
Accepted Manuscript

On the analysis of Bloom filters

Fabio Grandi

PII: S0020-0190(17)30160-6
DOI: https://doi.org/10.1016/j.ipl.2017.09.004
Reference: IPL 5580

To appear in: Information Processing Letters

Received date: 8 August 2017
Accepted date: 14 September 2017

Please cite this article in press as: F. Grandi, On the analysis of Bloom filters, Inf. Process. Lett. (2017),
https://doi.org/10.1016/j.ipl.2017.09.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ipl.2017.09.004

Highlights

• Probabilistic analysis of Bloom filters is completed and extended.
• Two kinds of Bloom filter, standard and classic, are considered.
• Iterative schemes for computing the false positive probability are provided.
• A new accurate approximation for the false positive probability is provided.

On the analysis of Bloom filters

Fabio Grandia,∗

aDepartment of Computer Science and Engineering (DISI), Alma Mater Studiorum –
Università di Bologna, Viale Risorgimento 2, I-40136 Bologna BO, Italy

Abstract

The Bloom filter is a simple random binary data structure which can be effi-
ciently used for approximate set membership testing. When testing for member-
ship of an object, the Bloom filter may give a false positive, whose probability is
the main performance figure of the structure. We complete and extend the anal-
ysis of the Bloom filter available in the literature by means of the γ-transform
approach. Known results are confirmed and new results are provided, including
the variance of the number of bits set to 1 in the filter. We consider the choice
of bits to be set to 1 when an object is inserted both with and without replace-
ment, in what we call standard and classic Bloom filter, respectively. Simple
iterative schemes for the computation of the false positive probability and a new
non-iterative approximation, taking into account the variance of bits set to 1,
are also provided.

Keywords: Data structures, Analysis of algorithms, Bloom filters, γ-transform

1. Introduction

The Bloom filter [1] is a simple random data structure which can be efficiently
used for approximate set membership testing. Considering n objects oi ∈ O
(i ∈ {1..n}) to be inserted in a Bloom filter made of m bits initially set to 0,
k independent hash functions hj : O → {1..m} (j ∈ {1..k}) are used to map
each object into bit positions to be set to 1 in the filter. In order to test the
membership of an object o ∈ O to the set {o1, . . . , on}, the k hash functions can
be applied to o: in case at least one maps o to the position of a bit still 0 in the
filter, then the membership can be excluded. If o is mapped to bits all set to 1,
then o can be one of the objects in the set but we can also be in the presence
of a false positive. A low False Positive Probability (FPP) is, thus, a quality
figure of the filter that has to be minimized via a suitable choice and tuning of
the parameters (m,n, k).

In the standard Bloom filter usually considered in the recent literature and
in the application practice, there are no constraints imposed to the values gen-

∗Corresponding author
Email address: fabio.grandi@unibo.it (Fabio Grandi)

Preprint submitted to Information Processing Letters September 20, 2017

erated by the k hash functions, so that the same values can be repeatedly
generated and less than k bits can be set by the insertion of an object in the
filter. In this work, we also consider the variant initially proposed by Bloom [1]
in which, for each object, the k hash functions always generate k distinct values
and, thus, exactly k bits are set in the filter, as required for the classic super-
imposed coding [9]. Hence, we will call such variant the classic Bloom filter
(if the hash functions have disjoint ranges of m/k consecutive bits, this variant
corresponds to what has been called partitioned Bloom filter in [7]). Notice that
the adoption of a classic Bloom filter does not give rise to significant additional
computational costs, with respect to a standard Bloom filter, by exploiting the
techniques introduced in [7] to avoid hash collisions.

1.1. Background on Approximate Analysis

After all objects have been inserted, the probability that one bit of the
standard Bloom filter is still 0 can be evaluated as (1 − 1/m)kn, being the
selection of bits to be set with replacement, either with respect to the objects
and with respect to the hash functions. If X is a r.v. representing the total
number of bits set to 1 in the filter, its expected value is accordingly:

E[X] = m

[
1−

(
1− 1

m

)kn
]

(1)

The main merit figure of the Bloom filter is the False Positive Probability
(FPP) that can be computed as the probability that an object non belong-
ing to {o1, . . . , on} is hashed to only positions with bits set to 1 in the filter.
As the bit positions can be chosen with replacement, the probability of a false
positive conditioned to a number X = x of bits set to 1 in the standard Bloom
filter is given by:

Pr(FP|X = x) =
(x

m

)k

(2)

Then the exact value of the FPP can be computed indeed according to the Total
Probability theorem as:

FPP =
m∑

x=0

Pr(FP|X = x) Pr(X = x) =

m∑
x=0

f(x) Pr(FP|X = x) (3)

where f(x) is the probability mass function ofX. SinceX can be shown (e.g., via
application of the Azuma–Hoeffding inequality [8, Sec. 12.5.3]) to be strongly
concentrated around its expected value, a commonly employed approximation
is to consider x deterministically equal to E[X], yielding:

FPP ≈ FPPA1 =

[
1−

(
1− 1

m

)kn
]k

(4)

2

Such approximation has been shown in [2] to be highly accurate for large m
values with small values of k. Moreover, since (1 − 1/m)m → 1/e when m
grows, a further asymptotic approximation:

FPP ≈ FPPA2 =
(
1− e−kn/m

)k

(5)

is also commonly used when m is large. FPPA2 is minimized when k =
(m/n) ln 2, corresponding to one half of the bits set to 1 in the Bloom filter.

No complete analysis of the classic (or partitioned) Bloom filter has been
done yet. Kirsch and Mitzenmacher in [7] limit themselves to observe that it
tends to have more 1’s than the standard Bloom filter and, thus, yields an higher
FPP although their asymptotic behavior is the same.

In this paper, we will apply the γ-transform approach described in [5] and
that we first introduced in [4] to the analysis both of the standard and of the
classic Bloom filters. In this way, in Sec. 2, we will easily derive the exact
probability mass function, expected value and variance of the number of bits
set to 1, and the FPP of the standard and classic Bloom filters. We will also
introduce two iterative schemes for the direct computation of those FPPs and a
new accurate non-iterative approximation for the estimation of the FPP of the
standard Bloom filter. For small Bloom filters, for which asymptotic approxi-
mations are not justified, a comparison between the FPPs of the standard and
classic Bloom filters, the new approximation and the old ones can be found in
Sec. 3. A Conclusion section will finally close the paper.

2. A New Analysis of Bloom Filters

In this Section, we exploit the γ-transform approach [4, 5] for the proba-
bilistic characterization of the standard and classic Bloom filters. In a counting
experiment where possible outcomes can be selected from a set with cardinality
m, the γ-transform γ(y) of the probability mass function of the number of out-
comes can be evaluated as the probability of selecting outcomes from a subset
with cardinality y ≤ m only. In our case, we can consider as an outcome a bit
set to 1 in the filter so that X represents the number of outcomes. Ready-made
formulas will then allow us to derive from γ(y) the probability mass function of
X, the expected value and variance of X.

2.1. Standard Bloom Filter

Owing to the physical meaning of the γ-transform recalled above [5, Th.
3], since in the standard Bloom filter selection of bits to be set to 1 is with

replacement, we have γS(y) = (y/m)
kn
. Hence, using formulae (6), (13) and

(14) of [5], we can derive in a straightforward way from γS(y) the probability
mass function, expected value and variance of X, respectively, as:

fS(x) =

(
m

x

) x∑
j=0

(−1)j
(
x

j

)(
x− j

m

)kn

(6)

3

E[X] = m

[
1−

(
1− 1

m

)kn
]

(7)

σ2
X = m

(
1− 1

m

)kn
[
1−m

(
1− 1

m

)kn

+ (m− 1)

(
1− 1

m− 1

)kn
]
(8)

The probability mass function fS(x) is the one we first derived in [4] for a par-
ticular case of the “set union problem” and agrees with the expressions derived
for the standard Bloom filter in [2, 3], while E[X] in (7) is the same as in (1).
As far as we know, no derivation of σ2

X has been done by other authors. Notice
that the explicit knowledge of σ2

X is a good indicator for evaluating how the dis-
tribution of X is actually concentrated around E[X] and, thus, of the goodness
of the proposed approximations FPPA1 and FPPA2 (also for small m).

Using (3) with (6) and (2), the exact expression of the FPP for the standard
Bloom filter can then be computed as:

FPPS =

m∑
x=0

(x

m

)k
(
m

x

) x∑
j=0

(−1)j
(
x

j

)(
x− j

m

)kn

(9)

which agrees with the expressions derived in [2, 3] and is a rather complex
formula to evaluate.

2.1.1. Iterative Computation of FPPS

Whereas in [3] an iterative scheme has been provided for the computation
of fS(x), we present a similar iterative scheme for direct computation of FPPS .
Let ψS(h,m) be a bivariate function with integer arguments defined as:

ψS(h,m) =

m∑
x=0

(x

m

)h
(
m

x

) x∑
j=0

(−1)j
(
x

j

)(
x− j

m

)kn

Then we can show that ψS(h,m) satisfies the difference equation that follows:

ψS(h,m) = ψS(h− 1,m)−
(
1− 1

m

)kn+h−1

ψS(h− 1,m− 1) (10)

Proof: Since(x

m

)h
(
m

x

)
=

(x

m

)h m

x

(
m− 1

x− 1

)
=

(x

m

)h−1
[(

m

x

)
−
(
m− 1

x

)]

we can write:

ψS(h,m) =

m∑
x=0

(x

m

)h−1
(
m

x

) x∑
j=0

(−1)j
(
x

j

)(
x− j

m

)kn

−
m−1∑
x=0

(x

m

)h−1
(
m− 1

x

) x∑
j=0

(−1)j
(
x

j

)(
x− j

m

)kn

4

=

m∑
x=0

(x

m

)h−1
(
m

x

) x∑
j=0

(−1)j
(
x

j

)(
x− j

m

)kn

−
m−1∑
x=0

(
m− 1

m

)h−1 (
x

m− 1

)h−1 (
m− 1

x

) x∑
j=0

(−1)j
(
x

j

)(
m− 1

m

)kn (
x− j

m− 1

)kn

=

m∑
x=0

(x

m

)h−1
(
m

x

) x∑
j=0

(−1)j
(
x

j

)(
x− j

m

)kn

−
(
1− 1

m

)kn+h−1 m−1∑
x=0

(
x

m− 1

)h−1 (
m− 1

x

) x∑
j=0

(−1)j
(
x

j

)(
x− j

m− 1

)kn

= ψS(h− 1,m)−
(
1− 1

m

)kn+h−1

ψS(h− 1,m− 1)

which concludes the proof. Hence, since FPPS = ψS(k,m), the difference
scheme (10) with the initial conditions ψS(0, i) = 1 (i ∈ {1..m}) gives us an
O(km) iterative algorithm for computing FPPS .

2.1.2. A new non-iterative approximation of FPPS

A non-iterative better approximation than (4) can also be determined as
follows. Being X the r.v. representing the number of bits set to 1, from (2) and
(3), FPPS is the expected value of a function of X defined as ϕ(X) = (X/m)k.
Instead of simply evaluating FPPS as ϕ(E[X]) as in (4), which is a zero-th order
approximation, we can develop ϕ in Taylor’s series around E[X], keeping the
first three terms, and take the expectation yielding:

E[ϕ(X)] ≈ ϕ(E[X]) +
σ2
X

2
ϕ′′(E[X])

=

(
E[X]

m

)k

+
σ2
X

2

k(k − 1)

m2

(
E[X]

m

)k−2

(11)

which is a second order approximation, which we will call FPPA3, also taking
into account the non-null variance of X and which can be computed using
the values of E[X] and σ2

X given by (7) and (8), respectively. Notice that,
although the expected value (7) can easily be computed without resorting to
the γ-transform approach, the direct computation of the variance (8) from the
probability mass function (6) is a rather hard task.

2.2. Classic Bloom Filter

In this section we analyze a Bloom filter as originally proposed in [1], that is
where the insertion of each object sets exactly k bits to 1. Hence, the selection
of bits to be set to 1 is with replacement with respect to objects but without
replacement with respect to hash functions. Therefore, owing to the physical
meaning of the γ-transform [5, Th. 3], we can derive γC(y) =

[(
y
k

)
/
(
m
k

)]n
.

5

Hence, using formulae (6), (13) and (14) of [5], we can derive from γC(y) the
probability mass function, expected value and variance of X, respectively, as:

fC(x) =

(
m

x

) x∑
j=0

(−1)j
(
x

j

)⎡
⎢⎢⎣
(
x− j

k

)
(
m

k

)
⎤
⎥⎥⎦
n

(12)

E[X] = m

[
1−

(
1− k

m

)n]
(13)

σ2
X = m

(
1− k

m

)n [
1−m

(
1− k

m

)n

+ (m− 1)

(
1− k

m− 1

)n]
(14)

As far as we know, no complete characterization of the classic Bloom filter
has been done before, although the probability mass function fC(x) and the
expected value (13) are special cases of those presented in [9, 5]. The variance
(14) agrees with the one we derived in [4, 5] for the general “set union problem”.

The exact false positive probability of the classic Bloom filter can be com-
puted as the probability that an object non belonging to {o1, . . . , on} is hashed
to only positions with bits set to 1 in the filter when the selection of such
positions is without replacement. Hence, from (3) and using (12), we have:

FPPC =

m∑
x=0

fC(x)

(
x

k

)
(
m

k

) (15)

=
m∑

x=0

(
m

x

) (
x

k

)
(
m

k

) x∑
j=0

(−1)j
(
x

j

)⎡
⎢⎢⎣
(
x− j

k

)
(
m

k

)
⎤
⎥⎥⎦
n

(16)

Notice that (15) can also be rewritten as:

FPPC =

m∑
x=0

fC(x)
xk

mk
=

1

mk
E[Xk] (17)

where ak is the k-th falling factorial power of a and E[Xk] is the k-th factorial
moment of X, which can be easily evaluated via the γ-transform approach. In
fact, using formula (12) of [5] we obtain:

FPPC =

k∑
j=0

(−1)j
(
k

j

)
γC(m− j) =

k∑
j=0

(−1)j
(
k

j

)⎡
⎢⎢⎣
(
m− j

k

)
(
m

k

)
⎤
⎥⎥⎦
n

(18)

which is a more handy formulation than (16), still complex to evaluate though.

6

2.2.1. Iterative Computation of FPPC

As we did for FPPS , we also present here an iterative scheme for direct com-
putation of FPPC . Let ψC(h,m) be a bivariate function with integer arguments
defined as:

ψC(h,m) =

h∑
j=0

(−1)j
(
h

j

)⎡
⎢⎢⎣
(
m− j

k

)
(
m

k

)
⎤
⎥⎥⎦
n

Then we can show that ψC(h,m) satisfies the difference equation that follows:

ψC(h,m) = ψC(h− 1,m)−
(
1− k

m

)n

ψC(h− 1,m− 1) (19)

Proof:

ψC(h,m) = 1 +

h∑
j=1

(−1)j
(
h

j

)⎡
⎢⎢⎣
(
m− j

k

)
(
m

k

)
⎤
⎥⎥⎦
n

= 1 +

h∑
j=1

(−1)j
(
h− 1

j

)⎡
⎢⎢⎣
(
m− j

k

)
(
m

k

)
⎤
⎥⎥⎦
n

+

h∑
j=1

(−1)j
(
h− 1

j − 1

)⎡
⎢⎢⎣
(
m− j

k

)
(
m

k

)
⎤
⎥⎥⎦
n

= 1 +

h−1∑
j=1

(−1)j
(
h− 1

j

)⎡
⎢⎢⎣
(
m− j

k

)
(
m

k

)
⎤
⎥⎥⎦
n

+

h∑
j=1

(−1)j
(
h− 1

j − 1

)⎡
⎢⎢⎣
(
m− 1− (j − 1)

k

)
m

m− k

(
m− 1

k

)
⎤
⎥⎥⎦
n

=

h−1∑
j=0

(−1)j
(
h− 1

j

)⎡
⎢⎢⎣
(
m− j

k

)
(
m

k

)
⎤
⎥⎥⎦
n

+

(
m− k

m

)n h∑
j=1

(−1)j
(
h− 1

j − 1

)⎡
⎢⎢⎣
(
m− 1− (j − 1)

k

)
(
m− 1

k

)
⎤
⎥⎥⎦
n

=

h−1∑
j=0

(−1)j
(
h− 1

j

)⎡
⎢⎢⎣
(
m− j

k

)
(
m

k

)
⎤
⎥⎥⎦
n

−
(
m− k

m

)n h−1∑
j=0

(−1)j
(
h− 1

j

)⎡
⎢⎢⎣
(
m− 1− j

k

)
(
m− 1

k

)
⎤
⎥⎥⎦
n

= ψC(h− 1,m)−
(
1− k

m

)n

ψC(h− 1,m− 1)

which concludes the proof. Hence, since FPPC = ψC(k,m), the difference
scheme (19) with the initial conditions ψC(0, i) = 1 (i ∈ {1..m}) gives us an
O(km) iterative algorithm for computing FPPC . However, if k � m, it is more
convenient to directly evaluate formula (18) which has complexity O(k2).

7

0

0,06

0,12

0,18

0,24

0 5 10 15 20

SETTING S1
m=128, n=16
(optimal: kS=kC=5)

C

S≈A3
A2

A1

0

0,02

0,04

0,06

0,08

0 10 20 30 40

SETTING S2
m=128, n=8
(optimal: kS=11, kC=10)

C

S A3
A2

A1

Figure 1: Graphs of False Positive Probabilities and their approximations.

3. Comparison

In this Section we analyze —away from their asymptotic behavior, that is for
rather small values of m— the exact FPPs and the approximations we presented
for the Bloom filters. Notice that, as also underlined in [3], although large Bloom
filters are usually adopted, there are also applications actually using small Bloom
filters (e.g., [6]). We considered several (m,n) combinations with m ≤ 1024, for
which we obtained qualitatively similar results. We present in detail the analysis
of two representative settings with m = 128: S1 with n = 16 and S2 with n = 8.
Fig. 1 displays the plot versus k of the FPPs and approximations in the range
around their minima, which is the one of interest for applications, for these
two settings. In particular, from the top to the bottom, the plotted curves are:
FPPC , FPPS and its approximations FPPA3, FPPA2 and FPPA1.

Approximations FPPA1 and FPPA2 of FPPS are very close to each other
on the whole range of k (their maximal error is, resp., 11.18% and 9.50% oc-
curring at k = 19 in S1 and, resp., 35.33% and 32.84% occurring at k = 35
in S2; in the optimal configuration their error is, resp., 3.82% and 2.45% in
S1 and 14.52% and 11.92% in S2). The new approximation FPPA3 is better
than FPPA1 and FPPA2 and very close to FPPS indeed (its maximal error is
0.28% occurring at k = 39 in S1 and 4,53% occurring at k = 33 in S2; in the
optimal configuration its error is 0.0044% in S1 and and 0.37% in S2). In S1,
the optimal configuration corresponds to k = 5 for both the standard and the
classic Bloom filters (minimum FPPS and minimum FPPC are 0.023 and 0.022,
resp., with a 3.28% difference). In S2, the optimal configuration corresponds to
k = 11 for the standard Bloom filter and to k = 10 for the classic Bloom filter
(minimum FPPS and minimum FPPC are 0.00054 and 0.00046, resp., with a
13.59% difference). Hence, in their optimal configuration, the performance dif-
ference between the standard and the classic Bloom filters is not so significant.
The difference between FPPC and FPPS becomes really significant for higher k
values (maximum percentage difference between FPPC and FPPS is 25.62% at
k = 25 in S1 and 151.28% at k = 45 in S2), usually out of the range of practical
application of Bloom filters. In any case, in the optimality region, FPPC ,FPPS

8

and also FPPA3 are very close to each other, and they are also quite flat around
their minima.

4. Conclusion

In this paper, we applied the γ-transform approach to the probabilistic char-
acterization of the standard and classic Bloom filters. In this way, we easily re-
obtained known results (i.e, fS(x), E[X] for the the standard and classic Bloom
filters, FPPS) and derived new results (i.e., fC(x), σ2

X for the the standard
and classic Bloom filters, FPPC). We also presented iterative schemes for the
direct computation of FPPS and FPPC and a new non-iterative approxima-
tion FPPA3 for FPPS . For small Bloom filters, it has been shown that FPPA3

is a quite accurate approximation, better than FPPA1 and FPPA2, and that
the performances of the standard and classic Bloom filters, with optimal k, are
comparable.

[1] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Er-
rors,” Communications of the ACM, Vol. 13, No. 7, 1970, pp. 422-426.

[2] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison,
M. H. M. Smid, Y. Tang, “On the false-positive rate of Bloom filters,”
Information Processing Letters, Vol. 108, No. 4, 2008, pp. 210–213.

[3] K. J. Christensen, A. Roginsky, M. Jimeno, “A new analysis of the false
positive rate of a Bloom filter,” Information Processing Letters, Vol. 110,
No. 21, 2010, pp. 944–949.

[4] F. Grandi, “Advanced access cost models for databases,” Ph.D. Disserta-
tion, DEIS, University of Bologna, Italy, 1994, in Italian.

[5] F. Grandi, “The γ-transform Approach: a New Method for the
Study of a Discrete and Finite Random Variable,” International Jour-
nal of Mathematical Models and Methods in Applied Sciences, Vol.
9, 2015, pp. 624–635, URL: http://www.naun.org/main/NAUN/ijmmas/
2015/b442001-411.pdf.

[6] J. Mullin, “Accessing textual documents using compressed indexes of arrays
of small Bloom filters, The Computer Journal, Vol. 30, No. 4, 1987, pp.
343–348.

[7] A. Kirsch, M. Mitzenmacher, Less hashing, same performance: Building
a better Bloom filter, Random Structures and Algorithms, Vol. 33, No. 2,
2008, pp. 187–218.

[8] M. Mitzenmacher, E. Upfal, Probability and computing: Randomized algo-
rithms and probabilistic analysis, Cambridge University Press, Cambridge,
UK, 2005.

[9] C. S. Roberts, “Partial match retrieval via the method of superimposed
codes,” Proceedings of the IEEE, Vol. 67, No. 12, 1979, pp. 1624–1642.

9

