mathrm{E}[X]$ and σ_{X}^{2}) of a r.v.
- the r.v. under study is limited $(X \in\{0,1, \ldots, n\})$
- $f(x)$ has a complex expression that can be very difficult to determine

Introduction and Motivation (2)

In several cases of interest for data management:

- we are interested in the estimation of some characteristic values via the evaluation of the moments (e.g., $\mathrm{E}[X]$ and σ_{X}^{2}) of a r.v.
- the r.v. under study is limited $(X \in\{0,1, \ldots, n\})$
- $f(x)$ has a complex expression that can be very difficult to determine
- $G(z)$ has no "physical meaning" and, thus, cannot be directly derived from the nature of the problem

Introduction and Motivation (2)

In several cases of interest for data management:

- we are interested in the estimation of some characteristic values via the evaluation of the moments (e.g., $\mathrm{E}[X]$ and σ_{X}^{2}) of a r.v.
- the r.v. under study is limited $(X \in\{0,1, \ldots, n\})$
- $f(x)$ has a complex expression that can be very difficult to determine
- $G(z)$ has no "physical meaning" and, thus, cannot be directly derived from the nature of the problem
- the moments are usually not easy to compute from $f(x)$ or $G(z)$

Introduction and Motivation (2)

In several cases of interest for data management:

- we are interested in the estimation of some characteristic values via the evaluation of the moments (e.g., $\mathrm{E}[X]$ and σ_{X}^{2}) of a r.v.
- the r.v. under study is limited $(X \in\{0,1, \ldots, n\})$
- $f(x)$ has a complex expression that can be very difficult to determine
- $G(z)$ has no "physical meaning" and, thus, cannot be directly derived from the nature of the problem
- the moments are usually not easy to compute from $f(x)$ or $G(z)$

Introduction and Motivation (2)

In several cases of interest for data management:

- we are interested in the estimation of some characteristic values via the evaluation of the moments (e.g., $\mathrm{E}[X]$ and σ_{X}^{2}) of a r.v.
- the r.v. under study is limited $(X \in\{0,1, \ldots, n\})$
- $f(x)$ has a complex expression that can be very difficult to determine
- $G(z)$ has no "physical meaning" and, thus, cannot be directly derived from the nature of the problem
- the moments are usually not easy to compute from $f(x)$ or $G(z)$

Hence, we are looking for a more handy approach, better suited to a finite discrete r.v.

Introduction and Motivation (3)

In particular,

$$
\mathrm{E}\left[X^{r}\right]=G^{(r)}(1)=\sum_{i \geq 0} \frac{G^{(r+i)}(0)}{i!}
$$

is formally an infinite Taylor (McLaurin) series involving derivatives.

Introduction and Motivation (3)

In particular,

$$
\mathrm{E}\left[X^{r}\right]=G^{(r)}(1)=\sum_{i \geq 0} \frac{G^{(r+i)}(0)}{i!}
$$

is formally an infinite Taylor (McLaurin) series involving derivatives.

We would rather use a different approach exploiting the finiteness of X, based indeed on a finite Newton series involving finite differences.

Introduction and Motivation (3)

In particular,

$$
\mathrm{E}\left[X^{r}\right]=G^{(r)}(1)=\sum_{i \geq 0} \frac{G^{(r+i)}(0)}{i!}
$$

is formally an infinite Taylor (McLaurin) series involving derivatives.

We would rather use a different approach exploiting the finiteness of X, based indeed on a finite Newton series involving finite differences.

Claim

The γ-transform approach is our proposed solution of such a kind

The γ-transform - Transformation Formula

The γ-transform of a function is defined by the following transformation formula:

Definition

Let $f(\cdot)$ be a fixed function defined in the discrete domain $\{0,1, \ldots, n\}$

The γ-transform of $f(\cdot)$ can be defined in $\{0,1, \ldots, n\}$ as:

$$
\gamma(y)=\sum_{x=0}^{n} \frac{\binom{y}{x}}{\binom{n}{x}} f(x)
$$

The γ-transform - Anti-transformation Formula

The inversion formula for the γ-transform is given by:

$$
f(x)=\binom{n}{x} \sum_{j=0}^{x}(-1)^{j}\binom{x}{j} \gamma(x-j)
$$

By definition, $\gamma(y)$ is a polynomial function of degree n in y and, thus, it can be expressed as a finite Newton series:

$$
\gamma(y)=\sum_{x=0}^{n}\binom{y}{x} \Delta^{x} \gamma(0)
$$

Hence, by comparison with the definition of $\gamma(y)$ we obtain:

$$
f(x)=\binom{n}{x} \Delta^{x} \gamma(0)
$$

The anti-transformation formula follows by expliciting the x-th difference.

The γ-transform — A Combinatorial Identity (1)

A fundamental identity involving the γ-transform is the subject of the following Theorem:

Theorem

If $f(\cdot)$ is a fixed function defined in $\{0,1, \ldots, n\}$ and $\gamma(\cdot)$ is its γ-transform, then the following combinatorial identity holds:

$$
\sum_{x=0}^{n} x^{\underline{r}} f(x)=n^{\underline{r}} \sum_{i=0}^{r}(-1)^{i}\binom{r}{i} \gamma(n-i)
$$

The γ-transform - A Combinatorial Identity (2)

Proof Owing to the definition of the r-th difference, the right-hand side of the identity to be proved can be rewritten as:

$$
n^{r} \Delta^{r} \gamma(n-r)
$$

Then we can compute $\Delta^{r} \gamma(n-r)$ from $\gamma(y)=\sum_{x=0}^{n}\binom{y}{x} \Delta^{x} \gamma(0)$ and, thus, $\Delta^{r} \gamma(y)=\sum_{x=0}^{n}\binom{y}{x-r} \Delta^{x} \gamma(0)$, yielding:

$$
\sum_{x=0}^{n} n^{\underline{r}}\binom{n-r}{x-r} \Delta^{x} \gamma(0)
$$

Since $n \underline{r}\binom{n-r}{x-r}=x \underline{r}\binom{n}{x}$ and $f(x)=\binom{n}{x} \Delta^{x} \gamma(0)$, this equals the left-hand side of the identity to be proved

The γ-transform — Probabilistic Interpretation

Corollary

Given a discrete r.v. X with values in $\{0,1, \ldots, n\}$ and probability density function $f(x)$, its r-th factorial moment is provided by:

$$
\mathrm{E}\left[X^{\underline{r}}\right]=n^{\underline{r}} \sum_{i=0}^{r}(-1)^{i}\binom{r}{i} \gamma(n-i)
$$

where $\gamma(\cdot)$ is the gamma-transform of the probability density function $f(\cdot)$

Proof It immediately follows from the previous Theorem and from the definition of expected value

The γ-transform - Evaluation of the Moments

Thanks to the previous Corollary, and since

$$
\mathrm{E}\left[X^{r}\right]=\sum_{s=0}^{r}\left\{\begin{array}{l}
r \\
s
\end{array}\right\} \mathrm{E}\left[X^{s}\right]
$$

where $\left\{\begin{array}{l}r \\ s\end{array}\right\}$ is a Stirling number of the second kind, all the standard moments of a discrete and finite r.v. can easily be computed from the γ-transform of the density function.

Example

$$
\begin{aligned}
\mathrm{E}[X] & =n[1-\gamma(n-1)] \\
\sigma_{X}^{2} & =n^{2}\left[\gamma(n-2)-\gamma^{2}(n-1)\right]+n[\gamma(n-1)-\gamma(n-2)]
\end{aligned}
$$

The γ-transform — Physical Meaning (1)

Let X be a r.v. with values in $\{0,1, \ldots, n\}$ and p.d.f. $f(x)$, representing the number of successes occurring in an experiment composed of a set \mathcal{N} of n indistinguishable trials, effected as if the successful trials were randomly selected in \mathcal{N}.

Theorem

If $\mathcal{Y} \subseteq \mathcal{N}$ is a subset of trials fixed before the experiment and $\operatorname{Pr}[\mathcal{Y}]$ is the probability that the experiment be effected as if the successes could only be selected from \mathcal{Y}, then

$$
\operatorname{Pr}[\mathcal{Y}]=\gamma(y)
$$

where $\gamma(\cdot)$ is the γ-transform of $f(\cdot)$ and $y=|\mathcal{Y}|$

The γ-transform — Physical Meaning (2)

Proof Since the experiment can provide any number $X \in\{0,1, \ldots, n\}$ of successes, $\operatorname{Pr}[\mathcal{Y}]$ can be expressed via the total probability Theorem:

$$
\operatorname{Pr}[\mathcal{Y}]=\sum_{x=0}^{n} \operatorname{Pr}[\mathcal{Y} \mid X=x] \operatorname{Pr}[X=x] .
$$

Since all trials are indistinguishable, $\binom{m}{x}$ is the number of ways of choosing the x successes in a set of m trials and, thus:

$$
\operatorname{Pr}[\mathcal{Y}]=\sum_{x=0}^{n} \frac{\binom{y}{x}}{\binom{n}{x}} f(x)
$$

The γ-transform — Physical Meaning (3)

Also the inversion formula can be derived with probabilistic arguments.

Let $\operatorname{Pr}\left[\mathcal{X}^{\prime}\right]$ be the probability that the successful trials only be selected in \mathcal{X}^{\prime}, then by the principle of inclusion and exclusion we have:

$$
\begin{aligned}
\operatorname{Pr}[X=x]= & \sum_{\substack{\mathcal{X} \subset \mathcal{N} \\
|\mathcal{X}|=x}}\left(\operatorname{Pr}[\mathcal{X}]-\sum_{\substack{\mathcal{X}^{\prime} \backslash \mathcal{X} \\
\left|\mathcal{X}^{\prime}\right|=x-1}} \operatorname{Pr}\left[\mathcal{X}^{\prime}\right]+\cdots\right. \\
& \left.\cdots+(-1)^{x-1} \sum_{\substack{\mathcal{X}^{\prime} \subseteq \mathcal{X} \\
\left|\mathcal{X}^{\prime}\right|=1}} \operatorname{Pr}\left[\mathcal{X}^{\prime}\right]+(-1)^{x} \operatorname{Pr}[\emptyset]\right) \\
= & \sum_{\substack{\mathcal{X} \subseteq \mathcal{N} \\
|\mathcal{X}|=x}} \sum_{j=0}^{x}(-1)^{j} \sum_{\substack{\mathcal{J} \mathcal{X} \mathcal{X} \\
|\mathcal{T}|=j}} \operatorname{Pr}[\mathcal{X} \backslash \mathcal{J}]
\end{aligned}
$$

The γ-transform — Physical Meaning (4)

Owing to the physical meaning of $\gamma(\cdot), \operatorname{Pr}[\mathcal{X} \backslash \mathcal{J}]=\gamma(x-j)$ and, thus

$$
\begin{aligned}
\operatorname{Pr}[X=x] & =\sum_{\substack{\mathcal{X} \subseteq \mathcal{N} \\
|\mathcal{X}|=x}} \sum_{j=0}^{x}(-1)^{j} \sum_{\substack{\mathcal{J} \subseteq \mathcal{X} \\
|\mathcal{J}|=j}} \gamma(x-j) \\
& =\binom{n}{x} \sum_{j=0}^{x}(-1)^{j}\binom{x}{j} \gamma(x-j)
\end{aligned}
$$

(since trials are indistinguishable, summations reduce to counts of equal quantities)

The γ-transform - Relationship with $G(z)(1)$

The probability generating function $G(z)=\mathrm{E}\left[z^{X}\right]$ can be expressed in terms of the γ-transform as follows

$$
G(z)=\sum_{j=0}^{n}\binom{n}{j} z^{j}(1-z)^{n-j} \gamma(j)
$$

To prove it, we can show that the p.d.f. can be derived from the expression above as $f(x)=\left[z^{x}\right] G(z)$. By means of the binomial Theorem and with simple manipulations, it can be rewritten as

$$
G(z)=\sum_{i=0}^{n} z^{i}\binom{n}{i} \sum_{j=0}^{i}(-1)^{i-j}\binom{i}{j} \gamma(j)
$$

which evidences the $\left[z^{i}\right] G(z)$ term.

The γ-transform — Relationship with $G(z)(2)$

Also an inverse relationship can be derived as follows. From:

$$
\sum_{j=0}^{n}\binom{n}{j} \gamma(j)=\sum_{j=0}^{n}\binom{n}{j} \gamma(n-j)=2^{n} G(1 / 2)
$$

we can extract $\gamma(y)$ or $\gamma(n-y)$ as

$$
\Delta^{x}\left[2^{n} G(1 / 2)\right](0)
$$

(the choice depends on the constraint $\gamma(n)=1$)

The γ-transform — Relationship with $G(z)(3)$

The approach based on $G(z)$ can be derived as a limit of the γ-transform theory when the discrete r.v. involved becomes unlimited. For instance, in the $\gamma(y)$ definition, since

$$
\frac{\binom{y}{x}}{\binom{n}{x}}=\prod_{i=0}^{x-1} \frac{y / n-i / n}{1-i / n},
$$

we can let $n, y \rightarrow \infty$ (maintaining constant the ratio $y / n=z$) obtaining:

$$
\lim _{n, y \rightarrow \infty} \gamma(y)=G(z)
$$

Also other formulae concerning $G(z)$ can be obtained from the corresponding ones concerning $\gamma(y)$ by taking the same limit.

Summary Comparison Between the Approaches

$$
\text { p.g.f. } \quad \gamma \text {-transform }
$$

Summary Comparison Between the Approaches

p.g.f.
X discrete and infinite

γ-transform

X discrete and finite

Summary Comparison Between the Approaches

p.g.f.

X discrete and infinite

$$
G(z)=\sum_{x \geq 0} z^{x} f(x)
$$

γ-transform

X discrete and finite

$$
\gamma(y)=\sum_{x=0}^{n}\binom{y}{x} /\binom{n}{x} f(x)
$$

Summary Comparison Between the Approaches

p.g.f.

X discrete and infinite

$$
\begin{aligned}
G(z) & =\sum_{x \geq 0} z^{x} f(x) \\
f(x) & =\frac{1}{x!} G^{(x)}(0)
\end{aligned}
$$

γ-transform

X discrete and finite

$$
\begin{gathered}
\gamma(y)=\sum_{x=0}^{n}\binom{y}{x} /\binom{n}{x} f(x) \\
f(x)=\binom{n}{x} \Delta^{x} \gamma(0)
\end{gathered}
$$

Summary Comparison Between the Approaches

p.g.f.

X discrete and infinite

$$
\begin{aligned}
G(z) & =\sum_{x \geq 0} z^{x} f(x) \\
f(x) & =\frac{1}{x!} G^{(x)}(0)
\end{aligned}
$$

$$
\mathrm{E}\left[X^{\underline{r}}\right]=G^{(r)}(1)
$$

γ-transform

X discrete and finite

$$
\begin{gathered}
\gamma(y)=\sum_{x=0}^{n}\binom{y}{x} /\binom{n}{x} f(x) \\
f(x)=\binom{n}{x} \Delta^{x} \gamma(0) \\
\mathrm{E}\left[X^{r}\right]=n^{\underline{r}} \Delta^{r} \gamma(n-r)
\end{gathered}
$$

Summary Comparison Between the Approaches

p.g.f.

X discrete and infinite

$$
\begin{gathered}
G(z)=\sum_{x \geq 0} z^{x} f(x) \\
f(x)=\frac{1}{x!} G^{(x)}(0) \\
E\left[X^{r}\right]=G^{(r)}(1)
\end{gathered}
$$

X discrete and finite

$$
\begin{gathered}
\gamma(y)=\sum_{x=0}^{n}\binom{y}{x} /\binom{n}{x} f(x) \\
f(x)=\binom{n}{x} \Delta^{x} \gamma(0) \\
\mathrm{E}\left[X^{r}\right]=n^{r} \Delta^{r} \gamma(n-r)
\end{gathered}
$$

Remark

We can say that the γ-transform plays the role of a "finite counterpart" of the probability generating function

Examples — Uniform Distribution

Let X be a discrete r.v. uniformly distributed in $\{0,1, \ldots, n\}$:

$$
f(x)=\frac{1}{n+1}
$$

The γ-transform of the density function can be evaluated as:

$$
\gamma(y)=\frac{1}{n+1} \sum_{x=0}^{n} \frac{\binom{y}{x}}{\binom{n}{x}}=\frac{1}{n+1-y}
$$

Hence, factorial moments can be computed as:

$$
\mathrm{E}\left[X^{\underline{r}}\right]=n^{\underline{r}} \sum_{i=0}^{r}(-1)^{i}\binom{r}{i} \frac{1}{i+1}=\frac{n^{\underline{r}}}{r+1}
$$

Examples - Binomial Distribution

Let X be a discrete r.v. following a binomial distribution in $\{0,1, \ldots, n\}$:

$$
f(x)=\binom{n}{x} p^{x} q^{n-x}
$$

The γ-transform of the density function can be evaluated as:

$$
\gamma(y)=\sum_{x=0}^{n}\binom{y}{x} p^{x} q^{n-x}=q^{n-y}
$$

Hence, factorial moments can be computed as:

$$
\mathrm{E}\left[X^{\underline{r}}\right]=n^{\underline{r}} \sum_{i=0}^{r}\binom{r}{i}(-q)^{i}=n^{\underline{r}} p^{r}
$$

Examples - Hypergeometric Distribution

Let X be a discrete r.v. with a hypergeometric distribution in $\{0,1, \ldots, n\}$:

$$
f(x)=\binom{n}{x}\binom{N-n}{k-x} /\binom{N}{k}
$$

The γ-transform of the density function can be evaluated as:

$$
\gamma(y)=\sum_{x=0}^{n}\binom{y}{x}\binom{N-n}{k-x} /\binom{N}{k}=\binom{y+N-n}{k} /\binom{N}{k}
$$

Hence, factorial moments can be computed as:
$\mathrm{E}\left[X^{r}\right]=n^{r} \frac{\sum_{i=0}^{r}(-1)^{i}\binom{r}{i}\binom{N-i}{k}}{\binom{N}{k}}=n^{r} \frac{\binom{N-r}{N-k}}{\binom{N}{k}}=r!\frac{\binom{n}{r}\binom{k}{r}}{\binom{N}{r}}$

Examples — Beta-binomial Distribution (1)

Let X be a discrete r.v. with a beta-binomial distribution in $\{0,1, \ldots, n\}$:

$$
f(x)=\binom{n}{x} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma(x+\alpha) \Gamma(n+\beta-x)}{\Gamma(n+\alpha+\beta)}
$$

The γ-transform of the density function can be evaluated as:

$$
\begin{aligned}
\gamma(y) & =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \sum_{x=0}^{n}\binom{y}{x} \frac{\Gamma(x+\alpha) \Gamma(n+\beta-x)}{\Gamma(n+\alpha+\beta)} \\
& =\frac{\Gamma(\alpha+\beta) \Gamma(n+\beta-y)}{\Gamma(\beta) \Gamma(n+\alpha+\beta-y)}
\end{aligned}
$$

Examples - Beta-binomial Distribution (2)

Hence, factorial moments can be computed as:

$$
\begin{aligned}
\mathrm{E}\left[X^{\underline{r}}\right] & =n^{\underline{r}} \frac{\Gamma(\alpha+\beta)}{\Gamma(\beta)} \sum_{i=0}^{r}(-1)^{i}\binom{r}{i} \frac{\Gamma(\beta+i)}{\Gamma(\alpha+\beta+i)} \\
& =n^{\underline{r}} \frac{\Gamma(\alpha+r) \Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\alpha+\beta+r)}
\end{aligned}
$$

Application to Estimation Problems (1)

Some estimation problems involving a "complex" p.d.f. in fact have a simple γ-transform

If the underlying experiment is composed of m independent subexperiments, $\gamma(y)$ can be expressed as:

$$
\gamma(y)=\prod_{k=1}^{m} \gamma_{k}(y)
$$

where $\gamma_{k}(y)$ is the probability that the k-th subexperiment be effected by selecting the successes only in a subset of y trials
$\gamma_{k}(y)$ is also independent of k if the subexperiments are indistinguishable

Application to Estimation Problems (2)

Being $\psi_{k}(y)$ the number of ways in which the k-th subexperiment can be effected by selecting the successes only in a subset of y trials, $\gamma(y)$ can conveniently be expressed as:

$$
\gamma(y)=\prod_{k=1}^{m} \frac{\psi_{k}(y)}{\psi_{k}(n)}
$$

Hence, the solution of estimation problems involving the probabilistic characterization of some experiment (i.e., determination of the p.d.f. and moments of a r.v. X measuring the experiment results) reduces to the determination of the counting of events $\psi_{k}(y)$

Applications - Set Union Problem (1)

Let \mathcal{N} be a set with cardinality n, let $\mathcal{S}_{k}(1 \leq k \leq m)$ be a random subset of \mathcal{N} with cardinality s_{k}, and X the random variable denoting the cardinality of the union set $\mathcal{U}=\bigcup_{k=1}^{m} \mathcal{S}_{k}$.

The k-th subexperiment does random sampling without replacement of s_{k} objects from \mathcal{N} into \mathcal{S}_{k}. Sampling is with replacement between different subexperiments. X is the number of distinct objects altogether selected during the m subexperiments.

Applications - Set Union Problem (1)

Let \mathcal{N} be a set with cardinality n, let $\mathcal{S}_{k}(1 \leq k \leq m)$ be a random subset of \mathcal{N} with cardinality s_{k}, and X the random variable denoting the cardinality of the union set $\mathcal{U}=\bigcup_{k=1}^{m} \mathcal{S}_{k}$.

Being the inclusion in \mathcal{U} of an element of \mathcal{N} a successful trial, the selections of the subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{m}$ can be regarded as mutually independent subexperiments. Hence $\psi_{k}(y)=\binom{y}{s_{k}}$ is the number of ways in which the elements of \mathcal{S}_{k} can be selected only in a subset of \mathcal{N} with cardinality y, yielding:

$$
\gamma(y)=\prod_{k=1}^{m} \frac{\binom{y}{s_{k}}}{\binom{n}{s_{k}}}
$$

Applications - Set Union Problem (2)

Hence, the p.d.f., expected value and variance of X can easily be computed from $\gamma(y)$:

$$
\begin{aligned}
f(x)= & \binom{n}{x} \sum_{j=0}^{x}(-1)^{j}\binom{x}{j} \prod_{k=1}^{m}\binom{x-j}{s_{k}} /\binom{n}{s_{k}} \\
\mathrm{E}[X]= & n\left[1-\prod_{k=1}^{m}\left(1-\frac{s_{k}}{n}\right)\right] \\
\sigma_{X}^{2}= & n^{2}\left[\prod_{k=1}^{m}\left(1-\frac{s_{k}}{n}\right)\left(1-\frac{s_{k}}{n-1}\right)-\prod_{k=1}^{m}\left(1-\frac{s_{k}}{n}\right)^{2}\right]+ \\
& n\left[\prod_{k=1}^{m}\left(1-\frac{s_{k}}{n}\right)-\prod_{k=1}^{m}\left(1-\frac{s_{k}}{n}\right)\left(1-\frac{s_{k}}{n-1}\right)\right]
\end{aligned}
$$

Applications - Set Union Problem (3)

The set union problem is equivalent to the estimation of the signature weight as generated by the superimposed coding technique adopted in "multiple" m signature files used for information retrieval. The p.d.f. and $\mathrm{E}[X]$ agree with those found by Aktug \& Kan [1993] (as we showed in 1995).

If $s_{k}=s$ for each k (the subexperiments are indistinguishable), X represents the signature weight as generated by the more "classical" superimposed coding. The p.d.f. and $\mathrm{E}[X]$ agree with those found by Roberts [1979].

Applications - Set Union Problem (4)

If $s=1$ then X may represent the number of blocks accessed in a file (with a total number of n blocks) during the retrieval of m records that are not necessarily distinct. $\mathrm{E}[X]$ agree with Cárdenas' formula and the p.d.f. with the expression derived by Gardy \& Puech [1984] and Ciaccia, Maio \& Tiberio [1988].

As far as we know, no expression had been derived for σ_{X}^{2} before the introduction of the γ-transform theory.

Applications - Group Inclusion Problem (1)

Let \mathcal{Q} be a set with cardinality q composed of n groups of objects, each of size g (namely $q=g n$), and X a r.v. denoting the number of distinct groups represented by the elements included in the union $\mathcal{U}=\bigcup_{k=1}^{m} \mathcal{S}_{k}$, where each \mathcal{S}_{k} is a random subset of \mathcal{Q} with cardinality s_{k}.

The k-th subexperiment does random sampling without replacement of s_{k} objects from \mathcal{N} into \mathcal{S}_{k}. Sampling is with replacement between different subexperiments. X is the number of distinct groups from which objects are altogether selected during the m subexperiments.

Applications - Group Inclusion Problem (1)

Let \mathcal{Q} be a set with cardinality q composed of n groups of objects, each of size g (namely $q=g n$), and X a r.v. denoting the number of distinct groups represented by the elements included in the union $\mathcal{U}=\bigcup_{k=1}^{m} \mathcal{S}_{k}$, where each \mathcal{S}_{k} is a random subset of \mathcal{Q} with cardinality s_{k}.

Being the inclusion in \mathcal{U} of elements of a given group a successful trial, the selections of the subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{m}$ can be regarded as mutually independent subexperiments. Hence $\psi_{k}(y)=\binom{g y}{s_{k}}$ is the number of ways in which the elements of \mathcal{S}_{k} can be selected only from y groups, yielding:

$$
\gamma(y)=\prod_{k=1}^{m} \frac{\binom{g}{s_{k}}}{\binom{g n}{s_{k}}}
$$

Applications - Group Inclusion Problem (2)

Hence, the p.d.f., expected value and variance of X can easily be computed from $\gamma(y)$:

$$
\begin{aligned}
f(x)= & \binom{n}{x} \sum_{j=0}^{x}(-1)^{j}\binom{x}{j} \prod_{k=1}^{m}\binom{g(x-j)}{s_{k}} /\binom{g n}{s_{k}} \\
\mathrm{E}[X]= & n\left[1-\prod_{k=1}^{m}\binom{q-g}{s_{k}} /\binom{q}{s_{k}}\right] \\
\sigma_{X}^{2}= & n^{2}\left[\prod_{k=1}^{m}\binom{q-2 g}{s_{k}} /\binom{q}{s_{k}}-\prod_{k=1}^{m}\binom{q-g}{s_{k}}^{2} /\binom{q}{s_{k}}^{2}\right]+ \\
& n\left[\prod_{k=1}^{m}\binom{q-g}{s_{k}} /\binom{q}{s_{k}}-\prod_{k=1}^{m}\binom{q-2 g}{s_{k}} /\binom{q}{s_{k}}\right]
\end{aligned}
$$

Applications - Group Inclusion Problem (3)

If $m=1, X$ represents the number of blocks accessed in a file (with a total number of n blocks) during the retrieval of s_{1} distinct records. The p.d.f. agrees with expressions derived by Bitton \& DeWitt [1983], Gardy \& Puech [1984] and Ciaccia, Maio \& Tiberio [1988]. E[X] agrees with Yao's formula [1977].

As far as we know, no expression had been derived for σ_{X}^{2} before the introduction of the γ-transform theory.

In general, the Group Inclusion Problem is equivalent to the estimation of data access costs via an (unclustered) index scan for the retrieval of all the records matching m distinct values, if pointers are unioned before accessing data.

As far as we know, no exact models for the general problem have been proposed before the introduction of the γ-transform theory.

Applications - Another Cell Visit Problem (1)

Assume we have D distinct object types distributed into n cells, with the constraint that each cell contains representatives of exactly d distinct object types. A cell can contain more objects of the same type (total number of objects $N \geq d n$). Let X be the r.v. counting the number of cells which contain at least one representative of m distinct object types randomly selected out of D.

Applications - Another Cell Visit Problem (1)

Assume we have D distinct object types distributed into n cells, with the constraint that each cell contains representatives of exactly d distinct object types. A cell can contain more objects of the same type (total number of objects $N \geq d n$). Let X be the r.v. counting the number of cells which contain at least one representative of m distinct object types randomly selected out of D.

Thus, $\gamma(y)$ represents the probability that $n-y$ fixed cells have been excluded a priori from the result. Each of them has the same probability of being excluded from the result, which can be evaluated as $\binom{D-d}{m} /\binom{D}{m}$ yielding:

$$
\gamma(y)=\left[\frac{\binom{D-d}{m}}{\binom{D}{m}}\right]^{n-y}
$$

Applications - Another Cell Visit Problem (2)

Hence, the p.d.f., expected value and variance of X can easily be computed from $\gamma(y)$:

$$
\begin{aligned}
f(x) & =\binom{n}{x} \sum_{j=0}^{x}(-1)^{j}\binom{x}{j}\left[\binom{D-d}{m} /\binom{D}{m}\right]^{n-x+j} \\
\mathrm{E}[X] & =n\left[1-\binom{D-d}{m} /\binom{D}{m}\right] \\
\sigma_{X}^{2} & =n\binom{D-d}{m} /\binom{D}{m}\left[1-\binom{D-d}{m} /\binom{D}{m}\right]
\end{aligned}
$$

Applications - Another Cell Visit Problem (3)

In case the m object types randomly selected out of D might be non distinct (i.e., sampling is with replacement), the probability of a cell to be excluded from the result can be evaluated as $(1-d / D)^{m}$ yielding:

$$
\gamma(y)=\left(1-\frac{d}{D}\right)^{m(n-y)}
$$

Applications - Another Cell Visit Problem (4)

Hence, the p.d.f., expected value and variance of X can easily be computed from $\gamma(y)$:

$$
\begin{aligned}
f(x) & =\binom{n}{x} \sum_{j=0}^{x}(-1)^{j}\binom{x}{j}\left(1-\frac{d}{D}\right)^{m(n-x+j)} \\
\mathrm{E}[X] & =n\left[1-\left(1-\frac{d}{D}\right)^{m}\right] \\
\sigma_{X}^{2} & =n\left(1-\frac{d}{D}\right)^{m}\left[1-\left(1-\frac{d}{D}\right)^{m}\right]
\end{aligned}
$$

Applications - Another Cell Visit Problem (5)

X may represent the number of blocks accessed in a file (composed of n blocks) during the retrieval of m distinct data values in the presence of data duplication and of uniform clustering of the data, where d represents the number of distinct values contained in any block.

Both in the case of distinct and non distinct values, $\mathrm{E}[X]$ agree with those derived by Ciaccia [1993] and Grandi \& Scalas [1993].

No expressions for the p.d.f. and σ_{X}^{2} have been proposed before the introduction of the γ-transform theory (but can be determined in a simple way as a particular case of Binomial distribution).

Conclusion

- We presented the γ-transform approach as a tool for the study of a discrete and finite r.v.

Conclusion

- We presented the γ-transform approach as a tool for the study of a discrete and finite r.v.
- The approach is more handy than using the p.g.f. which does not exploit the finiteness of the r.v.

Conclusion

- We presented the γ-transform approach as a tool for the study of a discrete and finite r.v.
- The approach is more handy than using the p.g.f. which does not exploit the finiteness of the r.v.
- Owing to its physical meaning, the γ-transform can be directly derived from the nature of the problem

Conclusion

- We presented the γ-transform approach as a tool for the study of a discrete and finite r.v.
- The approach is more handy than using the p.g.f. which does not exploit the finiteness of the r.v.
- Owing to its physical meaning, the γ-transform can be directly derived from the nature of the problem
- Several modeling problems of interest for performance evaluation of database management and information retrieval systems involve a very complex p.d.f. but with a simple γ-transform

Conclusion

- We presented the γ-transform approach as a tool for the study of a discrete and finite r.v.
- The approach is more handy than using the p.g.f. which does not exploit the finiteness of the r.v.
- Owing to its physical meaning, the γ-transform can be directly derived from the nature of the problem
- Several modeling problems of interest for performance evaluation of database management and information retrieval systems involve a very complex p.d.f. but with a simple γ-transform
- In such cases, the γ-transform allows immediate determination of $\mathrm{E}[X]$ and σ_{X}^{2} which are the most relevant modeling parameters

