
The CPR Model For Summarizing Video

M. Fayzullin, V.S.Subrahmanian ∗

University of Maryland
{fms,vs}@cs.umd.edu

A. Picariello
Università di Napoli

picus@unina.it

M.L. Sapino
Università di Torino
mlsapino@di.unito.it

ABSTRACT

Most past work on video summarization has been based on

selecting key frames from videos. We propose a model of

video summarization based on three important parameters:

Priority (of frames), Continuity (of the summary), and non-

Repetition (of the summary). In short, a summary must

include high priority frames, must be continuous and non-

repetitive. An optimal summary is one that maximizes an

objective function based on these three parameters. We de-

velop formal definitions of all these concepts and provide

algorithms to find optimal summaries. We briefly report on

the performance of these algorithms.

Categories & Subject Descriptors:

H.2.4 Multimedia Databases

General Terms:

Algorithms, Human Factors, Measurement, Theory

Keywords:

Multimedia, Video, Summarization

1. INTRODUCTION

Despite the vast amount of work on video databases, there

has been relatively little work [3, 5, 4, 13, 6] to date on sum-

marizing video and almost no work at all that both takes the

content into account and that summarizes video in a man-

ner that scales to massive data applications. For example,

if FIFA (the International Soccer Federation) wanted to sell

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMDB’03, November 7, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-726-5/03/0011 ...$5.00.

videos of soccer games, there would be tens of thousands of

such videos. Potential customers may wish to watch small

clips of the video to decide which videos they wish to buy.

Though financial resources may be available to manually

summarize each video, the ability to automatically summa-

rize such videos is likely to be attractive.

In this paper, we propose a formal model for video summa-

rization that takes three important properties into account:

1. Continuity: The summarized video must be as con-

tinuous as possible. A summary with a lot of “jumps”

in it is unlikely to be attractive to users.

2. Priority: In a given summarization application (e.g.

summarizing soccer videos), certain objects or events

may be more important than others (e.g. a goal may

be more important than a midfield pass). A summary

must contain high priority items in it — but the do-

main expert must have the ability to set priorities.

3. Repetition: Even though an event may have high

priority, if the event occurs repeatedly throughout the

video, then it may become important to not repeat it

over and over again and instead select other important

events to show.

These three important criteria, which we call the CPR cri-

teria, form the core basis for our summarization framework.

Existing models such as those of [3, 4] do not take item

(2) above into account. For instance, [3, 5] focuses on key

frames that are determined by the amount of change, but

key frames may not necessarily be important for the user.

Similarly, [6] creates a user attention model based on the

feature changes in the video to pick key frames and insert

them into a summary. [4] focuses on using Powerpoint slides

accompanying a presentation to create summaries and does

not use the content of the video itself. Instead, attention

span information is used to find “important” slides and in-

clude corresponding frames into a summary.

2



Our CPR model consists of two key components: (i) use

of rules to specify which objects and/or activities in a video

are of interest (i.e. have high priority) for inclusion in a sum-

mary and (ii) an objective function that merges together the

relative importance of priorities of objects/events, vis-a-vis

continuity and repetition criteria. Once the rules and the

objective function are articulated, any suite of video pro-

cessing algorithms can be used for feature/activity extrac-

tion. We provide three algorithms for creating summaries:

a dynamic programming based algorithm called CPRdyn, a

genetic programming based algorithm called CPRgen, and

a specialized summary extension algorithm (SEA). About

200 students at the University of Naples have tested out our

algorithms on 50 soccer videos with a view to determining

which algorithm produced the “best quality” summaries (as

evaluated by the students). We concluded that that the SEA

algorithm is the fastest and also produces the best quality

summaries.

2. SUMMARIZATION: FORMAL MODEL

Throughout this paper, we assume that every video v has

a length lenv describing the number of frames in the video -

the frames in a video of length lenv are labelled 1, . . . , lenv.

In many cases, we may coalesce a group of contiguous

frames into blocks and then create summaries based on de-

termining which blocks (rather than frames) to include in

the summary. The advantage of this approach is that the

number of blocks in a video is much smaller than the num-

ber of frames. Our framework applies both to blocks and

frames.

2.1 Summarization Content Specification

One of the most important parts of video summarization

is to specify what kinds of content should be included within

the summary. In this section, we propose the concept of a

summarization content specification.

Definition 2.1 (k-summary). Suppose v is a video, k ≥
0 is an integer, and S ⊆ {1, . . . , lenv} is a set of frames such

that card(S) ≤ k. Then S is called a k-summary of v.

In other words, a k-summary of a video is any set of k or

fewer frames from the video. Of course, some summaries

will be better than others - the rest of this section describes

a method to describe which frames are of interest to a user.

Summarization content is specified using a logical lan-

guage which contains a unary predicate called insum that

takes a frame as input. If f is either a frame number or

a variable ranging over frames, then insum(f) is called an

insum-atom. When insum(f) is true, this means that frame

f is of interest for inclusion in the summary. Of course, not

all frames of interest may be included in the summary that

is eventually selected. Furthermore, some frames may be

included in the final summary even if there is no interest in

them because they may be required to ensure continuity of

the produced summary.

We assume that the video database on top of which our

summarization tools are built supports the following API

(application program interface) functions:

• findframe(v, X): When X is either an object or an ac-

tivity, this function returns the set of all frames in

the video v containing that object or activity. For

instance, findframe(v, X) can be implemented via al-

gorithms such as those proposed in [12].

• findobj(v, f): Given a video v and a frame f , this re-

turns the set of all the objects occurring in frame f

of video v. findobj(v, f) can be implemented via algo-

rithms such as those in [12].

• findact(v, f): This is similar to the previous function

except that it returns all activities occurring in frame

f of video v. findact(v, f) can be implemented via

algorithms such as those in [10].

Most existing video databases (AVIS[1], OVID[9]) can sup-

port such functions. It is important to note that all the

functions above return a set as output. This will be signifi-

cant for us.

Definition 2.2 (video-call). Suppose vc is a video

database API function, and t1, . . . , tn are arguments to vc

(of the right type). Then vc(t1, . . . , tn) is called a video call.

Definition 2.3 (video-atom). If vc is a video call and

X is either a constant or a variable of the same type as vc’s

output, then (X ∈ vc) is called a video atom. Likewise, if

X, Y are either frames or variables ranging over frames and

i is an integer, near(X, Y, i) is a video atom.

For example, X ∈ findact(v, f) allows the variable X to be

bound to any activity in frame f of video v. Intuitively, a

frame Y satisfies near(X, Y, i) iff Y occurs in the the interval

of frames starting at X − i and ending at X + i (including

both). The near predicate is used to ensure continuity.

Definition 2.4 (video-condition). If va1, . . . , van are

video atoms and E is a conjunction of equalities , then

3



(va1 ∧ . . . ∧ van ∧ E) is a video condition. We will use

the symbol � (possibility adorned with subscripts and super-

scripts) to denote a video condition.

For example, X ∈ findobj(v, f) ∧ X ∈ findobj(v, f ′) finds all

objects X that appear both in frame f and frame f ′ of video

v.

Definition 2.5 (summarization rule). A summariza-

tion rule is an expression of the form

A ← � ∧ A1 ∧ . . . ∧ Am

where � is a video condition, and A, A1, . . . , Am are insum-

atoms.

Intuitively, the above rule says that if A1, . . . , Am are of

interest for inclusion in a k-summary, and if � is true, then

A is also of interest for inclusion in the k-summary.

Definition 2.6 (summary content specification).

A video summary content specification V is a finite set of

summarization rules.

Intuitively, a video summarization content specification V
contains a finite set of rules. Based on these rules, we

can derive a finite set of instantiated (i.e. variable free)

video atoms. We use Der(V) to denote the set of all insum-

atoms derivable from a video summary content specification

V. These atoms are the ones deemed to be of interest for

inclusion in a summary.

Definition 2.7 (valid k-summary). Suppose V is a video

summary content specification. A k-summary S is valid

w.r.t. V iff S ⊆ Der(V).

The above definition says that for a k-summary to be valid,

the inclusion of each frame in it must be justified by some

rule in the summary specification.

Example 2.1. The following rules describe atoms of in-

terest in a soccer video. According to the first rule, frames in

which the action of scoring a goal appears, as well as the cap-

tain of a team, are interesting. The second rules states that

celebration actions in frames make them interesting. The

third rule states that any frame containing a pass action in-

volving Totti is interesting, provided Totti appears in at least

one frame whose importance has already been stated.

insum(X) ← “goal” ∈ findact(v, X)

∧ “captain” ∈ findobj(v, X)

insum(Y ) ← “celebration” ∈ findact(v, Y )

insum(Z) ← “pass” ∈ findact(v, Z)

∧ “Totti” ∈ findobj(v, Z)

∧ “Totti” ∈ findobj(v, X)

∧ insum(X)

2.2 Priority Specification

A priority function for a video is a mapping pri from sets

of frames to natural numbers. Intuitively, pri({f1, f2}) = 5

means that the priority of including both f1, f2 in a sum-

mary is 5. Priority functions can be explicitly stated in one

of many ways. An example priority function specification

mechanism is shown below.

Example 2.2 (aggregated tabular priority). In this

method, we have a table having the schema (FrameSet,

P riority). An example is given eblow.

{f1, f2} 5
{f1} 3
{f2, f3} 7

Given such a table and a set F of frames, many different

priority functions may be defined, some of which are shown

below.

1. Subset-average: This function finds all tuples in the

table whose FrameSet field is a subset of F and re-

turns the average of the priority fields of such tuples.

For example, with respect to the above table, if F =

{f1, f2, f4}, this function would return 4 (average of 5

and 3).

2. Maximal Subset Average: This function finds all

tuples t in the table whose FrameSet field is a max-

imal subset of F (i.e. there is no other tuple t′ with

t.F rameSet ⊂ t′.F rameSet such that t′.F rameSet ⊆
F ) and takes the average priorities of such tuples. In

the above example, if F = {f1, f2, f3}, then this prior-

ity function would return 6 (average of 5 and 7). Note

that the second tuple would not be maximal and hence

its associated priority would not be involved in the av-

erage computation.

We can also specify priorities via rules.

4



2.3 Continuity Specification

Continuity is an important criterion to be taken into ac-

count when computing an appropriate summary. For exam-

ple, consider a soccer match with one goal. To show the goal

effectively, a summary should probably include a segment

of video immediately preceding the goal, and immediately

thereafter. This is an example of a continuity requirement.

Definition 2.8 (Continuity function). Suppose v is

a video, k ≥ 0 is an integer, and Σ is the set of k-summaries

of v. A continuity function w.r.t. v is a mapping χ : Σ →
N .

The notion of a continuity function above is very general.

Different summarization applications may use different in-

stances of this general definition. For example, a notion of

distance between frames can be used to define the continuity

function, as follows.

Example 2.3. Suppose H(f) = (h1, h2, . . . , hn) is a func-

tion that returns the color histogram for a given frame f .

Each hj corresponds to the number of pixels in a region of

some color space. A good perceptually uniform space is the

Hue Saturation Value, HSV space or alternatively we may

use the Opponent Colors space. Let d be any measure of

distance between two histograms (e.g. d could be the well

known L1 or L2 norms). Now set the distance of a sum-

mary f1, . . . , fk to be

Σk−1
i=1 d(Hi, Hi+1)

where Hi is the color histogram of the i’th frame fi in the

summary.

2.4 Repetition Specification

The third important property of a summary is that it must

not contain repetitive information. A video spanning 90

minutes will probably have at least a few key scenes. Sum-

maries should probably show clips of each of these scenes,

rather than just one. The goal of a repetition specification

is to avoid repetitions.

Definition 2.9 (Repetition function). Suppose v is

a video, k ≥ 0 is an integer, and Σ is the set of k-summaries

of v. A repetition function w. r. t. v is a mapping

ρ : Σ→ N .

As in the case of continuity functions, repetition functions

are very general in nature. There are thousands of possible

repetition functions. Two examples are given below.

Example 2.4 (frame-distance based repetition).

Suppose S is a summarization of a video and d is a distance

function. Then we could define three repetition functions

mind, sumd and avg sumd as follows.

mind(S) = min{d(f1, f2) | f1, f2 ∈ S ∧ f1 	= f2}.
sumd(S) = Σf1,f2∈S ∧ f1 �=f2d(f1, f2).

avg sumd(S) =
Σf1,f2∈S ∧ f1 �=f2d(f1, f2)

card(S)
.

It is important to note that various frame distance functions

can be used which measure the distance between one frame

and another.

Example 2.5 (object/activity repetition). Given

a function wt which assigns weights to objects, an object o,

and a set S of frames, the repetition of o in S is given by

repS(o) = wt(o) · card({f ∈ S | o ∈ f}).

Given an activity a, repS(a) may be defined similarly. We

may now define the repetition of S as

rep(S) = ΣorepS(o) + ΣarepS(a).

2.5 Optimal Summary

Suppose a summarization developer has specified a sum-

marization content specification, a repetition function, a pri-

ority function, and a continuity function. In order to define

what an optimal summary is, we first need a way of evaluat-

ing a summary based on the criteria of continuity, priority,

and repetition. This is formalized by the concept of a sum-

mary valuation below.

Definition 2.10 (summary valuation). Suppose V is

a video summary content specification, SUM is the set of all

summarizations of a given video v, and α, β, γ ≥ 0 are inte-

gers. A summary valuation is a function eval : SUM → R,

of the form

eval(S) = α · χ(S) + β · pri(S)− γ · ρ(S).

In the above definition, the constants α, β, γ denote the re-

spective importance to be given to continuity, priority, and

repetition criteria. Users do not have to explicitly write such

an objective function - they can use simple sliders on a GUI

to set these weights.

Definition 2.11 (k-summary computation problem).

Suppose V is a video summary content specification. A k-

summary S is optimal w.r.t. V and a summary valuation

eval(S) iff (i) it is valid w.r.t. V and (ii) there is no other

valid k-summary S′ w.r.t. V such that eval(S) < eval(S′).

5



Theorem 2.1. Computing an optimal k-summary is NP-

complete.

The proof is by a reduction of the knapsack problem [2] to

the optimal k-summary computation problem.

3. SUMMARIZATION ALGORITHMS

In this section, we introduce several alternative summa-

rization algorithms. The first algorithm, CPRopt finds

an optimal k-summarization without making any assump-

tions about the priority, continuity, and repetition functions.

However, as the optimal k-summary computation problem

is NP-complete, this algorithm takes an exponential amount

of time (w.r.t. the length of a video) which is clearly un-

acceptable. Even if we assume frames are being played at

15 frames per second and we have a 1-hour video, we would

have 60 × 60 × 15 = 54, 000 frames – so any algorithm for

optimally finding a k summary for this video would have

complexity O(254,000) which is a staggeringly large number.

As a consequence, we also designed and implemented three

alternative heuristic k-summarization algorithms. The first

algorithm, CPRdyn is based on dynamic programming, the

second called CPRgen is based on genetic programming, while

the third algorithm called the Summary Extension Algo-

rithm (SEA for short) is based on a concept called summary

extension.

3.1 The Optimal Summarization Algorithm

The CPRopt algorithm is a recursive algorithm that is

always guaranteed to find an optimal k-summarization. The

outline of the algorithm is as follows. This algorithm is

given for completeness of exposition. As argued above, any

algorithm for finding optimal k-summaries is going to be

exponential (unless P = NP ).

• Compute Der(V): The first major step of the CPRopt

algorithm is to compute the set of all (variable free)

insum-atoms in Der(V). It is easy to see that this step

can be executed in time linear in the number of frames

in the video v. We know by definition that any valid

summarization is a subset of (or equals) Der(V).

• Examine subsets: Let Σ = {S | S ⊆ Der(V) and

card(S) ≤ k}. Each such subset is a valid k-summary

of V.

• Evaluate k-Summaries: Apply the evaluation func-

tions to all of summarizations in Σ and choose the best

one.

Procedure CPRopt(V ,k)
V is a video summary content specification
k is a desired summary length

begin
V := ∅
∆ := ∅
repeat

// A, A1, . . . , An are variable-free
V := V ∪∆
∆ := {A | A ← � ∧ A1 ∧ . . . ∧ An ∈ V ∧ � ∧ {A1, . . . , An} ⊆ V }

until ∆ \ V = ∅
Σ := {S | S ⊆ V and card(S) ≤ k}
BestS := S ∈ Σ such that α · χ(S) + β · pri(S) − γ · ρ(S) is maximal
return BestS

end.

3.2 Heuristic Algorithms

In this section, we develop three heuristic algorithms to

compute k-summaries. These algorithms are much faster

than the CPRopt algorithm, but may tradeoff optimality of

the summary produced.

3.2.1 The CPRdyn Algorithm

The CPRdyn algorithm is based on dynamic programming

[2]. The algorithm maintains a variable vcurrent describing

the best solution found so far. Initially, vcurrent consists of

k randomly chosen frames which are derivable from V. The

algorithm changes vcurrent in each iteration by checking to

see whether replacing a frame in vcurrent by a frame which is

absent from vcurrent will lead to a better summary. CPRdyn

can be summarized as follows.

Procedure CPRdyn(V ,k)
V is a video summary content specification
k is a desired summary length

begin
// Fill vcurrent with k randomly selected frames from Der(V).
vcurrent := {fi | i ∈ [1, k] ∧ fi ∈ Der(V)}
// Put the remaining frames into vc .
vc := Der(V) − vcurrent
while vc �= ∅

subs := false
r := 1
while r < k and subs = false

// Build a new tentative solution by replacing fr with a frame from vc .
vtentative := (vcurrent \ {fr}) ∪ {first(vc)}
if eval(vcurrent) < eval(vtentative ) then

vcurrent := vtentative
add fr to the tail of vc

subs := true
else

r := r + 1
end if

end while
remove first(vc) from vc

end while
return vcurrent

end.

3.2.2 The CPRgen Algorithm

We now present the CPRgen algorithm which uses ge-

netic programming methods [2] to compute a k-summary.

The first issue is to represent the problem in terms of de-

cisional variable strings. We use a binary representation:

each frame has an associated binary variable indicating the

presence/absence of the frame in the optimal summary. The

main idea of the algorithm is described below.

• Initialization: A random population of summaries

each satisfying the summary size requirement is cho-

sen.

6



• Fitness evaluation: The fitness function is equal to

the described eval() function

• Selection: We consider members of the population

elements according to a decreasing fitness.

• Generation: A mutation operator is applied over the

selected elements, thus creating a random transforma-

tion of the summary.

• Elimination: The element having the smallest eval-

uation value is eliminated.

• Termination: The algorithm stops when the new

summaries are similar, i.e. the variation of the fitness

functions within the population of solutions is less than

a threshold ε.

Procedure CPRGen(V ,k,N ,δ)
V is a video summary content specification
k is a desired summary length
N is the desired number of iterations
δ is the desired fitness threshold

begin

R := 	 lenv
k



Compute an initial population of random solutions V := (vi)i=1...R
based on frames from Der(V)
for j ∈ [1, N ]

for i ∈ [1, R]
v := a solution randomly chosen among the ones in V
Select a frame f from the video
if f ∈ v then

Choose another frame from the video
Insert the new frame in v eliminating f
Add v to the population of solutions V
Eliminate from V the solution with the smallest fitness
if maxv1,v2∈V |fitness(v1) − fitness(v2)| ≤ δ then

Return any solution from V
end if

end if
end for

end for
Return the best solution from V

end.

3.3 The Summary Extension Algorithm (SEA)

The SEA algorithm uses the CPR model described in this

paper in a specific way in order to compute summaries. Be-

fore defining the algorithm, some intermediate definitions

are needed. We first introduce the concept of frame cover-

age. Given some condition C that we want frames to satisfy

(e.g. containing a goal in a soccer video), the pair (f, p)

describes how well frame f satisfies the condition C. The

larger p is, the better frame f satisfies the condition C.

Definition 3.1 (frame coverage pair). If f is a frame

of video v, and p ∈ [0, 1], then (f, p) is a frame coverage pair.

Definition 3.2 (FCP Set Union). Given two sets V1, V2

of frame-coverage pairs, the FCP set union

V1 ∪ V2 = {(f, p) | p =

�
p1 if (f, p1) ∈ V1∧ � ∃(f, p2) ∈ V2
p2 if (f, p2) ∈ V2∧ � ∃(f, p1) ∈ V1
p1 if (f, p1) ∈ V1 ∧ (f, p2) ∈ V2 ∧ p1 ≥ p2
p2 if (f, p1) ∈ V1 ∧ (f, p2) ∈ V2 ∧ p1 < p2

}.

The SEA model induces priorities on insum-atoms by first

attaching weights to rules in video content specifications,

and by assuming that every variable occurring in a rule also

appears in an insum-atom (in either head or body of a rule).

Under this assumption on video content specifications, we

may define what it means for a frame coverage pair to satisfy

a rule.

Definition 3.3. Suppose r is a rule in a video content

specification V, S is an FCP set representing a summary,

X is a variable in the head of r, and f is a frame. Let

wr denote the weight of r in V. Consider a substitution θ

that replaces X with (f, 1) and every other variable Xi ∈ r

with (fi, pi) ∈ S. Then we define a [0, 1]-valued function

φ(r, f, S) as follows.

φ(r, f, S) = wr ·max{θ|�θ=true}(minfi∈body(rθ)(pi))

When rule r has an empty body, φ(r, f, S) = wr. We ex-

tend φ to apply to a video content specification by setting

φ(V, f, S) = maxr∈V(φ(r, f, S)).

Intuitively, φ(V, f, S) assesses the value of inserting f into

summary S. Notice that φ(r, f, S) is defined in terms of pi

values of the insum-atoms participating in r that, in turn,

were results of computing φ. As r’s body is a conjunction,

φ(r, f, S) is computed as the minimal φ of its atoms.

Definition 3.4 (satisfaction). The FCP (f, φ(V, f, S))

satisfies V w.r.t. summary S iff φ(V, f, S) > 0. A summary

S is called satisfactory iff every pair (f, p) ∈ S satisfies V
w.r.t. S.

We are only interested in summaries containing frames

that satisfy the video content specification in question and

of these, to pick one that optimizes an objective function

involving priority, continuity and (non) repetition. The SEA

algorithm finds satisfactory summaries by using the valid

summary extension.

Definition 3.5 (Valid Summary Extension). Let V
be a video content specification, and S be a satisfactory sum-

mary. Then the valid summary extension VSEV(S) is the

set {(f, φ(V, f, S)) | φ(V, f, S) > 0}.
In other words, VSEV(S) is the set of all frame-coverage

pairs that satisfy V with respect to the summary S. Here is

an algorithm to compute VSEV(S):

Procedure VSE(V ,S)
V is a video content specification
S is the current summary

begin
S′ := ∅
for each video frame f

for each rule r ∈ V such that head(r) = insum(X)
// Compute φ(r, f, S) and add f to the result if φ(r, f, S) > 0.
pout := ChooseV ars(r, {X = (f, 1)}, S)
if pout > 0 then S′ := S′ ∪ {(f, pout)}

end for
end for
return S′

end.

7



The V SE() algorithm iterates over all rules in V and all

frames in a video looking for frames that satisfy V. V SE()

uses the ChooseV ars() algorithm to compute φ(r, f, S) for

each frame f and rule r, and adds (f, φ(r, f, S)) to the out-

put if φ(r, f, S) > 0. As FCP set union is used to add new

frame-coverage pairs to the output, pairs with lower cover-

ages are automatically replaced with higher coverage pairs.

Procedure ChooseVars(r,θ,S)
r is a rule
θ is a substitution
S is the current summary

begin
if there is variable X ∈ r such that X is not affected by θ then

pout := 0
for each FCP (f, p) ∈ S

// Assign one more variable and recurse, maximizing pout .

p′ := ChooseV ars(r, θ ∪ {X = (f, p)}, S)
if p′ > pout then pout := p′

end for
else

// Substitute variables and compute pout.

pout := min(f′,p′)∈θ
(p′)

end if
// Return φ(r, f, S).
return wr · pout

end.

Suppose we start with some rule set V and an empty sum-

mary S = ∅ that is satisfactory w.r.t. V. S′ = VSEV(∅)
will contain all assignments satisfying the rules whose bod-

ies are free of membership atoms. Satisfaction of such “self-

supporting” rules does not require any blocks to be in the

summary. Notice that S′ is always going to be a satisfactory

summary w.r.t. V and it is always true that ∀(f, φ) ∈ S :

∃(f, φ′) ∈ S′ : φ′ ≥ φ.

We continue to apply the VSE() operator to S′ until it

stops growing. We now present the SEA algorithm that

finds the FCP set corresponding to the best summary by

performing a greedy breadth-first search with the branching

factor limited to N :

Procedure SEA(V ,S,l,N )
V is a video content specification
S is the initial summary
l is the maximal summary length
N is the maximal branching factor

begin
// Q is a sorted list of up to N summaries
Q := ∅
S′ := VSEV (S)
// Remove assignments already present in S.

for each FCP (f, p′) ∈ S′ such that ∃(f, p) ∈ S

if p′ > p then S := S ∪ {(f, p′)}
S′ := S′ − {(f, p′)}

end for
// Find N best summaries...

for each FCP set V ⊆ S′ such that length(V ∪ S) ≤ k
Q.add(V ∪ S, worth(V ∪ S))
if size(Q) > N then Q.delete(tail(Q))

end for
// ...and try to grow them.
if Q = ∅ then BestS := S
else

BestS := head(Q)
for each summary V ∈ Q

V ′ := SEA(R, V, l, N)
if worth(V ′) > worth(BestS) then BestS := V ′

end for
end if
return BestS

end.

4. EXPERIMENTS

We have implemented the three heuristic algorithms pro-

posed above in JAVA (with Oracle 8i and MS Access back-

ends) on a Windows 2000 platform. The implementation

consisted of approximately 2500 lines of code.

Using a collection of 50 soccer videos, a group of approx-

imately 200 students at the University of Naples evaluated

the quality of the summaries produced. Each summary re-

ceived an A through E rating. Figure 1 shows a graph of

the qualities of the summaries produced. In 67% of the

cases, the SEA algorithm was deemed to produce the best

results. Furthermore, 81% of the participants gave the SEA

algorithm an A.

Figure 1: Comparing Quality of Results

In addition, we assessed the performance of the three al-

gorithms using a Pentium3 800MHz machine with 128MB

SDRAM. Figure 2 shows the results. As the reader can see,

the SEA algorithm outperforms the other two algorithms.

Figure 2: Comparing Algorithms’ Performance

5. RELATED WORK

He et. al. [4] summarize videos of talks that are accompa-

nied by PowerPoint slides. The priority of a video segment

is determined by: (i) the moment when slides were changed,

(ii) lecturer’s voice pitch, and (iii) users’ interest in different

parts of the presentation. We do not assume that videos are

accompanied by PPT presentations. In their framework, no

8



video analysis was performed and application users have no

control over what will be summarized.

DeMenthon et. al. [3] represented a changing vector of

frame features (such as overall macroblock luminances) with

a multi-dimensional curve and applied a curve simplification

algorithm to select “key” frames. While this approach works

well for the key frame detection, it does not consider the fact

that certain events have higher priorities than others, and

that continuity and repetition are important. Ju et. al.

[5] propose another key frame based approach that chooses

frames based on the motion and gesture estimation.

Zhou et. al. [13] attempt to analyze video content, extract

and cluster features to classify video semantically. They

apply a rule-based classification system to basketball videos

and report on the results.

Ma et. al. [6] present a generic framework for video sum-

marization based on estimated user attention. The frame-

work uses computational attention models to predict atten-

tion.

6. CONCLUSIONS

This is the first model for summarizing video based on the

semantic content of the video as well as based on user in-

put about the objects and events in the video deemed to be

independent. We developed a theoretical model for summa-

rization, showed that computing summaries is NP-complete,

and developed several algorithms to compute summaries.

We performed an experimental analysis showing our algo-

rithms produce excellent summaries in a short time.

Acknowledgements. Work supported in part by ARO

grant DAAD190310202, ARL grants DAAD190320026 and

DAAL0197K0135, and NSF grants IIS0329851 and 0205489.

7. REFERENCES
[1] S. Adali, K.S. Candan, S.-S. Chen, K. Erol, and

V.S.Subrahmanian. Advanced Video Information
Systems. ACM Multimedia Systems Journal, Vol. 4, 1996,
pp. 172-186.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein.
“Introduction to Algorithms, 2nd Edition” MIT Press,
2001.

[3] D. DeMenthon, D.S. Doermann, and V. Kobla. Video
Summarization by Curve Simplification. Proc. ACM
Multimedia, Bristol, England, 1998, pp. 211-218.

[4] L. He, E. Sanocki, A. Gupta, and J. Grudin.
Auto-Summarization of Audio-Video Presentations. ACM
Proc. on Multimedia, 1999, pp. 489-498.

[5] S. Ju, M. Black, S. Minneman, and D. Kimber.
Summarization of Videotaped Presentations: Automatic
Analysis of Motion and Gesture. IEEE Trans. on Circuits
and Systems for Video Technology, Vol. 8(5), 1998, pp.
686-696.

[6] Y.P. Ma, L. Lu, H.J. Zhang, and M. Li. A User Attention
Model for Video Summarization. Proc. ACM Multimedia,
2002.

[7] H.Martin and R.Lozano. Dynamic Generation of Video
Abstracts Using an Object Oriented Video DBMS.
Networking and Information Systems Journal, Vol. 3(1),
2000, pp. 53-75.

[8] H.R. Naphide and T.S. Huang. A Probabilistic
Framework for Semantic Video Indexing, Filtering, and
Retrieval. IEEE Transactions on Multimedia, Vol. 3(1),
2001, pp. 141-151.

[9] E. Oomoto and K. Tanaka. OVID: Design and
Implementation of a Video-Object Database System.
IEEE TKDE (Multimedia Information Systems), Vol.
5(4), 1993, pp. 629-643.

[10] C. Stauffer and E. Frimson. Learning Patterns of Activity
Using Real-Time Tracking. IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. 22(8), 2000, pp
747-757.

[11] V.S. Subrahmanian. “Principles of Multimedia Database
Systems” Morgan Kaufmann, 1998.

[12] D. Zhong and S.F. Chang. Video Object Model and
Segmentation for Content-Based Video Indexing. IEEE
Intern. Conf. on Circuits and Systems, June, 1997, Hong
Kong.

[13] W. Zhou, A. Vellaikal, and C.C. Jay Kuo. Rule-Based
Video Classification System for Basketball Video
Indexing. Proc. ACM Multimedia Workshop, 2000, pp.
213-216.

9


