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Abstract

We consider expressive Description Logics (ALCN) allowing for num-
ber restrictions on complex roles built with combinations of role construc-
tors. In particular, we are mainly interested in Logics (called ALCN)
allowing for the same kind of complex roles both in number and in value
restrictions, which represent very expressive description languages and
can be shown very useful for applications.

We investigate the computational properties of various ALCN exten-
sions and slightly improve the (un)decidability results following from the
study published by Baader and Sattler in 1999. In particular, we will show
by reduction of a domino problem that ALCN (T, ) and ALCN (F, M) are
undecidable.

1 Introduction

The starting point of our study is the Description Logic ALCN [1], that is the
well-known ALC language [13] equipped with (non-qualified) number restric-
tions on possibly complex roles (N). Expressive extensions of ALCN can be
defined as ALCN (M) with the adoption of role constructors M C {*, 0,7, 1, M}
[1]. By allowing different kinds of complex roles also in value (existential) re-
strictions, different families of Logics can also be defined: for example ALC N
(or ALC,eeN' ) allows the transitive closure of atomic roles (or regular roles)
under value restrictions [1, 5].

In particular, since their rich expressiveness and versatility is highly ap-
pealing from an application perspective, we are mainly interested in ALCN
extensions, that we will denote by ALCN', equipped with the same combination
of role constructors either in value and in number restrictions. As a matter of
fact, expressive Description Logics [5] possibly providing for (qualified) number
restrictions have been used for solving interesting reasoning tasks in the fields
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Figure 1: Syntax and model-theoretic semantics of ALCN  extensions.

of knowledge representation and conceptual modeling (e.g. for reasoning on
database schemata [7, 6, 8]). In this respect, the characterization of the com-
putational behaviour of such description languages is the foundation to ground
their effective usability in applications.

Our investigation is aimed at improving the (un)decidability results pre-
sented by Baader and Sattler in [1]. In particular, they proved that concept
satisfiability in ALCN (o,M) and ALCN (o,” ,U) (and, thus, in ALCN (o,1) and
ALCN (0, , 1)) is undecidable, and undecidability of ALCN (*,0) is a straight-
forward consequence of their results for ALC N (o). Furthermore, ACCN (—, L, M)
[1], ALCN (=, ,M) and all their sublanguages are known to be decidable since
ALCN(~,U,M)-concepts can easily be translated into a formula in C? [3], that
is the two-variable FOL fragment with counting quantifiers, which has proved
to be decidable [10]. In fact, satisfiability of C* formulae can be decided in
NExpPTIME [14] if unary coding of numbers is used (which is a common as-
sumption in the field of Description Logics; if binary coding is adopted we have
a 2-NEXPTIME upper bound). Baader and Sattler also presented in [1] a sound
and complete Tableau algorithm for deciding satisfiability of ALCN (o)-concepts;
anyway, the decidability of other ALCN (o) extensions beyond the undecidable
ALCN (*,0) is still unknown. For example, to the best of our knowledge, de-
cidability of ALCN (0,7) (and ALCN(0,7)) is still an open problem [1, 5].
Moreover, whereas ALC, N (") is known to be decidable (due to the results of
De Giacomo and Lenzerini in [9]), it is not known what it happens to its exten-
sion with a unrestricted use of transitive closure ALC N (*,”), and further to

ALCN ().



Other extensions with potential interest for applications and which will be
investigated in this paper are also ALCN (", 1) and ALCN (*,1). For example,
by means of the following ALCN (T, ) concept:

Patriarch C LivingMan 1 32! (daughterison) ™"

we could easily define a “patriarch” as a living man having at least ten descen-
dants, whereas the ALCN (*,11) concept:

PhDStudent M1 3<Y(parent™ Madvisor)

denotes the PhD students whose advisor is not an ancestor of them.

In this paper, we will slightly extend the (un)decidability results on ALCN
languages which directly follow from the results by Baader and Sattler in [1],
by showing undecidability of ALCN (*,U) and ALCN (*,MN) via reduction of a
domino problem.

Since we may assume the reader be familiar with Description Logics, we shall
not indulge in preliminaries. The syntax and the semantics of ALCN with the
extensions considered in this paper are sketched in Fig. 1.

2 Undecidable ALCN(T) Extensions

In this Section we will widen the undecidability results known for ALCN ex-
tensions including the transitive closure operator, by showing that ALCN (*, L)
and ALCN(*, M) Logics are undecidable!. To prove that, we borrow the proof
procedure from [1] and use a reduction of the well-known undecidable domino
problem [2] adapted from [12]:

Definition 1 A tiling system D = (D, H,V) is given by a non-empty set D =
{D1,..., Dy} of domino types, and by horizontal and vertical matching pairs
HCDxD,V CDxD. The domino problem asks for a compatible tiling of the
first quadrant IN x IN of the plane, i.e. a mapping t : IN x IN — D such that,
for all m,n € IN, (t(m,n),t(m+1,n)) € H and (t(m,n),t(m,n+1)) € V.

We will show now reducibility of the domino problem to concept satisfiability in
the desired Description Logics. In particular, we show how a given tiling system
D can be translated into a concept Fp which is satisfiable iff D allows for a
compatible tiling. Since ALC is propositionally complete, also subsumption can
be reduced to concept satisfiability (C' C D iff CM—D is unsatisfiable). Following
the same lines of undecidability proofs in [1], such translation can be split into
three subtasks which can be described as follows:

! Actually, we will prove undecidability of ALC N (T,U) and ALC N (F,17).
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Grid specification . It must be possible to represent a “square” of IN x IN,
which consists of points (m,n), (m + 1,n), (m,n+ 1) and (m + 1,n+ 1),
in order to yield a complete covering of the first quadrant via a repeating
regular grid structure. The idea is to introduce concepts to represent
the grid points and roles to represent the z- and y-successor relationships
between points.

Local compatibility . It must be possible to express that a tiling is locally
compatible, that is that the z-successor and the y-successor of a point
have an admissible domino type. The idea is to associate each domino
type D; with an atomic concept D;, and to express the horizontal and
vertical matching condition via value restrictions on the stepping roles.

Total reachability . It must be possible to impose the above local conditions
on all points in IN X IN. This can be achieved by constructing a “universal”
role and a “start” individual such that every grid point can be reached
from the start individual. The local compatibility conditions can then be
globally imposed via value restrictions.

In particular, to solve our subtasks, we will use a proof framework quite similar
to the one adopted by Horrocks, Sattler and Tobies in the context of a strictly
related undecidability proof which is described, for instance, in [11]. They used
a grid similar to the one in Fig. 2, embedding an alternating pattern of “hori-
zontal” and “vertical” roles, with four disjoint primitive concepts representing
grid points with different combinations of successors. Horrocks, Sattler and
Tobies used that framework to prove that allowing transitive roles (or roles hav-
ing a transitive subrole) into number restrictions in an ALC extension —called
SHIN — supporting an explicit role hierarchy and transitive (transitively closed
primitive) roles, leads to undecidability. Their framework is not directly appli-
cable to our cases, since we cannot ezplicitly represent a role hierarchy in ALCN
languages. However, we will exploit the “natural” hierarchy implicitly induced
by the inclusion between a role and a Boolean expression containing it. As a
matter of fact, if R and S are arbitrary roles, due to the semantics of the LI
and M constructors, we have the trivial inclusions (R S) C R (which was also
exploited in [4], where a language that we would call ALCN (M) was proved
decidable) and R C (R U S).

2.1 Undecidability of ALCN (L)

In this case, the concepts to encode the domino problem must be built using
number restrictions on complex roles involving role union and transitive closure.
The first quadrant will be covered by means of the grid structure represented in
Fig. 2. Five roles will be used to represent the connections between grid points,
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Figure 2: The grid structure and role hierarchy used for Theorem 1.

two (namely Xy and X) representing a single step into the horizontal direction
and two (namely Y; and Y7) representing a single step into the vertical direction;
the fifth one (R) is used to represent a generic forward step in the grid (so that
R = X,U X;UY,UY)). The implicit role hierarchy underlying the used roles is
also drawn in the Figure.

Grid specification can be accomplished by means of the following concept:

Ce = (A= (3Xe.BNI'XoNIV,.CN13Y, 1T
FTRNIZP(XoUYoUR) NI (XU Yp) ™)) M
(B= (3X1.AN3IT' X N3Y,. D3y, N
FRNIZ(XHI UYL UR) NI (X UYe)T)) M
(C=(3X,.DNI'XeNIV.ANIY M
FTPRNIZP(XoUYIUR) NI (XU Yy ) ) M
(D= (3X,.cnF'X;nIvi.BNI'yi N
FRNIP(XUYUR) NI(X UY)Y))

where, as usual, 37"R and P = @ are shorthands for the concepts (35" R) Il
(32" R) and ~PUQ, respectively. In this way, every point in the grid is described
as having exactly one z-successor and one y-successor (e.g. an A-type point is
connected through X, to a B-type and through Y, to a C-type point, and so
on). Furthermore, every A-type point is connected, through any occurrence of
Xp or X to exactly three other points. W.l.o.g., let p(, ) be one chosen A-type
point. It has exactly one X direct successor, which we can draw to its right
and call p(y41,,), one Yy direct successor, which we can draw above it and call
P(m,n+1), one common Xy o Yy and Yp o Xy successor, which we can draw as the
D-type point closing the square on the top-right corner and that we can call
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Pim+1m+1)- Moreover, pi,») is connected to exactly two R-successors, which are
also (Xo Ll Yp)-successors. Since the two (X U Yp)-successors of p(, ) are ex-
actly pim+1,n) and pmni1), they can be reached from p,, ) also via R. Similarly,
we can consider the construction of squares starting from a B-, C- or D-type
point. With this intuition (see also Fig. 2), it is easy to understand how the
complete grid can be drawn and how each point is connected to its direct z- and
y-successors via R.

Local compatibility is easy to achieve by means of value restrictions. The
concept Cp which serves the purpose (which is also very similar to the CpimMCp
concept used in [1, Th. 6]) is the following:

Coom U en o em)n U (oin(_ o))
Ee{A,B,C,D} Fe{A,B,C,D}\{E} 1<i<m 1<i<m,i#j

1§|i_|§m< ((AND;) = (3X,.(B1 ((Di’llz_l)eHDj)) M3vp.(Cn ((Di’g)eij))) )
((BND;) = (3X1.(AN ((Di’llz_l)eHDj)) M3Yp. (DN ((Di’llil_)evpj))) )
((CenD) = @Xe.(DN( U Dy))navi.(An( U D))

(Di,DJ)GH (Di,D])EV

[l
((DND) = @3Xx.(Cn(_ U Dy))yn3y.(Bn( 1'7' Dj))))>

(Di,D;)eH (D;,Dj)eV

Total reachability is also easy to ensure, due to the availability of the transitive
closure of roles:

Ep := dR.ANI'RNOVR'.(CynCh)

If s is an instance of Ep, then s has exactly one R-successor, which is an instance
of A (we could have chosen a B, C' or D instance as well), say p(,). Each point
in the grid can be reached from s via the universal role R* (e.g. pn,0y and p(o,1)
are direct R-successors of p( ), so they can also be reached from s via R* and
so on) and, thus, the local conditions are imposed on all points in the grid by
VR*.(Cg M Cp).

With the intuition given above, it is easy to see that a tiling system D has
a compatible tiling iff concept Fp is satisfiable (i.e. there is an interpretation Z
such that (Ep)* # 0).

Theorem 1 Satisfiability (azzd, thus, subsumption) of concepts is undecidable
for ACC N (*,U) and ALCN (T,U1).
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Figure 3: The grid structure and role hierarchy used for Theorem 2.

2.2 Undecidability of ALCN (*,1)

In this case, the concepts to encode the domino problem must be built using
number restrictions on complex roles involving role intersection and transitive
closure. The first quadrant will be covered by means of the grid structure rep-
resented in Fig. 3. Five roles will be used to represent the connections between
grid points: one role R (whose transitive closure is the universal role) connecting
each point with all its direct successors, and four roles Ty, 119, 191 and 17, con-
necting (to their z- and y- successors) the points in a square having an A-type,
B-type, C-type and D-type bottom-left vertex, respectively (see Fig. 3). The
new roles are related to the roles used in Theorem 1 as follows:

Xo :=Too MTo1, Xy :=TioM T, Yo :i=Too M Trg, Y1 :=Ton M1y
Too := Xo UYy, Tor :=XoUYy, Tyo:= X1 UYy, Ty := X UY;

The implicit role hierarchy is also depicted in Fig.3.

Grid specification can be accomplished by means of the Cg concept which
follows:

Ce (A= (3T%0.B M 3Ty.BMN3R.B 1 3Ty.C 113T40.C 1IR.C
M3~ (Too M Ty M R) M3 (Too M T M R) NIT) )

r (B = (3T. AN 3T . ANIR.ANIT.D N 3Ty.DMN3IR.D
M3= (Tyo M Ty M R) M3 (Too M Tho 1 R) NITY))

r (C = (ITo.D N ITy.D N IR.D M ATy AN 3T . AN IR.A
M3~ (Too M Ty M R) NI (Toy N Ty M R) NITH))

N (D= (3T.C N3T,.C N3IR.CN3Ty.BN3IT,.BMN3R.B
N3~ (T NTy N R) NI (T N T N R)N3TTY))
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In this way, every point in the grid is described as having exactly one z-successor
and one y-successor (e.g. an A-type point is connected through 7oy and Ty (and
R) to a B-type and through Ty and Ty (and R) to a C-type point, and so on).
Furthermore, every A-type point is connected, through any occurrence of Tg, to
exactly three other points. W.l.o.g., let p(, ) be one chosen A-type point. Tt
has exactly one z-successor, which we can draw to its right and call p(;,11,,), one
y-successor, which we can draw above it and call p(,, 41y, and one more common
T, -successor (which is also an z-successor of a C-type point and an y-successor
of a B-type point) which we can draw as the D-type point closing the square
on the top-right corner and that we can call p(,11,n41). Obviously, pumiin)
and pan,n41) can be reached from pgy, ) also via R. Similarly, we can consider
the construction of squares starting from a B-, C- or D-type point. With this
intuition (see also Fig. 3), it is easy to understand how the complete grid can
be drawn and how each point is connected to its direct - and y-successors via R.

Local compatibility is easy to achieve by means of a Cp concept very similar
to the one used in Theorem 1, for instance:

CD = |_| (E M
Ec{A,B,C,D}

( M -F)n_ U <Di|—|( )
Fe{A,B,C,D}\{E} 1<i<m 1<i<m 1,763

1<i<m (Di,Dj)eH (Di,Dj)

A

-
((BND;) = (3T3.(AM ((D_ H)eHDf)) M 3Ty.(D M (( )))
((CNDy) = 3Toe.(DN( U Dy)N 3Ty (A ( )))

(Di,Dj)eH (Di,Dj)

M

M
((DND;) = (ITo.(C( U D;)N3Ty.(BM( )

(Di,Dj)eH (DZ,D

Total reachability is straightforward to ensure, as the same Ep as in Theorem
1 can be used:

Ep = ARANI'RNVR.(CgnCp)
With the intuition given above, it is easy to see that a tiling system D has
a compatible tiling iff concept Fp is satisfiable (i.e. there is an interpretation Z

such that (Ep)* # 0).

Theorem 2 Satisfiability (azzd, thus, subsumption) of concepts is undecidable
for ACC N (*,M) and ALCN (F,).
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Conclusions

In this paper we studied expressive Description Logics ALCN, allowing both
for value and number restrictions on complex roles built with combinations of
constructors.

In particular, we slightly improved the (un)decidability results by Baader
and Sattler on logics of the ALCN family [1] by showing by reduction of a
domino problem that ALCN (*,U) and ALCN (T,M) are undecidable.
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