
A Formal Model for Temporal Schema Versioning in
Object-Oriented Databases

Fabio Grandi
�����

, Federica Mandreoli
�

�
CSITE-CNR and Dipartimento di Elettronica, Informatica e Sistemistica, Alma Mater

Studiorum - Università di Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy
�
Dipartimento di Ingegneria dell’Informazione, Università di Modena e Reggio Emilia,

Via Vignolese 905, I-41100, Modena, Italy

Abstract

In this paper we present a formal model for the support of temporal schema versions in
object-oriented databases. Its definition is partially based on a generic (ODMG compati-
ble) object model and partially introduces new concepts. The proposed model supports all
the schema changes which are usually considered in the OODB literature, for which an
operational semantics and a formal analysis of their correct behaviour is provided. Seman-
tic issues arising from the introduction of temporal schema versioning in a conventional or
temporal database (concerning the interaction between the intensional and extensional lev-
els of versioning and the management of data in the presence of multiple schema versions)
are also considered.

Key words: schema versioning, schema evolution, temporal versioning, temporal database

1 Introduction

Databases usually embody the core of costly, strategic and long-lived information
systems. However careful and accurate the initial design may have been, a database
schema is likely to undergo changes and revisions after implementation. In order to
avoid the loss of data after schema changes, many object-oriented systems like O �
[1], ORION (ITASCA) [2], and GemStone [3] support schema evolution, which
provides (partial) automatic recovery of the extant data by adapting them to the
new schema. However, if only the updated schema is retained, all the applications
	

Corresponding author. Tel.: +39-051-2093555, fax: +39-051-2093540.
Email addresses: fgrandi@deis.unibo.it (Fabio Grandi),

mandreoli.federica@unimo.it (Federica Mandreoli).

Preprint submitted to Elsevier Science Acceptance Letter on October 2, 2002

compiled with the past schema may cease to work. In order to let applications work
on multiple schemata, schema evolution is not sufficient and the maintenance of
more than one schema is required. This leads to the notion of schema versioning
and schema version which is the persistent outcome of the application of schema
modifications.

In OODBMSs used in design environments, schema versioning was introduced
to support different users/teams concurrently working on parallel schema versions
[4–6]. In this framework, schema versions are hierarchically organized as a DAG,
where version derivation lines can be branching (and even merging) and no tempo-
ral aspects are considered at all.

More recently, the adoption of object-oriented models has become a common choice
in novel application domains, like GIS and spatio-temporal databases, biomedical
and multimedia databases, where temporal requirements play a great role (e.g. [7–
10]). In this context, if the adoption of a temporal database allows one to represent
and manage the history of data objects (extensional properties), the introduction of
temporal schema versioning enables one to represent and manage the history of
the structure of data objects (intensional properties). Whereas a great deal of re-
search work was done on temporal OODBs [11–15], temporal schema versioning
has been deeply investigated so far only for the relational model [16,17].

In this paper, we deal with the introduction of temporal schema versioning in
an object-oriented database, also taking into account formal aspects. Within the
object-oriented framework, theoretical work has been done in the field of pro-
gramming languages [18,19] and databases [20–22], also including temporal ones
[11], whereas thorough studies concerning schema versioning are still lacking. To
this purpose, we will define ��������� �	� (Object-Oriented Data Model contextual-
ized to
 chema � ersions), that is a formal model for the management of temporal
schema versioning in object-oriented databases. ��������� �	� focuses on the opera-
tional aspects of schema versioning in order to provide users with a provably correct
evolving schema whose data can then be manipulated through different schema ver-
sions. In general, the schema change support implies the adoption of statements for
schema modification defined by means of primitives (LLPs - Low Level Primitives)
acting on “atomic” elements of the underlying data model [2]. Starting from a gen-
eral object-oriented model, we will first formally define the semantics at schema
and data level of a well-understood taxonomy of schema changes. Then, we will
study the impact of schema changes on an evolving schema supporting one or
two temporal dimensions and on the underlying database. As to the underlying
database, we will show how in our model an evolving schema can interact with a
conventional database (denoted as snapshot database in the temporal context) as
well as with a temporal database with valid and/or transaction time support.

The proposed formalization is aimed at guaranteeing a well-founded implementa-
tion of temporal schema versioning in an object-oriented database system. This is

2

achieved by characterizing two issues related to the temporal schema versioning
problem, for which the proposed solutions constitute the main novel contributions
of this work. Such issues are the formal correctness of the schema transformation
process (and of the resulting evolving schema) and the possibility of accessing data
through different schema versions.

� As far as the former issue is concerned, its purpose is to ensure high availabil-
ity and quality of the information in a system in operation which is subject to
schema changes. We will show that the way the operational semantics for schema
changes is defined ensures the correctness of the schema modification process
and, in general, of the interaction between an evolving schema and the underly-
ing database.

� As far as the latter issue is concerned, since multiple schema versions can coexist
on top of a database, the usefulness of accessing data through schema versions
different from the current one becomes apparent (e.g. for the reuse of appli-
cations compiled with previous schema versions). ��������� �	� ensures full re-
versibility at schema level of the update process in order to allow data instances
to be queried through schema versions different from their own (presumably
defining the format in which their are currently stored).

The rest of the paper is organized as follows. Section 2 introduces the basic ��������� �	�
definitions of (well-formed) schema version and (legal) database instance. Section
3 presents the semantics of schema changes considering their “local” effects, at
schema and data instance level. Section 4 analyzes the interaction between inten-
sional and extensional versioning, when temporal schema versioning has to be sup-
ported on a possibly temporal database. The notions of evolving schema and legal
database are defined to behave as mutually consistent collections of schema ver-
sions and database instances, respectively. The “global” effects of schema changes
in ��������� �	� are described in Sec. 5 by formalizing their action at evolving schema
and database level. Section 6 is devoted to a brief review of related works and to the
discussion of the ��������� �	� approach in such a context. Conclusions can finally
be found in Sec. 7.

2 Basic Definitions: Schema Versions and Database Instance

��������� �	� is a temporal schema versioning model based on a generic object-
oriented data model, first introduced in [20], which is general enough to represent
the static parts of UML and ODMG

�
. In the following, starting from the definition

proposed in [20,24], we formally define the ��������� �	� basic elements.

�
For the sake of simplicity, we do not take into account in this paper aspects related to the

definition of methods. The
�������	� �	� model could be extended with methods as shown

in [23].

3

2.1 Types, Subtyping, and Schema Versions

In ��������� �	� a database represents the structural evolution of an enterprise through
the temporal versioning of its schema. More properly, an evolving schema consists
in a collection of schema versions. It is based on a set of class names ��� and each
schema version includes definitions for some class names belonging to ��� . We
assume a class name version ��� ������� to be the set of class names for a specific
schema version. Distinct class name versions can also overlap, as happens when the
same class is defined in different schema versions. In particular, any schema ver-
sion specifies the type corresponding to each class in ��� � . The contextualization
of types with respect to a schema version denotes the ��������� �	� types defined on
the class names available in ��� � . The family of types � contextualized to ��� � ,
� � �	� � , is defined so that legal � � �	� � types are:

� the literal types in
�� , that is integer, float, boolean, char, string;
� the class names in a class name version ��� � ;
� the special type any;
� the set ���� , the bag � � � � , and the list type � �� , if ���� � �	� � ;
� the record type ��� ��� ����������� �! � � #" ,

if � ���������$� �! are attribute names and ���������$� � %��� � �	� � .
Since we only consider the static part of schema definitions, a schema version only
defines an inheritance hierarchy among classes, as it introduces the specifications
(types) associated with classes and the inheritance relationships valid at schema
version level. More formally a schema version
 � is a tuple &'��� � �)(���*,+ made
up of a class name version ��� � , a function (-� ��� �/. � � �	� � , associating
class names with their types in � � �	� � , and a set of inheritance relationships * �
��� ��0���� � , which is is a partial order on ��� � .

In a schema version, the type associated with each class must be a refinement of the
types of all its superclasses. To represent this notion, starting from the class hier-
archy defined by the inheritance relation * , we can introduce a subtyping relation
(1) that specifies when one type refines another.

Definition 1 (Subtyping Relation) Let &'��� � �)(���*,+ be a schema version. The sub-
typing relation 12�3� � �	� ��04� � �	� � is the smallest partial order over � � �	� � sat-
isfying the following conditions:

(1) 576 � 698:�;��� � : if 6 * 698 then 6<1=698 ;
(2) if $> � �8> ��� � �	� � , $>912�8> , for each ?@�A�CB �)D � and D 12E , then

��� ��� ���������$� �! � � �������$� �!F � �F�"�1G��� ��� �8� �������$� �! � �8 " ;
(3) if � �8���� � �	� � , ;1H�8 , then ����I1J���8K� , � � � �L1J� � �8 � � , � ��M1G� �8N� ;
(4) 5O��4� � �	� � : �1 any (i.e. any is the top of the type hierarchy).

Given a subtyping relation 1 , let

4

��� be its corresponding strict partial order, that is � 8 iff �1H�8�� ��� �8 ;
� 1�� � ���8 � �8O12�� be all direct and indirect subtypes

(also � � can be defined in a similar way);
��	 � � ���8 � �1H�8'� be all direct and indirect supertypes

(also
�� can be defined in a similar way).

Definition 2 (Well-formedness) A schema version &'��� � �)(���*,+ is well-formed if
for each pair 6 , 6 8 of class names, 6 * 6 8 implies (&�6 + 1 (&�698 + .
Example 1 Let ��� � � employee, professor, course, activity � . We introduce the
well-formed schema version
 � � � &'��� � ���)(� ��* �)+ , where:

��� � � � ���E������������ � ����������������� �
(��� ��E��������������. � D! E"� � �$#%�& D('O� ��� D4� & D #)� ' �*� "
(��� �����������������+�. � D! E"� � �$#%�& D('O� ��� D�� & D #)� ' �*� �-, � ' � ���$#%�& D(' � "
����������������� * � ��E������������

which models employees with a name and a social security number, and professors
as employees with one or more degrees.

Now we consider a second schema version, which could be derived from the previ-
ous one with the addition of two new classes: activity, which defines activities with
attributes name and has prereq denoting prerequisites), and course, which is de-
fined as a subclass of activity with the refinement of has prereq. The corresponding
well-formed schema version
 � � � &'��� � � �)(� ��* � + could be:

��� � � � ���E������������ � ����������������� �- /. #%&10/&2#%� �-. ��3������ �
(� � ��E��������������. � D! E"� � �$#%�& D('O� ��� D4� & D #)� ' �*� "
(� � �����������������+�. � D! E"� � �$#%�& D('O� ��� D�� & D #)� ' �*� �-, � ' � ���$#%�& D(' � "
(� �/ /. #%&10/&2#%�4�. � D! E"� � �$#%�& D('O�65� � �����*���*7 � � /. #%&10/&2#%�:� "
(� �/. ��3������8�. � D! E"� � �$#%�& D('O�65� � �����*���*7 � � . ��3������ � "
����������������� * �9��E������������ �:. ��3������ * � /. #%&10/&2#%�

With respect to such a schema version, the following subtyping relationships hold:

�����������������I1;��E������������ � � . ��3������ �L1J� /. #%&10/&2#%�:�
� D! E"� � �$#%�& D('O� # 3 '<5 # =-� � ����������������� �65� � �����*���*7 � � . ��3������ � "

1G� D! E"� � �$#%�& D('O�65� � �����*���*7 � � /. #%&10/&2#%�:� "

2.2 Objects, Values and Instances

Usually, a schema defines a set of constraints which a database must satisfy in order
to be legal. In particular an instance assigns object identifiers to classes, and values

5

to object identifiers. The set � of ��������� �	� values is based on a set of object
identifiers ��� and contains:

� each element in ��� , each integer, float, boolean, char and string value;
� each record ��� �I� 0 � �������$� �! � 0 #" , set ��0 � �������$� 0 � , bag � � 0 � �������$� 0 � � and list

value � 0 ���������$� 0 � , where 0 ���������$� 0 are values in � and � � ,. . . , �! are attribute
names.

Given a set ��� of object identifiers and a set ��� of class names, we define an
instance � as a tuple &�� ����+ where:

� � � ��� .��
	�� is an OID assignment, mapping class names to disjoint finite sets
of OIDs;

� �@� ��� . � is a value assignment, mapping OIDs to values.

Given the OID assignment � and a schema version &'��� � �)(���*,+ , the proper exten-
sion � of 6 � ��� � is � &�6 + , and the extension of 6 is the set of OIDs which are
instances of 6 and all its subclasses, that is �� &�6 + ��������� �	� ��� ������� � &�698 + , where
���&�698 + �����&�6 + whenever 6 8 * 6 (an object of a class 6 8 may also be viewed as
an object of a superclass 6 of 6 8 [24]).

Moreover, values can be associated with types. The semantics of types can be de-
fined as the association between each type and the set of legal values for that type.
We assume that the usual interpretation is associated to each literal type belonging
to
�� (e.g. the domain of the literal type integer is the set � of integer numbers
and the domain of void is the empty set).

Definition 3 (Type Legal Values) Let � be an OID-assignment, &'��� � �O(�� *,+ a
schema version and ��� � � ��� &�6 + � 6/�=��� � � . The legal extension for each
���� � �	� � , denoted as , � E & + , is given by:

(1) 5O��4� � �	� � �#D 3(��� � , � E<& +
(2) 5O���
�� � , � E<& + is the usual interpretation of that type;
(3) 5O��;��� � �/, � E & + � � & +�� � D 3(��� � ;
(4) 5O��4� � �	� � �/, � E & ���� + � �#��0 � �������$� 0 � � D 	� � 0"! � � for & �A�CB �)D ��� ;
(5) 5O��4� � �	� � �/, � E & � � � � + � �#� � 0 � �������$� 0 � � � D 	� � 0"!M�; � for & � �CB �)D ���$# ;
(6) 5O��4� � �	� � �/, � E &	� �� + � ��� 0 � ������� 0 � � D 	� � 0"!M� , � E & + � for & �A�CB �)D ��� ;
(7) 5M�� ���������$� � �L�%�'&�()+*-, � 5 D
 �8, � E &	��� ��� ���������$� �! � � " +

� ����� ��� 0 ����������� �! � 0 #" �0"!M� , � E & .! + � for & �A�CB �)D ��� ;
(8) , � E & any + � � � � &�()+*-, , � E & + .

� Notice that the extension is always defined for every class name in every schema version,
as / is a total function defined on 021 . If a class 3 has an empty extension, /�45376�8:9 .
With respect to the set type domain, the bag type domain admits repeated elements.

6

Given a schema version &'��� � �)(���*,+ , the set of ��������� �	� legal values contextu-
alized to ��� � is ��� �	� � � � � � &�()+*-, , � E & + .
In the following, we introduce the notion of legal instance for a schema version,
which will represent the basic element for the definition of the legal database com-
ponent of an evolving schema.

Definition 4 (Legal Instance) An instance � � &�� ����+ is legal for a schema ver-
sion &'��� � �)(�� *,+ if it satisfies all the constraints implied by the schema version
definition: given the OID assignment � , the value associated with each object by
means of � must be legal for the type � �	� � of the class of which the object is
instance (i.e. 576<����� � � 5!�I� � &�6 + � � &2� + � , � E & (&�6 +	+).
Notice that an instance can be legal for more than one schema versions.

Example 2 Let ��� � ���& � � ��& � �������$� ��& ��� � . Given the OID assignment:

� � ����������������� �. ���& � � ��& �$�
� � ��E�������������� . ���& # �� �/. ��3������8�. ���&�� � ��&��$�
� �/ /. #%&10/&2#%�4� . ���&��$�

and the schema versions of Ex. 1, the following are legal values for types belonging
to � � �	� �	� and � � �	� ��
 :

�� ����� D�� � , � E &1�$#%�& D('�+��
��& �!� , � E & ����������������� +��
� D! E"� � �� ����� D���� #%3�#)��� � ��& � "�� , � E &	� D! E"� � �$#%�& D('O� #%3�#)��� � ����������������� " +

The following are instead legal values only for types belonging to � � �	� �
 :

��&�� � , � E & . ��3������ +��
� D! E"� � � ����� . #%��� D & . � ���65� � �����*���*7 � ���&���� "

� , � E &	� D! E"� � �$#%�& D('O�65� � �����*���*7 � � . ��3������ � " + �

Given the following value assignment:

�@� ��& � �. � D! E"� � ��� E &2# 5���� ��� D4� B B �-, � ' � � � � � .�� � "
�@� ��& �9�. � D! E"� � ��� � D ��� ��� ��� D4� ����� �-, � ' � � � � � .���� ��� 5 � � � "
�@� ��& # �. � D! E"� � ��� ��� ,���� ��� D � B�� � "

the tuple &�� ����+ is a legal instance for
 � � .

7

Category Primitive Change Meaning

Changes to a class type AddAttribute Add an attribute to a record type

DeleteAttribute Delete an attribute from a record type

ChangeAttrName Change the name of an attribute

ChangeAttrType Change the type of an attribute

ChangeClassType Change the type of a class

Changes to the class collection AddSuperclass Make an existing class a superclass

DeleteSuperclass Delete a class from the superclasses

AddClass Add a new empty isolated class

DeleteClass Delete an isolated class

ChangeClassName Change the name of a class

Table 1
List of primitive schema changes.

3 Action of Schema Changes at Schema and Instance Level (Local Effects)

��������� �	� provides a complete collection of primitive changes [2] applicable to
a schema. They are listed in Tab. 1 where they are classified in two categories:
Changes to a class type and Changes to the class collection. The application of the
supported schema changes represents the only way of adding new schema versions
starting from existing ones. In other words, each schema change when applied to
an existing schema version, leads to the creation of a new schema version. In most
cases, such changes have to be propagated to instances in order to ensure their
consistency with respect to the new schema version.

We introduce the operational semantics of each schema change which defines the
composition of the new schema version w.r.t. the class definitions and also specifies
how a database that is legal with respect to a schema version should be modified in
order to ensure consistency after the schema version modification. To this purpose,
we introduce two functions, the first called
 ��� (Schema Version Update), whose
behaviour specifies how each schema change creates a new schema version, and
the second called ��� (Instance Update), whose behaviour specifies how instances
have to be modified in order to become consistent with the schema version resulting
from the application of a schema change.

Definition 5 (Schema Version Update) Let
 � be the set of all possible schema
changes, and
 � � a set of schema versions
 � . The Schema Version Update is a
function

 ��� �
 �4. &
 � � .
 � � +

8

Definition 6 (Instance Update) Let
 � be the set of all possible schema changes,
and �9� a set of instance versions � . The Instance Update is a function

��� �
 ��. & �9�,. �9� +

In the following, we define the behaviour of
 ��� and ��� for all the schema
changes listed in Tab. 1. The formalization we propose allows the schema update
process to be formally checked and some desirable properties to be ensured. These
aspects will be investigated in Sec. 3.3.

We first introduce two associative operations �+� (concatenation) and � � (elimina-
tion) defined on the record type. More specifically,

��� ��� ����������� �! � � #"����,��� � :" �
�� � ��� ��� ���������$� �! � � � � � :" if � ��& � �7! � ��

otherwise

��� ��� ����������� �! � � #"����,��� � :" �

������� ������
��� ��� � �������$� � >
	 ��� $>
	 ��� � >�� � � $>�� � �������$� �! � � #"

if � ? � � > � � � $> �
��� ��� � �������$� �! � � #" otherwise

Notice that the concatenation of record types is possible only if the attributes in-
volved have unique names, otherwise the operation is rejected. In general, we will
adopt the

�
symbol to denote the outcome of a rejected operation.

3.1 Changes to a Class Type

When applying a change to a class type operation, the effect at intensional level is
the update of the types of the class having the property concerned and of its sub-
classes. In particular, at schema level, the application of any of such modifications
to the class 6 is articulated in two steps:

� an intermediate step consisting of the local modification of the type of 6 and, in
some cases, of its subclasses;

� the recalculation of the type of all the classes in the class hierarchy rooted on 6 .

The intermediate step is realized by the definition of the (function. The final step
must also deal with problems related to multiple inheritance, which are solved by
rejecting operations involving the integration of incompatible types. Notice that the
application of a change to the class type is not always possible. In particular, in or-
der to delete an attribute or to change its name, the attribute must have been locally
defined in the class, rather than simply being inherited by any of its superclasses,
where it has been defined. Moreover, in order to change the name of an attribute,

9

Schema Change Semantics

AddAttribute ��� � � � � 8 45376�8 ��� � 453��.4 021
	�� � �� 6 6 if 3���� �� 45376 otherwise

and � 45376�8 � � 45376�� ������� ��� if 3 8 3� 45376 otherwise� 8 4���� 6�8 � � � 4 � 4���� 6!� � 45376!� � 8 45376!�.4 021
	"� � 8 �� 6 6 if ���#� /�45376!� 3$��% �� 4���� 6 otherwise

DeleteAttribute ��� � � � � 8 45376�8 ��� � 453��.4 021
	�� � �� 6 6 if 3���% �� 45376 otherwise

and � 45376�8 � � 45376�& ������� ��� if 3���% �� 45376 otherwise� 8 4���� 6�8 � � � 4 � 4���� 6!� � 45376!� � 8 45376!�.4 021
	"� � 8 �� 6 6 if ���#� /�45376!� 3$��% �� 4���� 6 otherwise

ChangeAttrName � � � � � � � 8 45376�8 ��� � 453��.4 021
	�� � �� 6 6 if 3���% �� 45376 otherwise

and � 45376�8(')))*)))+
��� � � � � �,,,-� � 8 � � �,,,.� � /� � � if 3���% � ,� 45376�8 ��� � � � � �,,,-� ��� � �,,,-� � 0� � �� 45376 otherwise� 8 4���� 6�8 � � � 4 � 4���� 6!� � 45376!� � 8 45376!�.4 021
	"� � 8 �� 6 6 if ���#� /�45376!� 3$��% �� 4���� 6 otherwise

and � 4���� 6-8 ')))*)))+
��� � �21 � �,,,-� � 8 �31 �,,,.� � 0�21� � if ���#� /�45376!� 3���% � ,� 4���� 6�8 ��� � �21 � �,,,-� ���31 �,,,.� � /�31� �� 4���� 6 otherwise

ChangeAttrType � � � � � � � � � 8 45376�8 ��� � 453��.4 021
	�� � �� 6 6 if 3���� �� 45376 otherwise

and � 45376�8
')))))))))))))))))))*)))))))))))))))))))+

��� � � � � �,,,-� ��� � 8 �,,,.� � 0� � �
if 3 8 34� � 45376�8 ��� � � � � �,,,.� ��� � �,,,.� � 0� � � ,5 3 8 �76 � �8��� � � � � �,,,-� ��� � 8 �,,,.� � /� � � % � 453 8 69
if 3 8 3 , � 45376�8 ��� � � � � �,,,.� ��� � �,,,.� � 0� � � ,: 3 8 �76 � �8��� � � � � �,,,-� ��� � 8 �,,,.� � /� � �<;% � 453 8 6��� � � � � �,,,-� ��� � 8 �,,,.� � 0� � �
if 3���� � � � 45376�8 ��� � � � � �,,,-� ��� � �,,,-� � 0� � �� 45376 otherwise� 8 4���� 6�8 � � � 4 � 4���� 6!� � 45376!� � 8 45376!�.4 021
	"� � 8 �� 6 6 if ���#� /�45376!� 3$��% �� 4���� 6 otherwise

continued on next page

10

Schema Change Semantics

ChangeClassType � � � � � � � 8 45376�8 ��� � 453��.4 021
	"� � �� 6 6 if 3���� �� 45376 otherwise

and � 45376�8(')))*)))+

�
8 if 3 8 3 ,

5 3 8 � 6 � � � 8 % � 453 8 69
if 3 8 3 ,

: 3 8 � 6 � � � 8 ;% � 453 8 6� 45376 otherwise� 8 4���� 6�8 � � � 4 � 4���� 6!� � 45376!� � 8 45376!�.4 021
	"� � 8 �� 6 6 if ����� /�45376!� 3$��% �� 4���� 6 otherwise

Table 2
Semantics of the changes to a class type

no other property in the type of 6 and of all its (direct or indirect) subclasses must
have the same name as the target property name � .

More formally, given a schema version
 � � &'��� � �)(���*,+ and an instance � �
&�� ����+ legal for
 � , the execution of a schema change E produces a new schema
version
 � 8 and a new instance � 8 defined as &'��� � �)(8 ��*,+ �
 ��� & E + &
 � + and
&�� ��� 8 + � ��� & E + & � + , respectively. The semantics of these operations, for each
E belonging to the changes to a class type category, is shown in Tab. 2 as the
definition of the modified components (8 and � 8 . For instance, when an attribute
� with type is added to the class 6 (via E � AddAttribute ��� � � �), we first
add the new attribute � to the type of 6 by means of the (function. Then all its
subclasses must inherit the new attribute. If no subclass of 6 contains an attribute
with the same name, the new attribute is simply propagated. Otherwise, if a subclass
of 6 already contains a proper or inherited attribute with the same name and a
type compatible with the type of � , the attribute with the most specific type is
selected. If the types of the two properties with the same name � are incompatible,
the operation is rejected. To this end, the type conversion function � infers the
type of each 6 subclass and is defined in order to reject (with outcome

�
) the

operation when two properties with the same name but with incompatible types are
found. For each class type to be calculated, � &�6 � &'��� � �)(���*,+	+ is a shorthand for(&�6 + � (&�6 �	+ ��������� (&�6 + (where � 6 � �������$� 6 � �
 �) which merges the class
type with the types of its superclasses. On the other hand, the instance conversion
function � � adapts the values of the objects, which are instances of the modified
types, to the new type versions, trying to preserve as much information as possible.
The complete definitions of � and � � can be found in Appendix A.

� An alternative approach would consist in recalculating the type of the classes included
in % � by choosing the most specific type when two properties with the same name occur.
However, in this case, a problem arises during the propagation of types to objects due to the
semantic interpretation of data, as both properties with the same name are already populated
with meaningful values.

11

Schema Change Semantics

AddSuperclass � � � � � 8 8 � �����
453 8 � 376�� if it is a partial order relation

rejected otherwise� 8 45376�8 ��� � 453��.4 021
	�� � �� 8 6 6 if 3 ��% 8 ���� 45376 otherwise� 8 4���� 6�8 � � � 4 � 4���� 6!� � 45376!� � 8 45376!�.4 021
	"� � 8 �� 8 6 6 if ���#� /�45376!� 3���% 8 ���� 4���� 6 otherwise

DeleteSuperclass � � � � � 8 8 �����
453 8 � 3 6��� 8 45376�8 � � 453��.4 021
	�� � �� 8 6 6 for each 3�� 021
	� 8 4���� 6�8 � � 4 � 4���� 6!� � 45376!� � 8 45376!�.4 021
	"� � 8 �� 8 6 6
AddClass � 021
	 8 8 021
	��	� 3
� (we may assume 3 already present in 021)� 8 8 � �	� 3�� any �

/ 8 8 /��	� 3�� 9��
DeleteClass � 021
	 8 8 021
	���� 3
�� 8 45376�8 � 9

if � 45376 contains references to 3� 45376 otherwise

and � 8 � ��� 3�� � 4 376��
/ 8 8 /���� 3�� /�4 376������ 3�� 9��� 8 8 � ���.����� � 4���� 6 � ���#� /�4 376��

ChangeClassName � � � � 021
	 8 8 021
	���� 3
���	� 3 8 �� 8 45376�8�� 3��
�
8 � 453��

�
6�� � � 3 ;

8 3����	� 3 8 �
�
8 � 4 3��

�
6�� � ���

and
�
8 is obtained from

�
by substituting all 3 occurrences with 3 8� 8 8��
453 8 � 376 � 4 3 � 376#�������	�
453�� 3 8 6 � 453�� 3 6#�����

���
453����376 � 453����3 6#��� � 3 ;
8 3 ���3 ;

8 3
�
/ 8 8�� 3�� ����� � 453�� ����� 6#� / � 3 ;

8 3
�
��� 3 8 � ����� � 4 3�� ����� 6#� / �

Table 3
Semantics of the changes to the class collection

3.2 Changes to the Class Collection

In this subsection, we consider the behaviour of the changes to the class collection.
Let us start from modifications to hierarchical relationships. To add or delete a
supertype, respectively, means to make an existing class 6 a supertype of a class
698 or to remove a class 6 from the supertypes of a class 6 8 . In both cases, two steps

12

are required:

� the update of the inheritance relation with the proviso that it remains a partial
order;

� the inference of the type of the affected class 6 8 and of its subclasses.

When 6 becomes a 6 8 superclass, the extension �- of 6 must be changed so that
it also contains all 6 8 instances. Since �- is defined by means of the inheritance
relationship * and the proper extension � , the �� update is automatically done by
updating the * component (� remains unchanged).

More formally, given a schema version
 � � &'��� � �)(���*,+ and an instance � �
&�� ����+ legal for
 � , the outcomes of the application of the
 ��� and ��� functions
for each of the changes to the class collection E — &'��� � �)(8 ��* 8 + �
 ��� & E + &
 � +
and &�� ��� 8 + � ��� & E + & � + — are shown in Tab. 3, where 1!8 is the subtyping rela-
tion based on the class hierarchy in &'��� � �)(���* 8 + . Notice that the addition of a pair
&�6 8 � 6 + to the partial order * could also cause such a relation to lose the property
of being a partial order if, for instance, the antisymmetry is broken or a cycle is
introduced. In such a case, the operation is rejected.

In the addition of a new superclass, since the inheritance relation is augmented with
a new relationship, all subtyping relationships which were valid in the previous
schema version continue to be valid.

The deletion of a superclass, due to the “reduction” of the subtyping relation, is
actually the only schema modification which requires the re-computation of the
type of all the classes of the lattice. Notice that, when removing the relationship
698 * 6 , some subtyping relationships which were valid in the previous schema
versions may become invalid. Suppose, for instance, that the type of a class � is
simply a record only containing an attribute � with type 6 and that the subclass � 8
of � redefines the attribute � with type 6 8 . Before the deletion of the connection
between 698 and 6 , the type of � 8 is certainly a subtype of the � type, whereas, after
the deletion, this relationship is no longer ensured. Starting from the type associated
to each class by (, the � function verifies if either the subtyping relationships
between the types of classes and the corresponding superclasses continue to exist
or not. In fact, in its base cases, the � function produces the

�
result if a subtyping

relationship is not defined between two classes. Notice also that for all subclasses
6 of 698 , the relationship 6 * 8 6 continues to exist since the inheritance relation
is a partial order. These relationships can be deleted through the removal of all the
hierarchical relationships between 6 8 and its subclasses.

For all the other schema modifications we propose local solutions which only in-
volve the classes included in the lattice rooted on the modified class.

The class addition or deletion, instead, involve a single class. The primitive change
AddClass produces an empty class with type any. This new class is isolated in

13

the class hierarchy, that is it has neither superclasses nor subclasses. More com-
plex changes, like “add a class with attributes” in the middle of the class hierarchy,
could be effected by combining primitive changes, for example AddClass followed
by AddAttribute and AddSuperclass. In the same way, also DeleteClass requires
that the class to be deleted be isolated. Any complex change, like “delete a class in
the middle of the class hierarchy”, could be effected by making DeleteClass fol-
low all the necessary DeleteSuperclass that must be executed in order to isolate
the class before deletion. In any case, deleting a class may give rise to a new prob-
lem since all references (by means of attributes) to such a class become dangling.
To solve this problem, various approaches have been proposed [2,25,26]. The two
mainstream solutions are the following:

(1) transform any reference to the deleted class into any and any reference to its
corresponding objects into D 3(��� (i.e. this is the solution adopted by O � [25]),

(2) forbid schema versions giving rise to referential integrity problems that could
be avoided by executing appropriate schema changes before the DeleteClass
operation.

Since the first solution can be obtained by means of specific schema and object
changes (already provided by our model), we continue to follow the LLP approach
by adopting the second solution. Obviously, in an implementation phase, the schema
changes to be placed before the DeleteClass operation can (semi)automatically be
applied by the system. The components of
 � and � modified by the application
of the AddClass and DeleteClass operations are shown in Tab. 3. The last schema
change is the “change the name of a class” operation which leads to a new schema
version where all its elements have been modified in order to replace all occurrences
of 6 with 698 .

3.3 Correctness of the Schema Update Process

The formalization of the schema update and propagation mechanism allows the
evolving schema process to be formally checked. The correctness of the process is
carried out according to the following two requirements.

� The schema update function
 ��� must be correct, that is it must respect the
semantics of types and inheritance.

� The instance update function ��� must be correct as well, that is it should ensure
that the mapping associated with each schema change produces a legal instance
for the corresponding transformed schema version.

First, we consider the semantics of types and inheritance during the schema update
process. The
 ��� function defined above always applies the � function which is
devoted to the computation of the class types after each schema change by means of
the meet operator (

�
) applied to a given set of types. The following Lemma states

14

that the
�

operation is monotonic.

Lemma 1 Let &'��� � �)(���*,+ be a schema version. The meet operation
�

is mono-
tonic, that is given � 8 ��� ��� 8 �J� � �	� � where =1 8 , � 1 � 8 , � � �� �

and
�8 � � 8 �� �

then:
 � � 1H 8 � � 8

Given the above result, the following Corollary can easily be proved (all the proofs
can be found in Appendix B).

Corollary 1 Let &'��� � �)(���*,+ be a schema version and 6 �;��� � . For each 6 !M�

 � :

(1) � &�6 � &'��� � �)(���*,+	+ 1 (&�6�! +
(2) � &�6 � &'��� � �)(���*,+	+ 1H � &�6�! � &'��� � �)(���*,+	+

Now, we can show that the schema update process preserves the class hierarchy
semantics. In other words, each schema change transforms well-formed schema
versions into well-formed schema versions.

Theorem 1 Let &'��� � �)(���*,+ be a well-formed schema version. For each schema
modification E , &'��� � 8 �)(8 ��* 8 + �
 ��� & E + &'��� � �)(���*,+ is a well-formed schema
version.

Given a schema modification, the ��� function transforms legal instances of a
schema version into legal instances of the corresponding transformed one, obtained
by means of the
 ��� function application. The proof of this property first requires
the proof of the Lemma below which states that the � � function, employed by ��� ,
is a well-formed value transformation.

Lemma 2 Let &'��� � �)(���*,+ be a well-formed schema version, � 89�G� � �	� � . If
0 � , � E & + then � � &�0 � � 8 � &'��� � �)(���*,+	+ � , � E & 8 + .
Thence, the propagation process only produces legal instances for the transformed
schema version.

Theorem 2 Let &�� ����+ be a legal instance for the schema version &'��� � �)(���*,+ .
For each schema modification E , &�� 8 ��� 8 + � ��� & E + &�� ����+ is a legal instance for
the schema version
 ��� & E + &'��� � �)(���*,+ .
As a final remark, it should be noted that the problem of the correctness of a schema
under modifications has already been investigated in the schema evolution context.
The main approach (adopted for instance by ORION [2], COCOON [27], O � [1])
consists in defining and enforcing a number of invariants:

Closure Invariants All types in the type lattice have supertypes.

15

Acyclicity Invariant There are no cycles in the type lattice.
Rootedness Invariant There is a single type which is the supertype of all types.
Full Inheritance Invariant The type of a class consists of the native (or proper)

type and inherited types.
Axiom of Unique Naming Classes must have unique names in the schema ver-

sion; attributes must have different names within their domain class types.

Notice that all of them hold in our definition of well-formed schema version. There-
fore, Theorem 1 ensures that such invariants are preserved throughout the schema
modification process.

4 Interaction between Intensional and Extensional Versioning: a Temporal
Approach

A schema describes the structure of the data that are stored in a database. ��������� �	�
introduces the notion of evolving schema, which is the core of the temporal schema
versioning support. As to the underlying database, we impose no restriction on the
temporal dimensions they support. In the temporal database literature, two time
dimensions are usually considered: valid time (concerning the real world) and
transaction time (concerning the database life) [28]. In fact, we will show how
an evolving schema can interact with snapshot databases as well as with temporal
databases with valid and/or transaction time support.

4.1 Temporal Schema Versioning

As far as the temporal dimensions involved in schema versioning are concerned,
versioning along one time dimension gives rise to transaction- or valid-time schema
versioning and versioning along both time dimensions produces bitemporal schema
versioning [16].

Transaction-time schema versioning Transaction-time schema versioning allows
on-time schema changes, that is schema changes that are effective when applied.
In this case, the management of time is completely transparent to the user: only
the current schema can be modified and schema changes are effected in the usual
way, without any reference to time. However, support of past schema versions is
granted by the system non-deletion policy, so that the user can always rollback
the full database to a past state of its life.

Valid-time schema versioning It has long been debated whether valid time is el-
igible for schema versioning, and the answer depends on application require-
ments: valid-time schema versioning is necessary when retroactive or proactive
schema modifications have to be supported [16] and it is useful to assign a tem-

16

poral validity to schema versions. With valid-time schema versioning, multiple
schema versions, valid at different times, are all available to access and manip-
ulate data and also for further modifications. The newly created schema version
can be assigned any validity by the designer (also in the past or future to ef-
fect resp. retro- or pro-active schema modifications). The (portions of) existing
schema versions overlapped by the validity of the new schema version are over-
written.

Bitemporal schema versioning In this case both time dimensions are used. In ad-
dition to transaction-time schema versioning, retro- and pro-active schema up-
dates are supported. With respect to valid-time schema versioning, the complete
history of schema changes is maintained as no schema version is ever discarded
(overlapped portions are “archived” rather than deleted). In a system where full
auditing/traceability of the maintenance process is required, only bitemporal
schema versioning allows verifying whether a schema version was created by
a retro- or pro-active schema change.

In ��������� �	� we consider all the three kinds of temporal schema versioning.

4.2 Evolving Schema and Temporal Databases

An evolving schema consists of a collection of schema versions defined over a set
of class names and attribute names. In particular, an evolving schema associates
each schema version with its temporal pertinence, which is defined as a subset of
the time domain.

In accordance with the BCDM model [29], the notion of time is represented in
��������� �	� as a discrete set � � B ���������)D ��� ����������� � of chronons. The symbol ‘ � ’
is used to timestamp a still current fact in transaction time and represents the maxi-
mum time value in valid time. The symbol D ��� denotes the current transaction time
and the present valid time. Notice that the time points between ‘ D ��� ’ and ‘ � ’ in
transaction time are purely conventional, as they represent system events that have
not happened yet.

Since valid and transaction time are orthogonal dimensions (with a different mean-
ing), we will use subscripts to distinguish between them. Hence, the time domains
of interest for valid-time, transaction-time and bitemporal schema versioning in
��������� �	� are ��� �����

, ��� �����
and the Cartesian product ��� ���	� 0 ��� �����

,
respectively. The temporal pertinence (timestamp) of a schema version can always
be represented by means of a disjoint union of intervals in the first two cases and
of rectangles in the last case, where each rectangle is the product of a transaction-
and a valid-time interval.

In ��������� �	� , one of the conditions which an evolving schema must satisfy is
that temporal pertinences of different schema versions are disjoint, that is at most

17

one schema version is associated to each temporal chronon as the one “active” (i.e.
current and/or valid) at that time.

Definition 7 (Evolving Schema) Let ��� be a set of class names, �,� a set of
attribute names,
 � � a set of schema versions and � a set of schema modi-
fications. An evolving schema

�
 is a tuple &'��� � �,� �
 ��� ��������+ where � �
� 0
 � �,0�
 � � is a relation such that & E �
 � ! �
 ��� + � � iff
 ��� is the outcome
of the application of E to
 � ! (
 ��� �
 ��� & E + &
 � ! +) and � is a timestamping
function

�I� ��� ��� .
 � � � �����
which associates each temporal chronon with the corresponding active schema ver-
sion
 � ! , if it exists, or with an empty set otherwise. In particular:

� if transaction time schema versioning is supported, ��� ��� � �7� ��� �
and

� & # # + �
��� ��
 � ! if �
 � ! active (current) in # #
� otherwise

where # #����7� �����
and for all # # ��� # # �!�A� D ��� � ��� � � : � & # # �)+ � � & # # � + �� � ;

� if valid time schema versioning is supported, ��� ��� � �7� ��� �
and

� &�0 # + �
��� ��
 � ! if �
 � ! active (valid) in 0 #
� otherwise

where 0 #������ �����
;

� if bitemporal schema versioning is supported, �7� ��� � ��� ��� � 0 ��� �����
–

with a little abuse of notation we will always write � & # # � #%0 + instead of � &	& # # � #%0 +	+ –
and

� & # # � 0 # + �
��� ��
 � ! if �
 � ! active in & # # � 0 # +
� otherwise

where & # # � 0 # + �-��� ���
and for each 0 # �-�7� ���	�

and for all # # � � # # ���
� D ��� � ��� � � : � &�0 # � # # �)+ � � &�0 # � # # � + �� � .

If
 � �� � , we will denote as � 	 � &
 � + the the set of time points that are associ-
ated by the � function to
 � , that is � 	 � &
 � + represents the temporal pertinence
(timestamp) of
 � .

Example 3 Let us consider an evolving schema consisting in the collection �
 � ���

 � � �
 � # � of schema versions which have been generated by the following trans-
actions:

t1 Definition of a schema made up of two classes: employee and professor; employee
contains two attributes, name and ssn, professor is an employee subclass that
also contains the attribute deg (its definition is
 � � of Ex. 1).

18

8

860 90450 30

Valid Time

50

60

75

Transaction Time

80

SV

SV
SV1

3

2

Fig. 1. Temporal representation of an evolving schema

t2 Addition of a new attribute badge no to the employee class in the schema version

 � � ; the outcome is:
 � � �
 ��� & AddAttribute ��������� 	� � !N � �
���
� � ��F��� ������� + &
 � �	+ =
&'��� � � �)(� ��* �	+ , where:

(� � ��E������������ �. � D! E"� � �$#%�& D('O� ��� D�� & D #)� ' �*� � = /,�' � D � � & D #)� ' �*� " �
(� � ����������������� �. � D! E"� � �$#%�& D('O� ��� D�� & D #)� ' �*� �-, � '@� ���$#%�& D(' � �

= /,�' � D � � & D #)� ' �*� " �

t3 Addition of a new class course to the schema version
 � � ; the outcome is:

 � # �
 ��� & AddClass ���������
� + &
 � �)+ � &'��� � � � � . ��3������ � �)(��� � . ��3��������.
any � ��* �)+ .

The evolving schema after transaction t3 is:

& ���E������������ � ����������������� �-. ��3������ � � � D! E"� � ��� D �-, � 'O� = /,�' � D �#� � �
 � ���
 � � �
 � # � ��������+

where:

� � ��& AddAttribute ��������� 	� � !N � � ��F��� ������� �
 � � �
 � � + � & AddClass ���������
� �
 � ���
 � # + � �

and Fig. 1 shows a graphical representation of a possible definition of �L� ��� ��� � 0
��� ����� .
 � � � ����� . In fact, it defines the following pertinences: � 	 � &
 � �	+ �
� � � � � � � 0 � � ��� � � � � � ��� � � 0<� � � � � � � � � � � � � � � 0 � � B ��� � � , � 	 � &
 � � + �
� � � � � � � 0 � � � � � � � � � � � ��� � � 0 � � � � � � � � , � 	 � &
 � # + � � � � ��� � � 0A� � ��� � � .
In the following we consider the interaction of an evolving schema with an un-
derlying database ��� , which could be a snapshot database or also a (bi)temporal
database. In the former case, a ��� is simply an instance � as introduced in Subsec.
2.2; in the latter case, a temporal database can be considered as a function mapping

19

�
Type of Database — Type of Schema Versioning (tS) (vS) (tvS)

(D) ��� �
4�� ��� � 6	�
4�� ��� � 6 �
4�� ��� � �
� ��� � 6
(tD)

5��� ��� ����� � � ����4 �� 6 �
4 �� 6 �
4 �� 6 �
4 �� � �� 6
(vD)

5 1 � ��� ����� � � ����4 1 � 6 �
4�� ��� � 6 �
4 1 � 6 �
4�� ��� � � 1 � 6
(tvD)

5��� ��� ����� � � 5 1 � ��� ����� � � ����4 �� � 1 � 6 �
4 �� 6 �
4 1 � 6 �
4 �� � 1 � 6
To be read as: “The instance(s) above... ...must be legal wrt schema version above”.

Table 4
Conditions for the consistency of a database with evolving schema

the time domain to database instances:

��� � �7� ��� . �9� � �����
where �9� is a set of (snapshot) database instances and �7� ���

is ��� ��� �
, ��� �����

or �7� ����� 0 ��� �����
, respectively, if a valid-time, transaction-time or bitemporal

database is considered. Notice that we are not interested here in a detailed modeling
of temporal databases but rather in the investigation of the interaction between an
evolving schema and its extensional component. For this reason we have adopted an
abstract (functional) generic approach to temporal databases; however, any specific
temporal data model (e.g.[11]) can be put in this form.

4.3 Definition of Legal Databases

In this subsection we introduce the notion of legal database by considering all the
combinations of the two orthogonal levels of versioning, intensional and exten-
sional. Notice that an evolving schema is made up of one or more schema ver-
sions, whereas a database consists of one or more instances. Hence, in all the cases
we will consider, consistency will always be based on the notion of legal instance
for a schema version (Def. 4); the cases will simply differ on the instances and
schema versions to be considered. As far as the interaction between the tempo-
ral dimensions involved in intensional and extensional versioning, we follow here
a Synchronous Management approach [16], according to which temporal data
are always stored, retrieved and updated through the schema version having the
same temporal pertinence. Notice that the synchronous management is the usual
choice for schema versioning support in object-oriented databases, where data ob-
jects are normally only visible (and updatable) through the schema version they
belong to, that is the one in which they were created [17]. We will consider, at inten-
sional level: transaction-time (tS), valid-time (vS) and bitemporal schema version-
ing (tvS), and, at extensional level: snapshot (D), transaction-time (tD), valid-time
(vD) and bitemporal databases (tvD).

Let us start with the interaction between an evolving schema and a snapshot database

20

(D), which is simply made up of one instance. We must introduce different consis-
tency conditions according to the semantics of the time dimensions supported by
schema versioning. In fact, a snapshot database only represents the current state of
the modeled enterprise; it maintains no history, either from the system or from the
real world viewpoints. For this reason, we require a snapshot database to be legal
with respect to the current (with transaction time equal to D ��� �) and present (with
valid time equal to D ��� �) schema version � . As a consequence, when an evolving
schema interacts with a snapshot database, a current and present schema version
must always exist.

A transaction-time database (tD) can only “mimic” the evolution of the modeled
real world evolution by means of its own modification history. In this perspec-
tive, the transaction-time pertinence of the stored data gives also the best possi-
ble approximation of their validity [31]. For this reason, when valid-time schema
versioning is supported, transaction-time of data has to coincide with the valid-
time of the schema to comply with a synchronous management. On the other hand,
when transaction-time schema versioning is supported, a “pure” full synchronous
approach can be followed.

As to a valid-time database (vD), it allows one to maintain the most accurate his-
tory (as known by users) of the modeled real world in the current state of the sys-
tem. For this reason, when transaction-time schema versioning is supported, we
require all instances in the valid-time database to be legal for the current schema
version. When valid-time schema versioning is supported, a synchronous manage-
ment forces us to consider the valid-time adopted for intensional and extensional
versioning to be exactly the same. The case of bitemporal schema versioning can
be simply managed as the combination of the previous two.

Finally, for a bitemporal database (tvD) we require full compliance with the adopted
synchronous management approach.

All the resulting consistency constraints are summarized in Tab. 4, showing the
conditions a database ��� must satisfy in order to be legal with respect to an evolv-
ing schema

�
 � &'��� � �,� �
 � � ��������+ . The columns on the right correspond to
the three different kinds of intensional versioning whereas rows correspond to the
four different kinds of extensional versioning. For each kind of database and of
evolving schema, the table shows which instance(s) must be legal with respect to
which schema version(s).

� Notice that, as time goes by, the value of � ��� grows. For transaction time, this is not
a problem since � ��� � is equivalent to

� � ��� � ����� � , whereas the semantics of valid time
allows different schema versions (created via proactive schema changes) to be associated
to different points in

� � ��� � ����� � . However, in order to enforce the consistency rules, we
can always consider an anchored value of � ��� � , that coincides with the present time. This
corresponds to consider the denotation of the “valid-time variable” � ��� � at the reference
time of evaluation [30].

21

4.4 Dealing with Multiple Schema Versions

The evolving schema definition given in Def. 7 states that each schema version is
the outcome of the application of one or more schema changes to another schema
version. In other words, if
 � � derives from the application of the schema modi-
fication E to
 � ! , then E represents a “direct connection” between
 � ! and
 ���
(& E �
 � ! �
 ��� + � �). In this perspective, an evolving schema can be interpreted as
a directed graph, with the collection of schema versions representing nodes and the
applied schema modifications representing edges. In fact, given an evolving schema�
 � &'��� � �,� �
 � � ��������+ , � can be interpreted as a schema graph, where each
element & E �
 � ! �
 � � + represents an edge labeled with E connecting node
 � ! to
node
 ��� . More precisely, the graph is a tree where each schema version has at
most one predecessor since
 ��� always generates a new schema version.

In a system with schema versioning support, the opportunity to access instances
which are legal for a schema version through other schema versions will arguably
be seized (e.g. to run compiled applications against data conforming to a subse-
quently modified schema). The schema graph can represent a way for understand-
ing how to transform data such that they become consistent with respect to the
target schema version. This will be possible only if each edge of the schema graph
can be followed in both directions. Our first aim, thus, is to show that each schema
modification E has an inverse E 	 � in the supported collection. In some cases, re-
versibility of schema modification requires the introduction of some applicability
conditions.

Example 4 Consider the evolving schema of Ex. 3. Given an instance � which is
legal for a schema version,
 � � for instance, and assuming that we are interested
in transforming � into an instance which is legal for another schema version, say

 � # , then we could apply the following modifications to � :

� 8 � ��� & AddClass ���������
� + & ��� & AddAttribute
	 ���������� 	� � !N � � ��F��� ������� + & � +	+

which, if the schema modification corresponding to AddAttribute
	 ���������� 	� � !N � � ��F��� �������

is known to produce legal instances, ensures that ��8 is legal for
 � # by Theorem 2.

Tab. 5 lists the modifications to be applied when inverses are required. The follow-
ing theorem ensures that, under some conditions on the source schema, the given
changes are actually the inverse modifications of the supported schema changes.
For instance, the applicability condition of AddAttribute specifies that if any sub-
class of 6 already contains an attribute with name � then its type must be a subtype
of the one associated with the attribute � to be added to 6 .

Theorem 3 With reference to Tab. 5, for each schema modification E applied on a
source schema
 � (on which the evidenced preconditions hold) the schema modifi-
cation E 	 � of Tab. 1 is its inverse, that is: if
 ��� & E + &
 � + �
 � 8 where
 � 8 �� �

,

22

� � 	 �
AddAttribute ��� � � � DeleteAttribute ��� � � �5 3 �7� � � if

:�� � � 45376�8 � ,,,-� ��� � >3�,,, � then
� > % �

DeleteAttribute ��� � � � AddAttribute ��� � � �
ChangeAttrName � � � � � � ChangeAttrName � � � � � �5 3 �7� � � 5 � �76 � � % � � if ; :�� � � 4 � 6�8 � ,,,-� ��� � >3�,,, �
ChangeAttrType � � � � � � � � ChangeAttrType � � � � � � � �� % �

8 , 5 3 �7� � � 5 � �76 � �
if
:�� � � 4 � 6�8 � ,,,.� � � � > �,,, � then

�
8 % � >

ChangeClassType � � � � � � ChangeClassType � � � � � �� % �
8

AddSuperclass � � � � DeleteSuperclass � � � �; : 3 8 8 � 021
	 � 3 8 8 � 3 8
DeleteSuperclass � � � � AddSuperclass � � � �
AddClass � DeleteClass �
DeleteClass � AddClass �
ChangeClassName � � � � ChangeClassName ��� � �

Table 5
List of inverse schema changes

then
 ��� & E 	 � + &
 � 8 + �
 � .

Therefore, if all schema modifications respected all the applicable preconditions,
any edge of a schema graph can be followed in both directions, direct and inverse.
Now, we introduce the notions of minimal path and minimal modification between
any pair of schema versions.

Definition 8 (Minimal Path and Modification) Let
�
 � &'��� � �,� �
 � � ��������+

be an evolving schema and
 � ! �
 ��� �
 � � .

The minimal path from
 � ! to
 ��� is the sequence �
 � 8 � �
 � 8 � �����$�
 � 8 	 � �
 � 8 � of
schema versions in
 �8� in the shortest (undirected) path which connects
 �7! and

 ��� in the schema graph, where
 � 8 � �
 � ! and
 � 8 �
 ��� .

Given the minimal path �
 � 8 � �
 � 8 � �����$�
 � 8 	 � �
 � 8 � from
 � ! to
 ��� , the corre-
sponding minimal modification denoted as
 � ! �.
 ��� is the sequence of schema

23

modifications � E@8 � ��������� E 8 � where for each ?@�A�CB �)D �

E 8 > �
�� � E@> if & E@> �
 � 8 >
	 � �
 � 8 > + � �
E 	 �> if & E@> �
 � 8 > �
 � 8 >
	 � + � �

Corollary 2 Let � � &
 � � � � ����+ be a schema graph. For any pair &
 � ! �
 � � +
of schema versions, a minimal path and a minimal modification from
 �7! to
 ���
always exists.

It directly follows from the fact that � defines a tree and that, for each schema
modification, ��������� �	� supports its inverse. Actually, since the schema graph is
a tree, if

�����
is the “youngest” common ancestor of

��� ! and
��� � (i.e. the root of

the minimal subtree containing either
��� ! and

��� �), the minimal modification is
made up of all inverse modifications to go up the subtree from

��� ! to
�����

and all
direct modifications to go down the subtree from

�����
to

��� � .

Finally, we can introduce a way for modifying an instance legal for a schema ver-
sion such that it becomes legal for any other schema version in the schema graph.

Lemma 3 Let � � &
 � � � � ����+ be a schema graph,
 � ! �
 ��� �
 � � , � E 8 � �������$� E 8 �
the minimal modification
 � !+�.
 ��� and � an instance legal for
 � ! . The in-
stance
��� & E 8 +�� ��� & E 8 	 � +�� ������� ��� & E 8 � + & � + denoted as � �	�
	�� �	��� is a legal instance
for
 ��� .

The proof of this Lemma directly follows from Lemma 4 and Theorem 2. Notice
that, although � �	�
	�� �	��� is legal for
 ��� , it could miss some (extensional) informa-
tion with respect to � . Lemma 4 operates at schema level, stating that it is possible
to undo the effects of the application of any schema modification by applying its
inverse. At instance level instead, undoing is not always possible. Consider, for ex-
ample, the deletion of an attribute and its inverse, the addition: in this case, starting
from an instance which is legal for a schema containing the attribute to be deleted
(which can have non-null values), the deletion of such an attribute and then its
re-addition will cause the introduction of all null values for the attribute.

5 Action of Schema Changes at Evolving Schema and Database Level (Global
Effects)

When schema versioning is supported, schema changes allow database administra-
tors to add new schema versions to the evolving schema, to reflect structural modi-
fications to the modeled real world. In ��������� �	� each schema change affects one
schema version and generates a new one. In the temporal context, where schema
versions are “distributed” along the supported time dimensions, two aspects have

24

to be considered:

� which schema version is subject to change,
� which is the temporal pertinence of the new schema version resulting from the

schema change.

When transaction time is supported, its particular semantics forces the current
schema version(s) to be exclusively considered for changes and the interval � D ��� � ��� � �
to be assigned as the transaction-time pertinence to the resulting schema version.
On the other hand, the management of valid time is only under the users’ respon-
sibility. For this reason, when valid time is supported, we require users to specify
which schema version has to be modified and which is the valid-time pertinence
of the newly introduced schema version. This is accomplished by means of two
parameters to be added to the schema change specification: the schema selection
validity and the schema change validity. The former (���) is a valid-time chronon
and is used to select the schema version; the latter (� .) is a valid-time element, that
is a disjoint union of valid-time intervals, representing the validity to be assigned
to the schema change result.

Therefore, when one or more schema changes in Tab. 1 have to be applied to
the schema, one schema version is selected: the current one, for transaction-time
schema versioning, the one which satisfies the schema selection validity (i.e. valid
at ���) for valid-time schema versioning and, among the current schema versions, the
one which satisfies the schema selection validity for bitemporal schema versioning.
Then a new schema version is generated as the outcome of the schema change(s) ef-
fected on the selected schema version. The temporal pertinence of the new schema
version is � D ��� ��� � � for transaction-time schema versioning, the schema change
validity � . for valid-time schema versioning and the product � D ��� ��� � � 0 � . for
bitemporal schema versioning. As a consequence, all the schema versions whose
temporal pertinence is overlapped by the new schema version have their overlapped
part overwritten (or “archived”). When transaction time is supported, this means
that they quit the current part of the database and can no longer be modified. Such
a process is formalized by the schema update function
 � . The
 � function trans-
forms the evolving schema into a new one and, obviously, its signature depends on
the supported temporal schema versioning (additional parameters are required only
if valid-time is supported) and it makes use of the schema version update function

 ��� for the derivation of the new schema version.

We first introduce a function, named ��� /. � , which associates a schema version with
its pertinence as follows (
 �8� is the set of all possible schema versions and �4� is
the set of all possible timestamping functions):

��� /. � �
 � � 0 � & ����� 0��4�,.��4�
if
 � �
 � � is a schema version, �	� � �'& ����� is the “new” pertinence to be
assigned to
 � and � �
�4� , then ��� /. � &
 � � �	� ��� + � � 8 where for each #A�

25

0

Transaction Time

8

30 60

50

60

890

Valid Time

45

SV 1
75

80

SV

Transaction Time

8

860 90450 30

50

60

Valid Time

75

80

SV

2

1

8

860 90450 30

Valid Time

50

60

75

Transaction Time

80

SV

SV
SV1

3

2

(a) (b) (c)

Fig. 2. Example of evolution of a database schema

��� ���
:

� 8 & # + �
�� �
 � if #�� � �
� & # + otherwise

Definition 9 (Schema Update) Let
 � be the set of all possible schema changes,
and

�
�� the set of all possible evolving schemata of the same type (valid-time,
transaction-time or bitemporal schemata). The Schema Update is a function

 � �
 �4. & �
�� � 0 ��� ����� 0%� & ����� � �O. �
�� +

where the part of the signature in square brackets is only required if the evolving
schema is valid-time or bitemporal.

If
�
 � &'��� � �,� ��������+ is an evolving schema, E a schema change [and, if

valid-time is supported, �����=�7� ���	�
is the schema selection validity and � . �

��� �����
is the schema change validity], then

 � & E + & �
 � � ��� � � . � + � �
 8 � &'��� 8 � �,� 8 ��� 8 ��� 8 +

where � 8 � �%� ��& E �
 � ! �
 ��� + � and

� if transaction time schema versioning is supported, then
 �7! � � & D ��� � + �� � ,

 ��� �
 ���@& E + &
 � ! + , and � 8 � ��� /. � &
 ��� � � D ��� � ��� � � ��� +

� if valid time schema versioning is supported,
 � ! � � & ��� + �� � ,
 ��� �
 ��� & E + &
 � ! + ,
and � 8 � ��� /. � &
 � � � � .���� +

� if bitemporal schema versioning is supported,
 � ! � � & D ��� � � ��� + �� � ,
 ��� �

 ��� & E + &
 � ! + , and � 8 � ��� /. � &
 ��� � � D ��� � ��� � � 0 � . ��� +

Example 5 The following table defines a schema update process based on the
transactions described in Ex. 3: the corresponding transaction time (tt), the schema
selection validity (���) and the schema change validity (� .) are listed below.

26

Transaction tt ��� � .

t1 � – � � ��� �
t2 � ��� � � � � � �
t3 � � � � � � ��� �

The evolution of the � function after each transaction commit is shown in Fig. 2.

The first transaction result (not a schema change) is:

�
 � & ���E������������ � ����������������� � � � D! E"� � ��� D �-, � ' � ���!��� +

where � � � and �I� � � ��� � � 0A� � ��� � � �.
 � � as displayed in Fig. 2(a).

For the second transaction, the Schema Update is:

 � & AddAttribute ��������� 	� � !N � �
���
� � ��F��� ������� + & �
 � ��� � � � � � � � +
where � & D ��� � � � � ��� + �
 � � . The resulting evolving schema is:

�
 8 � & ���E������������ � ����������������� � � � D! E"� � ��� D �-, � 'O� = /,�' � D �#� ��� 8 ��� 8 +

where � 8 � ��& AddAttribute ��������� 	� � !N � � ��F��� ������� �
 � � �
 � � + � and (see Fig. 2(b)):

� 8 � � � � � � � � 0A� � ��� � � � � � ��� � � 0A� � � � � � � � � � ��� � � 0A� � B ��� � � �.
 � �
� 8 � � � ��� � � 0A� � � � � � � �.
 � �

For the third transaction, the Schema Update is

 �@& AddClass ���������
� + & �
 8 � � � � � ��� � +

where � 8 & D ��� � � � � � � + �
 � � (see Fig. 2(c)). The resulting evolving schema was
described in Ex. 3.

In a database management system, an evolving schema must be associated with a
legal database. When it undergoes changes, its database must be modified too in
order to become legal for the new evolving schema. The problem can be solved
according to the following steps:

(1) locate the instance(s) of the database to be modified;
(2) transform those instances such that the entire database becomes legal for the

transformed evolving schema.

As to the first point, let us compare an evolving schema before and after any schema
change: the association of the time domain with schema versions which is encoded
by � and � 8 is only modified in the portion overlapping the temporal pertinence

27

I1

810030 60
Valid Time

I2 I3

sc

I1

810030 60
Valid Time

I’2 I3

45 90

1 I2I’

sc

I1 3

810030 60
Valid Time

I’2
45 90

1 2I’
80

I’’’I’’2 I’

(a) (b) (c)

Fig. 3. Example of a valid-time database with evolving schema

of the newly introduced schema version (modified portion in the following, that
is � D ��� � ��� � � if transaction-time is supported times � . if valid-time is supported).
In fact, these time points only are associated by � 8 with the new schema version.
Hence, the instance(s) of the database to be modified are all those which were
legal for the schema versions
 � > previously associated with the modified por-
tion. As to the second point, since the newly introduced schema version
 � � is
the outcome of the application of the schema change E to the selected schema
version
 � ! , we can transform the database instance underlying
 � > into a le-
gal instance for
 � ! , � �	��� � �	��	 , before the application of ��� , eventually yielding
��� & E + & � �	� � � �	��	 + , which is a legal instance for the new schema version
 � � as
ensured by Lemma 2. This is globally equivalent to the evaluation of the formula
� �	��� � �	��� , since
 � � is uniquely and directly reachable from
 � ! through the ap-
plied schema change. The database update function ��� � formalizes these steps:
it receives the applied schema modification E , a database ��� legal for the evolv-
ing schema

�
 , the two parameters ��� (schema selection validity) and � . (schema
change validity), if required, and produces a database ��� 8 which is legal for the
evolving schema

�
 8 �
 � & E + & �
9� � ��� � � . � + :
��� 8 � ��� � & E + & �
 � ���9� � ��� � � . � +

the composition of the new database ��� 8 depends both on the kind of evolving
schema

�
 and the kind of database ��� .

Example 6 Let us assume the bitemporal evolving schema of Ex. 3 to interact with
a valid-time database. We assume that, after the transaction t1 which created the
initial schema
 � � , an initial database composed of three database instances, say
� ��� � � and � # , has also been created. We assume the initial database to be defined
as follows (see also Fig. 3(a)):

��� � � � � � � � � �. � �
��� � � � � � � � � �. � �

��� � � B ��� � � �. � #
(for instance, it is sufficient that some data object has been inserted with validity
� � � � � � � and some other object has been inserted with validity � � ��� � �). We fur-
ther assume, for the sake of simplicity, that no modifications are made to the data
instances after their creation.

We saw in Ex. 3 that transaction t2 selects
 � � for modification and produces
 � #

28

with validity � . � � � � � � � � . Owing to synchronous management, instances � � and
� � have a modified portion overlapping � � � � � � � � and � � � � � � , respectively, which
has to adapted to the new schema
 � # valid in � � � � � � � . The instance � # and the
unaffected portions of � � and � � remain unchanged. The result of the application
of the ��� � function is, in this case (see Fig. 3(b)):

��� 8 � � � � � � � � �. � �
��� 8 � � � � � � � � � �. � 8� � & � �)+ �	� � � �	�

��� 8 � � � � � � � �. � 8� � & � � + �	� � � �	�

��� 8 � � � B � � � � � �. � �

��� 8 � � B ��� � � �. � #
The applied transformation which makes the modified portions of � � and � � legal
with respect to their “new” schema is, in both cases: � 8! � & � ! + �	� � � �	�
 �
��� & AddAttribute ��������� 	� � !N � �
���
� � ��F��� ������� + & � ! + (for & � B � �).
Transaction t3 still selects
 � � for modification and produces
 � # with validity
� . � � � ��� � � . The synchronous management requires that the modified portion
of all instances whose validity overlaps � . (i.e. � 8� � � � and � #) be made legal with
respect to their “new” schema
 � # . The effects of ��� � are, thus (see Fig. 3(c)):

��� � � � � � � � � �. � �
��� � � � � � � � � � �. � 8�
��� � � � � � � � � �. � 8�
��� � � � � � � � �. � 8 8� � & � 8� + �	�
 � �	���
��� � � � B � � � � � �. � 8 8 8� � & � � + �	� � � �	���
��� � �CB ��� � � �. � 8#

� & � # + �	� � � �	���
where the transformation applied to � 8� is the same as considered in Ex. 4, whereas
& � ! + �	� � � �	��� � ��� & AddClass ���������
� + & ��� & AddAttribute ��������� 	� � !N � �
���
� � ��F��� ������� + & � ! +	+
(for & � � � �).

For a complete definition of the ��� � behaviour, all the alternatives can be easily
derived from the definition of legal database (see Tab. 4) and lead to a definition of
��� � & E + & �
 � ���9� � ��� � � . � + as listed below:

(D) ��� is a snapshot database In this case, ��� has to be consistent with the
current and present schema version. Therefore, ��� is modified if and only if
such a schema version is affected by the applied schema change E .
� (tS)

�
 is a transaction-time schema: ��� 8 � ��� & E + &���� + ;
� (vS)

�
 is a valid-time schema: ��� 8 �
�� � ��� �	��� � �	��� if D ��� � � � . ,
 ��> � � & D ��� � +
��� otherwise

where
 ��� �
 ���@& E + & � & ��� +	+ ;

29

� (tvS)
�
 is a bitemporal schema: ��� 8 �

���� ��� ��� �	��� � �	��� if D ��� � � � . ,

 ��> � � & D ��� � �)D ��� � +

��� otherwise
where
 ��� �
 ���@& E + & � & D ��� � � ��� +	+ ;

(tD) ��� is a transaction-time database In this case, we consider all transaction-
time chronons and modify only those instances whose corresponding schema
version has been modified by the application of E . For each # # �-�7� ��� �

,
� � ��� & # # + and:

� (tS)
�
 is a transaction-time schema: ��� 8 & # # + �

�� � ��� & E + & � + if # # 	 D ��� �
� otherwise

� (vS)
�
 is a valid-time schema: ��� 8 & # # + �

�� � � �	� � � �	��� if # #�� � . ,
 ��> � � & # # +
� otherwise

where
 ��� �
 ���@& E + & � & ��� +	+ ;
� (tvS)

�
 is a bitemporal schema: ��� 8 & # # + �
���� ��� � �	��� � �	� � if # # 	 D ��� � � # #�� � . ,

 ��> � � & # # � # # +
� otherwise

where
 ��� �
 ���@& E + & � & D ��� � � ��� +	+ ;

(vD) ��� is a valid-time database In this case, we consider all valid-time chronons
and modify only those instances whose corresponding schema version has been
modified by the application of E . In particular, if transaction time is supported
we consider D ��� � as parameter for the schema version selection whereas if valid
time is supported we follow the synchronous approach. For each 0 #����7� ��� �

,
� � ��� &�0 # + and:
� (tS)

�
 is a transaction-time schema: ��� 8 &�0 # + � ��� & E + & � +
� (vS)

�
 is a valid-time schema: ��� 8 &�0 # + �
�� � � �	��� � �	��� if 0 #�� � . ,
 ��> � � &�0 # +
� otherwise

where
 ��� �
 ���@& E + & � & ��� +	+ ;
� (tvS)

�
 is a bitemporal schema: ��� 8 &�0 # + �
���� ��� � �	��� � �	��� if 0 #�� � . ,

 ��> � � & D ��� � � 0 # +
� otherwise

where
 ��� �
 ���@& E + & � & D ��� � � ��� +	+ ;

(tvD) ��� is a bitemporal database In this case, we simply follow a synchronous
approach. For each & # # � 0 # + �4�7� ���

, � � ���9& # # � 0 # + and:

� (tS)
�
 is a transaction-time schema ��� 8 & # # � 0 # + �

�� � ��� & E + & � + if # # 	 D ��� �
� otherwise

� (vS)
�
 is a valid-time schema ��� 8 & # # � 0 # + �

�� � � �	��� � �	��� if 0 #�� � . ,
 ��> � � &�0 # +
� otherwise

30

� (tvS)
�
 is a bitemporal schema ��� 8 & # # � 0 # + �

���� ��� � �	��� � �	� � if 0 # � � . , # # 	 D ��� � ,

 ��> � � & D ��� � � 0 # +

� otherwise
where
 ��� �
 ���@& E + & � & D ��� � � ��� +	+ .

In the Theorem which follows, we eventually consider global correctness of an
evolving schema. It stems from the fact that, for any kind of evolving schema and
database, the application of a schema change leads to a transformed database which
continues to be legal for the modified evolving schema.

Theorem 4 Let
�
 be an evolving schema and ��� a database legal for

�
 . For
each schema modification E , and parameters ��� (schema selection validity) and � .
(schema change validity) when required, the database ��� � & E + & �
 � ��� � � � ��� � � . � +
is legal for the new evolving schema
 � & E + & �
 � � ��� � � . � + .
The proof directly follows from Lemma 3 and from the definitions of legal database
for evolving schema and schema update function
 � .

6 Related Work and Discussion

The problems of schema evolution and schema versioning support have been widely
studied in relational and object-oriented database papers: [17] provides an excellent
survey on the main issues concerned. The introduction of schema change facilities
in a system involves the solution of two fundamental problems: the semantics of
change, which refers to the effects of the change on the schema itself, and the
change propagation, which refers to the effects on the underlying data instances.
The former problem involves the checking and maintenance of schema consistency
after changes, whereas the latter involves the consistency of extant data with the
modified schema.

In the object-oriented field, two main approaches were followed to ensure consis-
tency in pursuing the “semantics of change” problem. The first approach is based
on the adoption of invariants and rules, and has been used, for instance, in the
ORION [2] and O � [1] systems. The second approach, which was proposed in
[32] and developed in the context of the TIGUKAT [33], is based on the intro-
duction of axioms. In the former approach, the invariants define the consistency of
a schema, and definite rules must be followed to maintain the invariants satisfied af-
ter each schema change. In the latter approach, a sound and complete set of axioms
(provided with an inference mechanism) formalises the dynamic schema evolution,
which is the actual management of schema changes in a system in operation. The
compliance of the available primitive schema changes with the axioms automati-
cally ensures schema consistency, without need for explicit checking, as incorrect

31

schema versions cannot actually be generated.

For the “change propagation” problem, several solutions have been proposed and
implemented in real systems, which can be ascribed to four main approaches:

(1) Immediate conversion (coercion): changes are propagated via immediate ob-
ject conversion – used for instance in GemStone [34];

(2) Deferred conversion (lazy updates, screening): changes are propagated via
deferred object conversion – used for instance in ORION [2];

(3) Filtering: changes are never propagated; objects are indeed assigned to dif-
ferent schema versions according to their semantics – used for instance in
CLOSQL [35];

(4) Hybrid: uses or combines two or more of the previous approaches – used for
instance in Sherpa [36] and O � [1].

In any case, simple default mechanisms can be used, or user-supplied conversion
functions must be defined for non-trivial extant object updates. The work [37] intro-
duces an axiomatic model for change propagation which is capable of identifying
in a declarative manner the set of objects affected by a schema change, that can
serve, for instance, as input to any available object conversion method.

Instead of relying on automatic re-organisation of the data after the schema change,
in [38] a declarative instance update programming language is proposed to be used
in combination with schema updates. A remarkable advantage of this approach is
that it is based on a formal notion of consistency, which provides the user with a
decidable static consistency checking mechanism to validate the schema and extant
data modifications.

A completely different approach is taken in [39], where algorithms were devised
to analyse complex type changes by comparing two schema versions and accord-
ingly derive transformation rules that can applied to propagate the changes to extant
objects.

The work done by the research group(s) led by Elke A. Rundensteiner deserves a
separate mention, as she has been in recent years one of the most active scientists in
the schema evolution and versioning field. The primary goal of her research in this
context was to develop transparent schema change technology that allows on-line
modification of databases without disturbing existing applications [40]. Ongoing
projects include the study of an extensible, re-usable and flexible framework based
on the integration of a fixed set of invariant-preserving primitive change operations
(with the standard object query language OQL as the vehicle for flexible object
migration) [41], and the optimization of complex sequences of schema evolution
operations [42].

Finally, also our previous work [43,44] concerned a formal characterization of the
schema evolution process in an object-oriented database. We formalized the notion

32

of schema version and the interschema relationships induced by schema changes
using an encoding in Description Logics [45]. We introduced interesting reasoning
tasks concerning the check of different types of consistency defined at local (i.e.
single schema version) or global (i.e. complete database) level, which can be solved
using the inference engine of the Description Logic. However, we did not consider
the change propagation problem in [43,44]: we actually assumed dealing with a
single database instance, compatible with every derivable schema version, as the
only way to ensure portability of applications compiled with past schema versions.
An extreme consequence of such an approach is the introduction of a strong notion
of “monotonicity”: all the legal instances of the schema version resulting from a
schema change were also legal with respect to the schema version which has been
modified, so that there is no need for change propagation at all. Although such a
framework is suitable to describe some progressive “schema refinement” process,
it is unable to capture what it is usually meant (also in the present paper) by schema
evolution and versioning.

With respect to previous work, the present paper deals with the “semantics of
change” problem with the definition of a schema update process which has been
proved correct (Theorem 1) and is consistent with the invariant-based approach.
The proposed solution for the “change propagation” problem relies in our model
on a simple coercion mechanism (e.g. based on the introduction of nulls for newly
added object attributes), which has been proved correct with respect to the schema
update process (Theorem 2). Moreover, whereas temporal schema versioning, also
in the presence of temporal data, has been previously considered in the relational
database field (e.g. in [16], where the principle of synchronous management has
been introduced), this is the first attempt to address, on a sound formal basis, the
problem in the context of the object-oriented data model. To this end, we considered
in ��������� �	� the interaction between the intensional and extensional versioning
levels, and introduced the notions of evolving schema and of legal database with
respect to an evolving schema. We addressed the issue of “reversibility” (at schema
level) for schema changes and defined appropriate inverse modifications (Theo-
rem 3) to deal with multiple schema versions in a unified framework. The proposed
solutions for managing the global effects of schema changes have been proved con-
sistent with respect to the legality maintenance requirements (Theorem 4).

It should be noted that we considered in this paper only the impact of schema
changes on an evolving schema and not the pure management of extensional data
versions. On the other hand, extensional data versioning has been dealt with for-
mally in several other object models, where different data versions are allowed to
coexist in the presence of a fixed schema (e.g. extensional versioning considered
in temporal databases [11] or in multiversion databases [46]). If we want to add
temporal schema versioning to such models, our approach can be used to enforce
consistency constraints between the intensional and extensional levels. In particu-
lar, if a temporal database is considered, such constraints are exactly those studied
in Section 4; if a non-temporal multiversion database is considered, we can apply

33

the results of Section 4 for the case of snapshot database, since the semantics of
time has no further impact on the interaction between the two levels.

As far as turning our ��������� �	� model into a working system is concerned, the
semantics proposed for the schema change and propagation of change operations
could serve as a guideline for their correct implementation: since semantics is given
in a functional form, the operations can be implemented in a straightforward way.
Obviously, although such an approach would lead to an effective implementation
which is guaranteed consistency-preserving owing to the results proved in this pa-
per, to achieve efficiency is a different kind of problem. As a first step, the semantics
of operations has been carefully defined in Section 3 as acting on the minimal re-
quired portion of the schema (e.g. only in the DeleteSuperclass case the whole
class hierarchy has to be recomputed). However, a fully optimized implementation
of operations, which is also strictly dependent on an optimized physical design of
the data structures of the underlying database, was clearly beyond the scope of this
paper and will be addressed in our future work. The main purpose of the present
work was to guarantee that any possible implementation of temporal schema ver-
sioning were free from malfunctionings due to a non careful specification of op-
erations. Therefore, future implementation of our schema versioning solutions will
be grounded on the solid foundations provided by the theoretical framework intro-
duced here.

7 Conclusions

In this paper we presented ��������� �	� , a formal model for the management of
temporal schema versioning in the context of a possibly temporal object-oriented
database. An operational semantics for the available schema change primitives has
been provided and its correctness property have been investigated. ��������� �	� is
also provided with an embedded mechanism to translate data from a given schema
version into another, which is used to correctly propagate schema changes to ex-
tant data after schema changes by preserving global temporal integrity (following a
synchronous management approach). The same mechanism can also be used to an-
swer queries in the presence of multiple schemata, which is a major requirement of
schema versioning support (e.g. for the reuse of legacy applications or for auditing
purposes).

References

[1] F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, J. Madec, Database Evolution in the
O � Object Database System, in: Proc. of the 21st Int. Conf. on Very Large Databases
(VLDB), Zurich, Switzerland, 1995, pp. 170–181.

34

[2] J. Banerjee, W. Kim, H.-J. Kim, H. F. Korth, Semantics and Implementation of Schema
Evolution in Object-Oriented Databases, in: Proc. of the ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD), San Francisco, CA, 1987, pp. 311–322.

[3] R. Breitl, The GemStone Data Management System, in: W. Kim, F. Lochovsky (Eds.),
Object-Oriented Concepts, Databases, and Applications, Addison-Wesley, Reading
MA, 1989, pp. 283–308.

[4] W. Kim, H.-T. Chou, Versions of Schema for Object-Oriented Databases, in: Proc. of
the 14th Int. Conf. on Very Large Databases (VLDB), Los Angeles, CA, 1988, pp.
148–159.

[5] K. R. Dittrich, R. A. Lorie, Version Support for Engineering Database Systems, IEEE
Transactions on Software Engineering 14 (4) (1988) 429–436.

[6] S.-E. Lautemann, Schema Versioning in Object-Oriented Database Systems, in: Proc.
of the 5th Int. Conf. on Database Systems for Advanced Applications (DASFAA),
Melbourne, Australia, 1997, pp. 323–332.

[7] R. Newell, D. Theriault, M. Easterfieldy, Temporal GIS - Modeling The Evolution of
Spatial Data in Time, Computers and Geosciences 18 (4) (1992) 427–434.

[8] G. Faria, C. Bauzer Medeiros, M. Nascimento, An Extensible Framework for Spatio-
Temporal Database Applications, in: Proc. of 10th Int. Conf. on Scientific and
Statistical Database Management (SSDBM), IEEE Computer Society, Capri, Italy,
1998, pp. 202–205.

[9] W. W. Chu, I. T. Ieong, R. K. Taira, C. M. Breant, Temporal Evolutionary Object-
Oriented Data Models and Its Query Language for Medical Image Management, in:
Proc. of the 18th Int. Conf. on Very Large Databases (VLDB), Vancouver, Canada,
1992, pp. 53–64.

[10] Y. Masunaga, An Object-Oriented Apporach to Temporal Multimedia Data Modeling,
IEICE Transactions on Information and Systems E78-D (11).

[11] E. Bertino, E. Ferrari, G. Guerrini, T-Chimera: A Temporal Object-Oriented Data
Model, Theory And Practice Of Object Systems 3 (2) (1997) 103–125.

[12] I. A. Goralwalla, M. T. Özsu, Temporal Extensions to a Uniform Behavioral Object
Model, in: R. A. Elmasri, V. Kuramajian, B. Thalheim (Eds.), Entity-Relationship
Approach — ER’93, Springer-Verlag, 1993, pp. 110–121, lNCS No. 823.

[13] W. Käfer, H. Schöning, Realizing a Temporal Complex-Object Data Model, in: Proc.
of the 1992 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD), San
Diego, CA, 1992, pp. 266–275.

[14] E. Rose, A. Segev, TOODM - A Temporal Object-Oriented Data Model with Temporal
Constraints, in: Proc. of the 10th Int. Conf. on Entity-Relationship Approach (ER), San
Mateo, CA, 1991, pp. 205–229.

[15] G. T. Wuu, U. Dayal, A Uniform Model for Temporal Object-Oriented Databases, in:
Proc. of the 8th IEEE Int. Conf. on Data Engineering (ICDE), Tempe, AZ, 1992, pp.
584–593.

35

[16] C. De Castro, F. Grandi, M. R. Scalas, Schema Versioning for Multitemporal
Relational Databases, Information Systems 22 (5) (1997) 249–290.

[17] J. F. Roddick, A Survey of Schema Versioning Issues for Database Systems,
Information and Software Technology 37 (7) (1995) 383–393.

[18] L. Cardelli, A Semantics of Multiple Inheritance, in: Proc. of the Int. Symp. on
Semantics of Datatypes, Sophia-Antipolis, France, 1984, pp. 51–67.

[19] C. Gunter, J. Mitchell, Theoretical Aspects of Object-Oriented Programming, MIT
Press, Boston, MS, 1994.

[20] S. Abiteboul, P. Kanellakis, Object Identity as a Query Language Primitive, Journal of
the ACM 45 (5) (1998) 798–842, a first version appeared in SIGMOD’89 Proceedings.

[21] C. Beeri, Formal Models for Object Oriented Databases, in: Proc. of the 1st Int. Conf.
on Deductive and Object-Oriented Databases (DOOD), Kyoto, Japan, 1989, pp. 370–
395.

[22] C. Beeri, T. Milo, Subtyping in OODBs, Journal of Computer and System Sciences
51 (2) (1995) 223–243.

[23] F. Mandreoli, Schema Versioning in Object-Oriented Databases, Ph.D. thesis,
Department of Electronics Computer Science and Systems, University of Bologna
(Mar. 2001).

[24] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, Reading,
MA, 1995.

[25] P. Brèche, M. Wörner, How to Remove a Class in an Object Database System, in:
Proc. of the 2nd Int. Conf. of Applications of Databases (ADB), San Jose, CA, 1995,
pp. 476–495.

[26] S. Scherrer, A. Geppert, K. R. Dittrich, Schema Evolution in NO � , Tech. Rep. 93.12,
Institut für Informatik der Universität Zürich (1993).

[27] M. Tresch, M. H. Scholl, Meta Object Management and its Application to Database
Evolution, in: Proc. of the 11th Int. Conf. on the Entity Relationship Approach (ER),
Karlsruhe, Germany, 1992, pp. 299–321.

[28] C. S. Jensen, C. E. Dyreson, (Eds.), M. Böhlen, J. Clifford, R. A. Elmasri, S. K. Gadia,
F. Grandi, P. Hayes, S. K. Jajodia, W. Käfer, N. Kline, N. Lorentzos, Y. Mitsoupoulos,
A. Montanari, D. Nonen, E. Peressi, B. Pernici, J. F. Roddick, N. L. Sarda, M. R.
Scalas, A. Segev, R. T. Snodgrass, M. D. Soo, A. U. Tansel, P. Tiberio, G. Wiederhold,
The Consensus Glossary of Temporal Database Concepts - February 1998 Version, in:
O. Etzion, S. Jajodia, S. Sripada (Eds.), Temporal Databases — Research and Practice,
Springer-Verlag, 1998, pp. 367–405, lNCS No. 1399.

[29] C. S. Jensen, M. D. Soo, R. T. Snodgrass, Unifying Temporal Data Models via a
Conceptual Model, Information Systems 19 (7) (1994) 513–547.

[30] J. Clifford, C. E. Dyreson, T. Isakowitz, C. S. Jensen, R. T. Snodgrass, On the
Semantics of “Now” in Databases, ACM Transactions on Database Systems 22 (2)
(1997) 171–214.

36

[31] C. De Castro, F. Grandi, M. R. Scalas, Semantic Interoperability of Multitemporal
Relational Data, in: R. A. Elmasri, V. Kuramajian, B. Thalheim (Eds.), Entity-
Relationship Approach — ER’93, Springer-Verlag, Berlin, 1993, pp. 463–474, lNCS
No. 823.

[32] R. J. Peters, M. T. Özsu, An Axiomatic Model of Dynamic Schema Evolution in
Objectbase Systems, ACM Transactions on Database Systems 22 (1) (1997) 75–114.

[33] M. T. Özsu, R. J. Peters, D. Szafron, B. Irani, A. Lipka, A. Muñoz, TIGUKAT: A
Uniform Behavioral Objectbase Management System, The VLDB Journal 4 (3) (1995)
445–492, special issue on persistent object systems.

[34] D. J. Penney, J. Stein, Class Modification in the GemStone Object-Oriented DBMS,
in: Proc. of the Int. Conf. on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), Orlando, FL, 1987, pp. 111–117.

[35] S. Monk, I. Sommerville, A Model for Versioning of Classes in Object-Oriented
Databases, in: Proc. of the 10th British Nat. Conf. of Databases (BNCOD), Aberdeen,
Scotland, 1992, pp. 42–58.

[36] G. Nguyen, D. Rieu, Schema Evolution in Object-oriented Database Systems, Data
and Knowledge Engineering 4 (1989) 43–67.

[37] R. J. Peters, K. Barker, Change propagation in an Axiomatic Model of Schema
Evolution for Objectbase Management Systems, in: H. Balsters, B. de Brock,
S. Conrad (Eds.), Database Schema Evolution and Meta-Modeling — Proc. Intl’
Workshop on Foundations of Models and Languages for Data and Objects,
FoMLaDO/DEMM 2000, Selected Papers, no. 2065 in LNCS, Springer-Verlag, 2001,
pp. 142–162.

[38] J. Lagorce, A. Stockus, E. Waller, Object-Oriented Database Evolution, in: Proc. of
the 6th Int. Conf. on Database Theory (ICDT), Delphi, Greece, 1997, pp. 379–393.

[39] B. Staudt Lerner, A Model for Compound Type Changes Encountered in Schema
Evolution, ACM Transactions on Database Systems 25 (1) (2000) 83–127.

[40] Y.-G. Ra, E. A. Rundensteiner, A Transparent Schema-Evolution System Based
on Object-Oriented View Technology, IEEE Transactions on Knowledge and Data
Engineering 9 (4) (1997) 600–624.

[41] H. Su, K. T. Claypool, E. A. Rundensteiner, Extending the Object Query Language for
Transparent Metadata Access, in: H. Balsters, B. de Brock, S. Conrad (Eds.), Database
Schema Evolution and Meta-Modeling — Proc. Intl’ Workshop on Foundations of
Models and Languages for Data and Objects, FoMLaDO/DEMM 2000, Selected
Papers, no. 2065 in LNCS, Springer-Verlag, 2001, pp. 68–84.

[42] K. T. Claypool, C. Natarajan, E. A. Rundensteiner, Optimizing Performance of
Schema Evolution Sequences, in: Proc. of the Intl’ Symposium on Objects and
Databases, Sophia Antipolis, France, 2000, pp. 114–127.

[43] E. Franconi, F. Grandi, F. Mandreoli, A Semantic Approach for Schema Evolution
and Versioning in Object-Oriented Databases, in: Proc. of the 6th Intl’ Conf. on Rules

37

and Objects in Databases (DOOD) as a stream of the 1st Intl’ Conf. on Computational
Logic (CL), no. 1861 in LNAI, Springer-Verlag, London, UK, 2000, pp. 1048–1062.

[44] E. Franconi, F. Grandi, F. Mandreoli, Schema Evolution and Versioning: a Logical
and Computational Characterisation, in: S. C. Herman Balsters, Bert de Brock
(Ed.), Database Schema Evolution and Meta-Modeling — Proc. Intl’ Workshop on
Foundations of Models and Languages for Data and Objects, FoMLaDO/DEMM
2000, Selected Papers, no. 2065 in LNCS, Springer-Verlag, 2001, pp. 85–99.

[45] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, Reasoning in Expressive
Description Logics, in: A. Robinson, A. Voronkov (Eds.), Handbook of Automated
Reasoning – Vol. II, Elsevier, 2001, pp. 1581–1634.

[46] S. Gançarski, G. Jomier, A Framework for Programming Multiversion Databases, dke
36 (1) (2001) 29–53.

A Conversion Functions for Types and Values

A.1 The Type Conversion Function �

The � function calculates the type of the class 6 based on the class hierarchy in
&'��� � �)(���*,+ :

 � &�6 � &'��� � �)(���*,+	+ � (&�6 + � (&�6 �	+ � ������� (&�6 +

where � 6 � �������$� 6 � �
 � .

The symbol
�

denotes a partial function which is defined as follows:

(1) if � 8 �
�� or � 8 �;��� � :

 � 8 �
���� ��� if �1H�8
�8 if �8O1H�

otherwise

(2) if � ��.! � and �8 � ���8! � :

 � 8 �
�� � ��.! � �8! � if � �8 �� ��

otherwise

The bag and list cases can be treated analogously;
(3) if � ���7! � .! �& � ��" and �8 � ���7! � �8! ��& � �#8 " :

38

� � �8 � ���7! � ��&�& �A&5� � �#8 + � � .! +�� &�& �A&5�#8 � � + � � �8! +
� &�& �A&5��� �#8 + �@ � .! � �8! + "

if for each & � ��� �#8 : .! � �8! �� �
;

� � �8 � �
, otherwise

(4) if �����
	 then � �8 � �8 ; if �8 �����
	 then � �8 � ;
(5) otherwise, � 8 � �

.

Notice that, since
�

is commutative and associative, we can simply write 6 � � ����� �
6 as

� � 6 � �������$� 6 � .

A.2 The Instance Conversion Function � �

The � � function, given a schema version &'��� � �)(���*,+ , transforms the value 0
which is legal for the type into a new value 0 8 legal for 8 . It can be recursively
defined as follows:

� � &�0 � � 8 � &'��� � �)(���*,+	+ � 0 8
where

(1) if � �8 then 0#8 � 0 ;
(2) if �8 � then
� if � 8 �;��� � then 0 8 � D 3(��� ;
� if � �8O��
�� then 0#8 � 0 ;
� if � ��� �A� ����������� �! � � #" , �8 � ��� � � �8� �������$� �! � �8 �������$� �!F �
�8F " with �8> 1/$> , for ?G� �CB �)D � and 0 � ��� � � 0 � �������$� �! � 0 #" then
0#8 � ��� � � 0#8� �������$� �! � 0#8 � �! � � �,D 3(��� �������$� �!F � D 3(����" , where 0#8> �
� � &�0 > � $> � �8> � &'��� � � (�� *,+	+ , for ?@�A�CB �)D � ;

� if � � 7� , �8 � � �8K� and 0 � ��0 � �������$� 0 � , then 0#8 � ��0#8� ��������� 0#8 � where
0#8> � � � &�0 > � � �8 � &'��� � �)(���*,+	+ , for ? �J�CB �)D � and (0#8 is similarly defined
also for bag and list types);

(3) if �8(
� then
� if � �8O�;��� � then 0#8 � 0 ;
� if � �8O��
�� then 0#8 � 0 ;
� if �8 � ��� � � �8� �������$� �! � �8 " , � ��� � � ���������$� �! � � �������$� �!F � �F�"

with $> 1 8> , for ?4�3�CB �)D � and 0 � ��� � � 0 ���������$� �! � 0 �������$� �!F � 0 F�" ,
then 0#8 � ��� �9� 0#8� ��������� �! � 0#8 " , where 0#8> � � � &�0 > � $> � �8> � &'��� � �)(���*,+	+ ,
for ? �A�CB �)D � ;

� if � � 7� , �8 � � �8K� and 0 � ��0 � �������$� 0 � , then 0#8 � ��0#8� ��������� 0#8 � where
0#8> � � � &�0 > � � �8 � &'��� � �)(���*,+	+ , for ?���� B �)D � (0#8 is similarly defined also
for bag and list types);

(4) if � �8 � �
then 0#8 � D 3(��� .

39

In particular, if , �8 are both record types and �8 contains more attributes than (as
it happens when adding new properties), then 0 8 contains a null value for each new
attribute, otherwise if �8 contains less attributes than (as it happens when deleting
properties), then 0 8 no longer contains the values of the attributes which are not
present in 8 . Finally, since the extension of a class contains the extension of all its
subclasses, if , �8 are both object types (i.e. classes) and 8�
� then 0#8 is equal to
0 .

B Proofs

Proof of Lemma 1. Let us consider all the cases in the
�

operation definition which
do not originate

�
as outcome. The proof is by induction on the structure of types.

Base cases: Let ��� �
�� and 413 8 , � 1 � 8 , then � 8 �
�� and � � � 8 �

�� . Moreover � � �� �

if � � (i.e. � � �). Analogously, 8 � � 8:�� �
if

�8 � � 8 . In this case � � 12�8 � � 8 since � � � � �8 � �8 � � 8 .
Let ��� ����� � and �1 �8 , � 1 � 8 , then � 6 � �8 � 698 ��� � � ��� 8 � � 8 �
��� � and 6 * 698 and � * � 8 . Then 6 � � �� �

in the two following cases:

6 � � �
�� � 6 if 6 * �
� if � * 6 �

Analogously,

6 8 � � 8 �
�� � 698 if 698 * � 8
� 8 if � 8 * 6 8 �

Let us consider the four non-bottom outcomes:

� if 6 � � � 6 and 698 � � 8 � 698 , then 6 * � and 6 8 * � 8 and 6 � �-1=698 � � 8
since 6 � � � 6 * 6 8 � 6 8 � � 8 by hypothesis;

� if 6 � � � 6 and 698 � � 8 � � 8 , then 6 * � and � 8 * 698 and 6 � �-1=698 � � 8
since 6 � � � 6 * � * � 8 � 698 � � 8 by hypothesis;

� if 6 � � � � and 698 � � 8 � 698 , then � * 6 and 6 8 * � 8 and 6 � �-1=698 � � 8
since 6 � � � � * 6 * 698 � 698 � � 8 by hypothesis;

� if 6 � � � � and 6 8 � � 8 � � 8 , then � * 6 and � 8 * 6 8 and 6 � �-1=6 8 � � 8
since 6 � � � � * � 8 � 698 � � 8 by hypothesis.

Induction cases: Let � � �� , � � � � � , �8 � � 8 � and � 8 � � � 8 � . Suppose that
;12�8 and � 1 � 8 and that if ;1 8 and � 1 � 8 then � � 1 8 � � 8 . We have to
show that � �� � � � �I1J� 8 � � � � 8 � .
The expression � �� � � � � produces non-bottom outcome � � � � if � � �� �

, in
the same way the expression � 8 � � � � 8 � produces non-bottom outcome � 8 � � 8 �
if 8 � � 8 �� �

. Then � 7� � � � � � � � � �=1 � 8 � � 8 � � � 8 � � � � 8 � . In

40

fact, � �� 1 � 8 � if J1 �8 and � � � 1 � � 8 � if � 1 � 8 . Therefore by induction
hypothesis � � 1 8 � � 8 . From the definition of subtyping relationship, it follows
that � � � �I1J� 8 � � 8 � .
Let � ���7! � .! � &@� ��" , � � ��� � � � � ���=� � " , �8 � ���7! � �8! � & � �#8 " ,
� 8 � ��� � � � 8� ��� � � 8 " . Suppose that 1 8 and � 1 � 8 and that if .!�1 8� and
� > 1 � 8� (& � � , �;� �

, ?�� �#8 , 5 � � 8) then .! � � >%13�8� � � 8� . We have to show
that � � 1H�8 � � 8 .
From the first assertion it follows that

� 8 � � (B.1)
.!M1H 8! for each & � � 8 (B.2)� 8 � �

(B.3)
� � 1 � 8� for each � � � 8 � (B.4)

The expression � � coincides with

���7! ��� ! ��&�& � � � � � � ! � .! + � &�& � � � � � � ! � � ! + � &�& � � � � � � ! � .! � � ! + " �

Analogously,

 8 � � 8 � ���7! ��� 8! � &�& � � 8 � � 8 � � 8! � 8! +�� &�& � � 8 � � 8 � � 8! � � 8! +
� &�& � � 8 � � 8 � � 8! � 8! � � 8! + " �

Then � � 1H�8 � � 8 if
(1) � 8 � � 8 � � � �

,
(2) 5�& � �#8 � � 8 : � !M1 � 8! .

As to condition 1, it follows from the fact that � 8O� � and
� 8O� �

.
As to condition 2, we consider three options about & � � 8 � � 8 :
(1) if & � �#8 � � 8 , then � 8! � �8! ;
(2) if & � � 8 � � 8 , then � 8! � � 8! ;
(3) if & � �#8 � � 8 , then � 8! � �8! � � 8! .

If condition 1 is verified, then & � � by equation B.1. If &��%� � � then � ! � .! and
� ! � .!M1H�8! � � 8! by equation B.2. Otherwise, if & � � � �

then � ! � .! � � ! . Since
.! 1 �8! by equation B.2 and � ! 1 ���
	 , by induction hypothesis � ! � .! � � ! 1
 8! � ���
	 � 8! � � 8! . Condition 2 can be treated analogously.
If condition 3 is verified, then & � � � �

by equations B.1 and B.3 and � ! � .! � � ! .
Since .! 12�8! by equation B.2 and � !M1 � 8! by equation B.4, by induction hypothe-
sis � ! � .! � � !M1H�8! � � 8! � � 8! . �

Proof of Corollary 1. Let &'��� � �)(���*,+ be a schema version, 6 ����� � , and 6 ! �

 � . Then � &�6 � &'��� � �)(���*,+	+ � � � (&�6 + �)(&�6 �	+ ���������)(&�6 + � where � 6 � �������$� 6 � �

41

 � and
� � (&�6 + �)(&�6 �	+ ���������)(&�6 + � � (&�6 + � (&�6 �)+ � ����� � (&�6 + .

As to assertion 1, it follows from the fact that 6 1=6 ! and 6 � 1 any for each 6�� �

 � . In fact, by Lemma 1 which states that the

�
operator is monotonic and since

�

is also associative (&�6 + � (&�6 �)+ � ����� � (&�6 + 1 (&�6�! + � any
� ����� � any � (&�6�! + .

As to assertion 2, it follows from the fact that
 � 	��
 � , since the relation 1 is tran-
sitive, and from Lemma 1. In fact, let � &�6�! � &'��� � �)(���*,+	+ � � � (&�6�! + �)(& � �	+ �������$�(& �IF + � where � � � �������$� �IF � �
 � 	 , then (&�6 + 1 (&�6�! + ; for each � >9�
 � 	 , ex-
ists 6 � �
 � such that � > � 6 � , that is (& � > + � (&�6 � + , and (&�6 � + 1 any for
each 6 � � &%
 � �
 � 	 + . It follows that � &�6 � &'��� � �)(���*,+	+ � (&�6 + � � (&�6 � + �� � > �
 � 	 � � > � 6 � � � � (&�6 � + � 6 � � &%
 � �
 � 	 + �I1 (&�6�! + � � (& � > + � � >9�

 � 	 � � any � � &�6�! � &'��� � �)(���*,+	+ . �

Proof of Theorem 1. For each schema modification E , we have to show that for
each pair of classes 6 ! � 6 �!����� � 8 such that 6�! * 8�6 � then (8�&�6�! + 1 8 (8 &�6 � + .
Let us first consider the changes to a class type. In this case a single class 6 is
subject to changes and ��� � 8 � ��� � , * 8 � * , therefore 1!8 � 1 . Regardless of
the specific schema change, the semantics in Tab. 2 ensures that (8 &�6 + �� (&�6 +
only for 6 and the classes 6 which are subclasses of 6 . We therefore consider the
following alternatives deriving from the combinations of the relationships * , �* and
= between 6�! , 6 � and 6 :

6�! �* 6 and 6 ���* 6 (B.1)

6�! * 6 and 6 ���* 6 (B.2)

6�! * 6 and 6 � * 6 (B.3)

6�! � 6 (B.4)

6 � � 6 � (B.5)

Notice that the combination 6 ! �* 6 and 6 � * 6 is not possible, since 6 ! * 6 � ,
6 � * 6 and * is a transitive relation. Moreover, if 6 ! � 6 , the relationship
between 6 � and 6 is uniquely defined since 6 ! * 6 � . The same happens when
6 � � 6 .

AddAttribute: If condition B.1 holds, then (8 &�6�! +
� 	��� �� (&�6�! +

� 	��� �� (&�6�! + 1
(&�6 � + � (&�6 � +

� ���� �� (8 &�6 � + .
If condition B.2 holds, then (8 &�6�! +

� 	 � �� � &�6�! � &'��� � � (��*,+	+
� � ���
	 	
1 (&�6 � +

� ���� ��
(8 &�6 � + . Notice that � &�6�! � &'��� � � (��*,+	+ 1 (&�6 � + thanks to Corollary 1.

If condition B.3 holds, then (8 &�6�! +
� 	 � �� � &�6�! � &'��� � � (��*,+	+

� � ���
	 	1 � &�6 � � &'��� � �
(� *,+	+ � � � �� (8 &�6 � + .
If condition B.4 holds, then (8 &�6�! + � (8�& 6 + � (& 6 + � (& 6 + ���7��� � :"�1 (& 6 + 1
(&�6 � +

� ��� �� (&�6 � + � (8 &�6 � + .
If condition B.5 holds, then (8 &�6�! +

� 	 � �� � &�6�! � &'��� � � (��*,+	+
� ���
	 	
1 (& 6 + �

42

(8 & 6 + .
For all the other schema modifications, conditions B.1, B.2, B.3 are treated in the
same way as the AddAttribute case.
DeleteAttribute, ChangAttributeName: As to condition B.4

(8 &�6�! + � (8�& 6 + � � & 6 � &'��� � � (��*,+	+
� � ��� 	
1 (&�6 � + � (8 &�6 � + .

As to condition B.5 (8 &�6�! +
� 	 � �� � &�6�! � &'��� � � (��*,+	+

� ���
	 	1 � & 6 � &'��� � � (��*+	+ � (8 & 6 + .
ChangeAttributeType: As to condition B.4

(8 &�6�! + � (8 & 6 + � (& 6 + � ��� � � ���������$� � � �8 ��������� �! � � #"
� � �����
1 (&�6 � +

� ��� ��
(&�6 � + � (8�&�6 � + where (& 6 + � ��� ��� ���������$� � � �������$� �! � � #" .
If condition B.5 holds, then (8 &�6�! +

� 	 � �� � &�6�! � &'��� � � (��*,+	+
� ���
	 	
1 (& 6 + �

(8 & 6 + . The ChangeClassType case can be treated analogously.

Let us consider the changes to the class collection.
AddSuperclass: In this case * 8 is the new partial order calculated from the addition
of the pair &�6 8 � 6 + to * , ��� � 8 � ��� � . Therefore the following statement can be
easily proved by induction on the structure of types:

for each � 8 ��� � �	� � � � � �	� � � � if �12 8 then �1 8 8 (B.6)

The set 1 8 ��� corresponds to � 6 � 6 � ��� � � 6 * 8I698K� . For all these classes
the following condition also holds: 6 * 8 6 since 698 * 8 6 . We consider the six
combinations introduced above with 6 8 in place of 6 :

(1) If 6�! �* 6 8 and 6 �"�* 6 8 , then (8 &�6�! +
� 	����� �� (&�6�! + 1 (&�6 � + � (8 &�6 � + . From

statement B.6 it follows that (8 &�6�! + 1 8 (8 &�6 � + .
(2) If 6�! * 6 8 and 6 ���* 6 8 , then (8 &�6�! +

� 	 ��� �� � &�6�! � &'��� � �)(���* 8 +	+
� 	 � � � �
1 8

(&�6 � +
� ������ �� (8 &�6 � + .

(3) If 6�! * 6 8 and 6 � * 6 8 , then

(8 &�6�! +
� 	 ��� �� � &�6�! � &'��� � �)(���* 8 +	+

� 	 � � � �
1 8 � &�6 � � &'��� � �)(���* 8 +	+ � (8�&�6 � + .

(4) If 6�! � 6 8 then 6 8 * 8 6 � . In this case either 6�� � 6 or 6 ���� 6 .

In all cases (8 &�6�! + � (8 &�698 + � � &�698 � &'��� � �)(���* 8 +	+
� � � � � �
1 8 (8 &�6 � + (if 6 � �

6 then (8�&�6 � + � � & 6 � &'��� � �)(���* 8 +	+ else (8�&�6 � + � (&�6 � +)
(5) If 6 � � 698 then 6�! * 8�698 then

(8 &�6�! +
� 	 ��� �� � &�6�! � &'��� � �)(���* 8 +	+

� 	 � � � �
1 8 � &�698 � &'��� � �)(���* 8 +	+ � (8�&�698 + �(8 &�6 � + .

DeleteSuperclass: Due to its particular definition, the statement directly follows
from Corollary 1.

43

AddClass: In this case ��� � 8 � ��� � � � 6 � , (8 � (� � 6 �. any � and * 8 � * .
Therefore 1 8 � 1 and the statement is verified. The DeleteClass operation can be
treated analogously since this operation can be applied iff it causes no referential
integrity problems and therefore &'��� � 8 �)(8 ��*,+ is a class version hierarchy, since
for each class 6<����� � 8 , (8 &�6 + �� �

if it does not contain any reference to 6 .
ChangeClassName: In this case the operation changes neither the class lattice nor
the type of classes but it simply replace all occurences of 6 with 6L8 . Therefore we
omit the proof that directly follows from the operation definition. �

Proof of Lemma 2. Given 0 � , � E & + and �8O��� � �	� � , we have to show that 0 8 �
� � &�0 � � 8 � &'��� � �)(���*,+	+ � , � E & 8 + . The proof is by induction on the structures
of and �8 .
If � �8 , then 0#8 � 0 and the statement is verified.

If �8�1H then
Base case: If � �8 ����� � then 0#8 � D 3(��� � , � E & �8 + , whereas if � �8 �
�� then
0#8 � 0 �;�8 since �8�1H iff �8 � .
Inductive case: Let � ��� �3� ���������$� �! � � #" , �8 � ��� �3� �8� �������$� �! �
�8 �������$� �!F � �8F " with �8! 1J.! , for &��=�CB �)D � . Suppose that 0 � ��� �,� 0 ����������� �! �
0 #" and 0#8! � � � &�0"! � .! � �8! + � , � E & �8! + , for &,� �CB �)D � by induction hypothesis. We
have to show that 0 8 � ��� � � 0 8� �������$� �! � 0 8 � �! � � ��D 3(��� �������$� �!F ��D 3(����"��
, � E & �8 + . It follows from the fact that , � E & �8 + � ����� � � 0 ���������$� �! � 0 �������$� �!F �
0 F�" ��0"! � , � E & �8! + for & �G�CB � E ��� and 0#8! � , � E & �8! + for & �G�CB �)D � by induction
hypothesis and D 3(��� � , � E & �8� + for � �2� D�� B � E � . The set, bag and list cases can
be treated analogously.

If �12�8 then
Base case: If � �8 � ��� � then 0#8 � 03� , � E & �8 + since , � E & �8 + � ���& �8 + �
� D 3(��� � , 0 � , � E & + and , � E & + � , � E & �8 + , whereas if � �8��
�� then 0#8 � 0 �
�8 since �8�1H iff �8 � .
Inductive case: Let �8 � ��� �3� �8� �������$� �! � �8 " , � ��� �3� ���������$� �! �
� �������$� �!F � �F�" with .! 1J�8! , for &��=�CB �)D � . Suppose that 0 � ��� �,� 0 ����������� �! �
0 �������$� �!F � 0 F�" and 0 8! � � � &�0"! � .! � 8! + � , � E & 8! + , for & �A� B �)D � by induction hy-
pothesis. We have to show that 0 8 � ��� �,� 0#8� �������$� �! � 0#8 "9� , � E & �8 + . It follows
from the fact that , � E & �8 + � ����� ��� 0 � �������$� �! � 0 " ��0"!M� , � E & �8! + for & �A�CB �)D ���
and 0#8! � , � E & �8! + for & �A�CB �)D � by induction hypothesis. The set, bag and list cases
can be treated analogously.

Finally, if � �8 � �
then 0#8 � D 3(��� � , � E & �8 + . �

Proof of Theorem 2. For each schema modification E we have to show that
��� & E + & � + � &��78 ��� 8 + is a legal instance for
 ��� & E + &
 � + � &'��� � 8 �)(8 ��* 8 + , that
is:

44

(1) �78 is an OID assignment legal for &'��� � 8 �)(8 ��* 8 + ;
(2) for each 6<����� � 8 and ��& � �78 &�6 + , � 8�&2��& + � , � E & (8�&�6 +	+ .

Let us consider all different schema modifications starting from the changes to the
class type.
AddAttribute: In this case � 8 � � , thus condition 1 follows from the fact that �
is a legal OID assignment for &'��� � �)(���*,+ and ��� � 8 � ��� � . As to condition 2,
we consider two cases:

� if 6 �� 1 � , ��& � �78 &�6 + � � &�6 + then � 8�&2��& + � � &2��& + � , � E & (&�6 +	+ � , � E & (8�&�6 +	+ .
� if 6 � 1 � , ��& � � 8 &�6 + � � &�6 + then � 8 &2��& + � � � & � &2��& + �)(&�6 + �)(8 &�6 + � &'��� � � (8 �*,+	+ � , � E & (8 &�6 +	+ by Lemma 2, which can be applied since (&�6 + �3� � �	� � ,(8 &�6 + �4� � �	� � � and ��� � � ��� � 8 .
The DeleteAttribute, ChangeClassType and ChangeAttributeType cases can be
treated analogously.
ChangeAttributeName: Also in this case � 8 � � . As to condition 1, it can be
proved as in the add attribute case. As to condition 2, we consider two cases:

� if 6 �� 1 � , ��& � �78 &�6 + � � &�6 + then � 8�&2��& + � � &2��& + � , � E & (&�6 +	+ � , � E & (8�&�6 +	+ .
� if 6<� 1 � , ��& � �78 &�6 + � � &�6 + then � 8�&2��& + � � � & � &2��& + � (&�6 + �)(8 &�6 + � &'��� � �)(8 ��*+	+ � , � E & (8 &�6 +	+ by Lemma 2 iff � &2��& + � , � E & (&�6 +	+ . But � &2��& + � ��� � �
0 � �������$� �!8 � 0 ��������� �! � 0 #" where � &2��& + � ��� � � 0 � �������$� � � 0 �������$� �! �
0 #" � , � E & (&�6 +	+ by hypothesis, (&�6 + � ��� � � � �������$� �!8 � �������$� �! � � #" and(&�6 + � ��� �%� ���������$� � � �������$� �! � � #" . Therefore, � &2��& + � , � E & (&�6 +	+ iff
0 � � , � E & �)+ ��������� 0 � , � E & + �������$� 0 � , � E & � + , which directly follows from
the fact that � &2��& + � , � E & (&�6 +	+ .

As to the changes to the class collection, the AddSuperclass modification can
be treated as the AddAttribute case, whereas the proof for the DeleteSuperclass
modification directly follows from Lemma 2, which can be applied since � � �	� � �
� � �	� � � . The AddClass only modifies � to include an empty extension for the
newly introduced class 6 . Therefore &�� 8 ����+ satisfies condition 1 since ��� � 8 �
��� � � � 6 � and � 8 defines an extension for all classes in ��� � and also for 6 .
It also satisfies condition 2, since � satisfies such condition for each 6 �J��� �
and the extension of 6 contains no object. The DeleteClass can be treated anal-
ogously since referential integrity problems are excluded a priori. Finally, for the
ChangeClassName operation which simply consists in the substitution of all 6
occurrences with 6 8 the proof of the two conditions directly follows from the defi-
nition. �

Proof of Theorem 3. To prove Th. 3, we first require the following Lemma (we
omit the proof, as it is obvious in both directions):

45

Lemma 4 Let &'��� � �)(���*,+ be a schema version and 6<����� � , then � &�6 � &'��� � �(���*,+	+ � (&�6 + iff &'��� � �)(���*,+ is well-formed.

Let
 � � &'��� � �)(���*,+ and
 � 8 � &'��� � 8 �)(8 ��* 8 + . We have to show that if

 ��� & E + &
 � + �
 � 8 (and the preconditions in Tab. 5 hold), then
 ��� & E 	 + &
 � 8 + �

 � which is equivalent to show that if
 ��� & E 	 + &
 ��� & E + &
 � +	+ �
 � 8 8 then

 � 8 8 �
 � .

As to the application of E to
 � , (will denote the support function of (8 , whereas
as to the application of E 	 to
 � 8 ,
 � 8 8 � &'��� � 8 8 �)(8 8 ��* 8 8 + where (8 is the support
function of (8 8 , if exists. We have to show that ��� � 8 8 � ��� � , (8 8 � (and * 8 8 � *
for all cases in Tab. 5. In doing this we will only consider the modified element of
the schema version (see Tabs. 2 and 3 for the
 ��� behavior).

(Case 1: E � AddAttribute ��� � � � , E 8 � DeleteAttribute ��� � � �) We have to show
that (8 8 � (.

� If 6 ��41 � then (8 8 &�6 + � (8 &�6 + � (8 &�6 + � (&�6 + � (&�6 + .
� If 6 � 6 ,

(8 8 & 6 + � � & 6 � &'��� � � (8 ��*,+	+ � � � (8 & 6 + � (8 &�6 �	+ �������$� (8 &�6 + �
(where � 6 � �������$� 6 � �
 � . Since 6 � 1 � and 1 � �
 � � � , the outcome is
the following)

� � � (8 & 6 + ���,��� � :" �)(8 &�6 �	+ �������$�)(8 &�6 + �
� � � (8 & 6 + ���,��� � :" �)(&�6 �	+ �������$�)(&�6 + � �

If we show that (8 & 6 + ��� ��� � :" � (& 6 + then (8 8 & 6 + � � � (& 6 + �)(&�6 � + �������$�)(&�6 + � �(& 6 + owing to Lemma 4, which follows from the following equation

(8 & 6 + ���,��� � :" � (& 6 + ��� ��� � :"����,��� � :" � (& 6 + (B.1)

since � �� (& 6 + .
� If 6<� � �

(8 8 &�6 + � � &�6 � &'��� � � (8 ��*,+	+ � � � (8 &�6 + � (8 &�6 �	+ �������$� (8 &�6�> + �
(where � 6 � �������$� 6�> � �
 � . Rearranging terms, this set can be partitioned into
two subsets: the first is � 6 � �������$� 6 ��� �
 � � 1 � with � 	 B and 6 � � 6 , the
second is its complement � 6�� � � �������$� 6�> � �
 � � 1 �)

� � � (8 &�6 + ��� ��� � :" �)(8 &�6 �	+ ���,��� � :" �������$�)(8 &�6 ��	 �	+ ���,��� � :" �
(8 & 6 + ���,��� � :" �)(8 &�6 � � � + �������$�)(8 &�6�> + � �

Notice that (8 &�6�! + � (&�6�! + for & � � � � B �������$� ? � since these 6 ! ’s do not be-
long to 1 � , and (8�& 6 + ���;��� � :" � (& 6 + by equation B.1. If we show

46

that (8�& � + ��� ��� � :" � (& � + for � � 6 and � � 6 � �������$� 6 ��	 � then(8 8 &�6 + � � � (&�6 + �)(&�6 �	+ �������$�)(&�6 ��	 � + �)(& 6 + � (&�6 � � �	+ �������$�)(&�6�> + � � (&�6 +
due to Lemma 4:

(8 & � + ��� ��� � :" � � & � � &'��� � � (��*,+	+ ���,��� � :"
� � � (& � + � (& � �)+ ��������� (& � > + � ��� ��� � :"

(where � � � �������$� � > � �
�� . Let � > � 6)

� � � (& � + �)(& � �	+ ���������)(& � >
	 �	+ �)(& 6 + ��� ��� � :" � ���,��� � :" �
We distinguish two alternatives:
�

if (& � + � � � (& � + �)(& � �	+ �������$�)(& � >
	 � + �)(& 6 + � � ��� � � ���������$� �! � � #"
where for each & �A�CB �)D � ��! �� � then

� � (& � + �)(& � �	+ ���������)(& � >
	 �	+ �)(& 6 + ���
��� � :" � � ��� ��� ���������$� �! � � � � � :" and
(8 & � + ���,��� � :" � � � (& � + �)(& � �	+ �������$�)(& � >
	 �	+ �)(& 6 + ���,��� � :" � ���,��� � :"

� ��� ��� ���������$� �! � � #" � (& � + �
�

if (& � + � � � (& � + �)(& � �	+ �������$�)(& � >
	 � + �)(& 6 + � � ��� � � � �������$� �! � � � � �
�8 " then

� � (& � + �)(& � �	+ �������$�)(& � >
	 � + �)(& 6 + ��� ��� � :" � � ��� ��� � �������$� �! �
� � � � � �8 " where � �8 � �8 by condition expressed in Table 5 and
(8 & � + ���,��� � :" � � � (& � + �)(& � �	+ �������$�)(& � >
	 �	+ �)(& 6 + ���,��� � :" � ���,��� � :"

� ��� ��� ���������$� �! � � � � � �8 " � (& � + �

(Case 2: E � DeleteAttribute ��� � � � , E 8 � AddAttribute ��� � � �) We have to show
that (8 8 � (.

� If 6 ��41 � then (8 8 &�6 + � (8 &�6 + � (8 &�6 + � (&�6 + � (&�6 + .
� If 6 � 6 then (8 8�& 6 + � (8 & 6 + ���,��� � :" and

(8 & 6 + ���,��� � :" � � & 6 � &'��� � � (��*,+	+ ���,��� � :"
� � � (& 6 + ��� ��� � :" �)(&�6 �	+ �������$�)(&�6 + � ���,��� � :"

(since, for hypothesis, �/� (& 6 + and � �� (&�6 ! + for &L� �CB �)D � , and thanks to
Lemma 4 we can apply the following transformations)

� � � (& 6 + �)(&�6 � + �������$�)(&�6 + � ���,��� � :"����,��� � :"
� � � (& 6 + �)(&�6 � + �������$�)(&�6 + � � (& 6 +��

(B.2)

� If 6<� � � , let us first introduce three remarks:

47

if � �� (&�6�! + with 6�!M����� � then

(&�6�! + ���,��� � :" � (&�6�! + � ��� � :" (B.3)
 � 8 � � 8 � ����� � 8 (B.4)

if &'��� � �)(���*,+ is well-formed and is the type of an attribute �-� (&�6 8! + and
6�! * 698!

& (&�6�! + ���,��� � :" + � ��� � :" � (&�6�! +�� (B.5)

Hence we can write

(8 8 &�6 + � � &�6 � &'��� � � (8 ��*,+	+ � � � (8 &�6 + � (8 &�6 �	+ �������$� (8 &�6�> + �
(where � 6 � �������$� 6�> � �
 � . Rearranging terms, it can be partitioned into two
subsets: � 6 � �������$� 6 ��� �
 � �-1 � with � 	 B and 6 � � 6 , and � 6 � � � �������$� 6�> � �

 � � 1 �)

� � � (8 &�6 + �)(8 &�6 �	+ �������$�)(8 &�6 ��	 � + �)(8 & 6 + ���,��� � :" �)(8 &�6 � � � + �������$�)(8 &�6�> + �
(we apply remark B.3 since for hypothesis � �� (8�& 6 + and we also apply remark
B.4)

� (8 &�6 + � ��� � :" � (8 &�6 �	+ � ��� � :" � �����	(8 &�6 ��	 �	+ � ��� � :" � (8 & 6 + � ��� � :"
� (8 &�6 � � �	+ � ����� � (8 &�6�> +��

Notice that (8 &�6�! + � (&�6�! + for & ��� � � B ��������� ? � since these 6 ! ’s do not belong
to 1 � and (8 & 6 + � ��� � :" � (8 & 6 + ���I��� � :" � (& 6 + by equation B.2. If
we show that (8 & � + � ��� � :" � (& � + for � � 6 and � � 6 ����������� 6 ��	 � then(8 8 &�6 + � (&�6 + owing to Lemma 4.

(8 & � + � ��� � :" � � & � � &'��� � � (��*,+	+ � ��� � :"
� � � (& � + � (& � �)+ ��������� (& � > + � � ��� � :"

(where � � � �������$� � > � �
�� . Let � � � �������$� � ��� �
�� � 1 � with � 	 B)
� � � (& � + ���,��� � :" �)(& � �	+ ���,��� � :" �������

�����$�)(& � � + ��� ��� � :" �)(& � � � �	+ ������� (& � > + � � ��� � :"
(we apply remarks B.4 and B.5)

� � � (& � + �)(& � �	+ ���������)(& � � + �)(& � � � � + �������	(& � > + � � (& � + �
(Case 3: E � ChangeAttrName � � � � � � , E 8 � ChangeAttrName � � � � � �) We have
to show that (8 8 � (.

48

� If 6 ��41 � then the proof coincides with the two previous ones;
� if 6<�41 �

(8 8 &�6 + � � &�6 � &'��� � � (8 ��*,+	+ � � � (8 &�6 + � (8 &�6 �	+ �������$� (8 &�6�> + �

(where � 6 � �������$� 6�> � �
 � . This set can be partitioned into two subsets: the
first is � 6 � �������$� 6 ��� �
 � � 1 � with � 	 B and 6 � � 6 , the second is its
complement)

� � � (8 &�6 + � (8 &�6 �	+ �������$� (8 &�6 � + � (8 &�6 � � � + �������$� (8 &�6�> + � �
Notice that (8 &�6�! + � (&�6�! + for & � � � � B ��������� ? � since they do not belong to
1 � . If we show that (8 & � + � (& � + for � � 6 and � � 6 � �������$� 6 � then(8 8 &�6 + � � � (&�6 + �)(&�6 �	+ �������$�)(&�6 ��	 � + �)(& 6 + �)(&�6 � � �	+ ���������)(&�6�> + � � (&�6 + by
Lemma 4. Let (& � + � ��� � � ���������$� � � �������$� �! � � #" then (& � + � ��� � �
 � �������$� �!8 � �������$� �! � � #" and

(8 & � + � � & � � &'��� � � (��*,+	+ � � � (& � + � (& � �	+ �������$� (& � > + �

(where � � � �������$� � > � �
�� . Let � � � �������$� � ��� �
�� � 1 �)

� � � (& � + � (& � �	+ �������$� (& � � + �)(& � � � � + �������	(& � > + � � (& � + �
In fact (& � + � (& � � + for 5 �A� � � B � ? � is (& � + . Indeed for hypothesis � 8 �� (& � +
and therefore � 8��� (& � � + since &'��� � �)(���*,+ is well formed and � * � � and
� �� (& � � + for the condition expressed in Tab. 5. Therefore the type of � 8 is not
modified and � cannot be inherited again. At the same time (& � + � (& � � + for
5 � �CB � � � is (& � + since � � �H1 � . Similarly, starting from (8 & � + � (& � + , it
can be shown (8 8 & � + � (& � + . In fact (8 8 & � + � � � (8�& � + � (8 & � �	+ �������$� (8 & � � + �(& � � � � + �������	(& � > + � where (8 & � + � (& � + and, for &%�<� B ��������� ��� , (8 & � ! + �(& � + .

(Case 4: E � ChangeAttrType � � � � � � � � , E 8 � ChangeAttrType � � � � � � � �) We have
to show that (8 8 � (.

� If 6 ��41 � then the proof coincides with the first two ones;
� If 6 � 6 , let (&�6 + � ��� � � � �������$� � � �������$� �! � � #" . Then (8 &�6 + � (&�6 + �
��� ��� ����������� � � �8 �������$� �! � � #" and (8 8�&�6 + � (8 &�6 + � ��� ��� ���������$� � �
 �������$� �! � � " if ��� � � � �������$� � � �������$� �! � � #"�1 (8 &�698 + for each 698 �

 � which is verified since (8�&�698 + � (&�698 + (698 ��21 �) and ��� � � ����������� � �
 �������$� �! � � #" � (&�6 + and &'��� � �)(���*,+ is well-formed.

� if 6<� � �

(8 8 &�6 + � � &�6 � &'��� � � (8 ��*,+	+ � � � (8 &�6 + � (8 &�6 �	+ �������$� (8 &�6�> + �

49

(where � 6 � �������$� 6�> � �
 � . This set can be partitioned into two subsets: the
first is � 6 � �������$� 6 ��� �
 � � 1 � with � 	 B and 6 � � 6 , the second is its
complement)

� � � (8 &�6 + � (8 &�6 �	+ �������$� (8 &�6 � + � (8 &�6 � � � + �������$� (8 &�6�> + � �
Notice that (8 &�6�! + � (&�6�! + for & �A� � � B ��������� ? � since they do not belong to 1 �
and that (8 & 6 + � (& 6 + from previous point. If we show that (8 & � + � (& � + for
� � 6 and � � 6 � �������$� 6 ��	 � then (8 8 &�6 + � � � (&�6 + �)(&�6 �	+ �������$�)(&�6 ��	 � + �)(& 6 + �(&�6 � � � + �������$�)(&�6�> + � � (&�6 + by Lemma 4. Let (& � + � ��� � � ���������$� � �
 �������$� �! � � " then (& � + � ��� �%� ���������$� � � 8 ��������� �! � � #" and (8 & � + �(& � + due to the condition expressed in Tab. 5 and then (8 & � + � ��� ��� ���������$� � �
 �������$� �! � � #" � (& � + . Let (& � + � ��� � � ���������$� � � �������$� �! � � " with
 �� then � � �8 since &'��� � �)(���*,+ is well formed and ��� � :" �(&�6 + , ��� � :"�� (& � + , and � * 6 . Then (8 & � + � � & � � &'��� � � (��*,+	+ �
 � & � � &'��� � �)(���*,+	+ � (& � + by Lemma 4 and (8 & � + � (8 & � + .

(Case 5: E � ChangeClassType � � � � � � , E 8 � ChangeClassType � � � � � �) We have to
show that (8 8 � (. The proof is similar to that of Case 4.

(Case 6: E � AddSuperclass � � ��� , E 8 � DeleteSuperclass � � ���) We have to
show that * 8 8 � * and (8 8 � (. Notice that * 8 8 � * 8 � ��&�698 � 6 + � � * � ��&�698 � 6 + � �
��&�698 � 6 + � � * since * 8 � * � ��&�698 � 6 + � due to condition in Tab. 5. Notice also that

1 8 8��� � 1 8 ��� � 1 ��� � � 6 8 � (B.6)

 8 ��� �
 ��� � � 6 � (B.7)

and that for each 6 ����� � with 6 �� 6 8

 8 � � � � ��&�6 � � + � * 8 �

� �� � �� � � ��&�6 � � + � * � �
 � � (B.8)

Let us consider the two cases related to Eq. B.6:

� if 6 � 698 then

(8 8 &�6 8 + � � &�6 8 � &'��� � �)(8 ��* 8 8 +	+ � � &�6 8 � &'��� � �)(8 ��*,+	+
� � � (8 &�6 8 + �)(8 &�6 �	+ �������$�)(8 &�6�> + �

(where � 6 � �������$� 6�> � �
 � � . Since
 � � � 1 8 ���
��������� ��
 � � ��1 � � �
 � � �4� 698K� �

� the outcome is the following)

� � � (8 &�6 8 + �)(&�6 �	+ �������$�)(&�6�> + � �
If we show that (8�&�698 + � (&�6 + then (8 8�&�698 + � � � (&�698 + �)(&�6 � + �������$�)(&�6�> + � �(&�6 + by Lemma 4.

(8 &�6 8 + � � &�6 8 � &'��� � �)(���* 8 +	+

50

(due to Eq. B.7 and to Lemma 4)

� � &�6 8 � &'��� � �)(���*,+	+ � (& 6 + � (&�6 8 + � (& 6 + � (&�6 8 + �
� if 6 �� 698

(8 8 &�6 + � � &�6 � &'��� � �)(8 ��* 8 8 +	+ � � &�6 � &'��� � �)(8 ��*,+	+
� � � (8 &�6 + �)(8 &�6 �	+ �������$�)(8 &�6�> + �

(where � 6 � �������$� 6�> � �
 � . Notice that
 � � 1 8 ���
��������� ��
 � � 1 ��� �
 � ��� 698K� �

� . In fact, if exists 6 !M�
 � � � 6 8 � then 6�! � 6 8 and 6 * 6 8 which is impossi-
ble due to the precondition in Table 5)

� � � (&�6 + �)(&�6 � + �������$�)(&�6�> + � � (&�6 +��

(Case 7: E � DeleteSuperclass � � ��� , E 8 � AddSuperclass � � ���) We have to show
that * 8 8 � * and (8 8 � (. Notice that * 8 8 � partial order from * 8 � ��&�698 � 6 + � �
partial order from * � ��&�6 8 � 6 + � � ��&�6 8 � 6 + � � * . Notice also that

 8 ��� �
 ��� � � 6I� (B.9)

and that for each 6 ����� � with 6 �� 6 8

 8 � �
 � � (B.10)

As to (8 8 , we have to consider three different cases:

� If 6 �� 1 � , then (8 8 &�6 + � (8 &�6 + � � &�6 � &'��� � �)(���* 8 +	+
��������� ���� � &�6 � &'��� � �(�� *,+	+ � (&�6 + since &'��� � �)(���*,+ is well-formed;

� If 6 � 6 , then (8 8�&�698 + � � &�698 � &'��� � �)(���* 8 8 +	+ � � &�698 � &'��� � �)(���*,+	+ �(&�698 + � (&�6 �	+ � ����� � (&�6�> + � (& 6 + where � 6 � �������$� 6�> � 6 � �
 ��� . If we
show that (8 & � + � (& � + for � � 6 8 and � � 6 ����������� 6�> � 6 then (8 8 &�6 8 + �
� � (&�698 + �)(&�6 �	+ �������$� (&�6�> + �)(& 6 + � � (&�698 + by Lemma 4. Notice that it is
verified for � � 6 � �������$� 6�> � 6 due to the previous case and that (8 &�698 + �
 � &�6 � &'��� � �)(���* 8 +	+

����� ��� �� (&�698 + � (&�6 �	+ � ����� � (&�6�> + . Since &'��� � ��* �)(+ is
well-formed and 6 8 * 6 , we have (&�6 8 + 1 (& 6 + and, thus, (&�6 8 + � (&�698 + �(& 6 + . Hence, (8 &�698 + � (&�698 + � (& 6 + � (&�6 �	+ � ����� � (&�6�> + � (&�6 + since
&'��� � �)(���*,+ is well-formed;

� if 6 � � � , then (8 8 &�6 + � � &�6 � &'��� � �)(���* 8 8 +	+ � � &�6 � &'��� � �)(���*,+	+ �
(&�698 + � (&�6 �)+ � ����� � (&�6�> + � (&�698 + where � 6 � �������$� 6�> � 698K� �
 � . If we
show that (8 & � + � (& � + for � � 6 and � � 6 � �������$� 6�> � 698 then (8 8 &�6 + �
� � (&�6 + �)(&�6 �	+ ��������� (&�6�> + �)(&�698 + � � (&�6 + by Lemma 4. Notice that it is veri-
fied for 698 due to the previous case and for all 6 !��
 � � � 8 8��� due to the first
case. As to the classes 6 !M�
 � � � 8 8� � , it follows that (8�&�6 + � � &�6 � &'��� � �)(��
* 8 +	+

��������� ���� � &�6 � &'��� � �)(���*,+	+ � (&�6 + .

51

For the remaining alternatives, the proof directly follows from the specification of
the semantics.

�

Fabio Grandi is currently an Associate Professor in the Faculty of Engineering of the Uni-
versity of Bologna, Italy. Since 1989 he has worked at the CSITE (formerly CIOC) center
of the Italian National Research Council (CNR) in Bologna in the field of neural networks
and temporal databases. For this work he was initially supported by a fellowship from the
CNR. In 1993 and 1994 he was an Adjunct Professor at the Universities of Ferrara, Italy,
and Bologna. He joined his current department (Dept. of Electronics, Computer Science
and Systems) as a Research Associate in 1994. His scientific interests include temporal
databases, storage structures, access cost models, WWW extensions. He received a Lau-
rea degree in Electronics Engineering and a PhD in Electronics Engineering and Computer
Science from the University of Bologna. Further information can be found at http://www-
db.deis.unibo.it/ � fgrandi/.

Federica Mandreoli is currently a Research Associate at the Department of Information
Engineering of the University of Modena and Reggio Emilia, Italy. Her research inter-
ests include information retrieval, multi-database systems, semantic web, object-oriented
databases and schema versioning. She holds a Laurea degree in Computer Science and a
PhD in Electronics Engineering and Computer Science from the University of Bologna.
She is member of the Association for Computer Machinery (ACM). Further information
can be found at http://www.dbgroup.unimo.it/members.html.

52

