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Abstract—Effective and efficient retrieval of similar shapes from large image

databases is still a challenging problem in spite of the high relevance that shape

information can have in describing image contents. In this paper, we propose a

novel Fourier-based approach, called WARP, for matching and retrieving similar

shapes. The unique characteristics of WARP are the exploitation of the phase of

Fourier coefficients and the use of the Dynamic Time Warping (DTW) distance to

compare shape descriptors. While phase information provides a more accurate

description of object boundaries than using only the amplitude of Fourier

coefficients, the DTW distance permits us to accurately match images even in the

presence of (limited) phase shiftings. In terms of classical precision/recall

measures, we experimentally demonstrate that WARP can gain, say, up to

35 percent in precision at a 20 percent recall level with respect to Fourier-based

techniques that use neither phase nor DTW distance.

Index Terms—Shape matching, Dynamic Time Warping distance, discrete

Fourier transform.
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1 INTRODUCTION

LARGE image databases are increasingly used in many application
areas like crime prevention, architectural and engineering design,
fashion, medical diagnosis, journalism, advertising, and land
analysis. This has motivated growing research interest on efficient
and effective methods enabling the retrieval of images on the basis
of their content from large databases. With respect to other
features, like color and texture, shape is much more effective in
semantically characterizing the content of an image [1], [2], [3], [4].
However, properly extracting and representing shape information
are still challenging tasks. In particular, even when accurate object
boundaries are obtainable (this is the case when some domain
knowledge is available or when images represent simple objects),
the problem of representing them so as to allow the implementa-
tion of efficient and effective matching and retrieval methods is
still not solved in a satisfactory way. The scenario is further
complicated when invariance, with respect to a number of possible
transformations, such as scaling, shifting, and rotation, is required.

Effective and efficient retrieval of images based on their shape
content calls for a set of basic, often contrasting, requirements:
Compactness and simplicity of shape descriptors are necessary for
minimizing the storage overhead and the extraction time; for an
effective retrieval, the shape descriptors should be robust to noise
and invariant to transformations (namely, translation, scaling, and
rotation); finally, in order to avoid a sequential scan of the whole
(large) database, shape descriptors should be indexable, e.g., by
using metric trees, like the M-tree [5], that are already profitably
applied in several other image and multimedia applications [4], [6].

Among the different approaches that are available for the
representation of shape information, those based on the Discrete
Fourier Transform (DFT) describe the outside contour bymeans of a
limited number of coefficients in the frequency domain. It is well-
recognized nowadays that Fourier-based approaches are able to

provide all of the above-mentioned requirements, obtaining good
effectiveness levels [7] along with efficiency in retrieval and
indexability [8]. It has to be observed that, since DFT coefficients
also carry information about the size, the orientation, and the
position of the object, they have to be properly normalized in order
to achieve invariance with respect to the desired transformations.

In this paper, we propose a novel Fourier-based approach for
shape retrieval, called WARP, that extends previous methods with
two innovative characteristics: 1) the preservation of phase informa-
tion and 2) the use of the Dynamic Time Warping (DTW) distance to
compare the shape descriptors. In terms of classical precision/recall
measures, WARP can achieve up to 35 percent precision gain at a
20 percent recall level with respect to state-of-the-art Fourier-based
techniques that use neither phase norDTWdistance and, at the same
time, allows efficient indexing of shape information.

Phase. The rationale for maintaining phase information is based
on the observation that current Fourier-based techniques discard
the phase of DFT coefficients with the purpose of achieving
rotation invariance as well as independence from the starting point
of the parameterization [3], [7], [8], [9]. This is a consequence of the
fact that rotating an object boundary or changing the starting point
introduces a phase shifting in the DFT coefficients. The drawbacks
of this simplistic approach are made evident in Fig. 1, where, for
each image, the amplitude and phase diagrams of DFT coefficients
are shown. Although Fig. 1a is perceptually more similar to Fig. 1c
than to Fig. 1b, if we just consider the amplitude spectra and
compare them using the Euclidean distance, Fig. 1a turns out to be
closer to Fig. 1b than to Fig. 1c.

We resolve the apparent contradiction of preserving phase
without giving up rotation and starting point invariances by
deriving appropriate “compensation” terms that are added to the
original phases, thus yielding a modified phase spectrum.

Dynamic Time Warping. As for the distance used to compare
shape descriptors, Fourier-based techniques typically adopt the
Euclidean distance. However, as our experiments also demonstrate,
the Euclidean metric does not tolerate phase shiftings of sub-
sequences of the shape, thus, similar shapes that are not perfectly
aligned along the time axis lead to counter intuitive high distance
values. To overcome the limits of the Euclidean metric, we consider
using the Dynamic Time Warping distance [10] to compare the
shape descriptors, thus allowing elastic deformations of objects’
boundaries to be matched. The DTWdistance has already proven to
yield superior performance for the retrieval of time series [11], [12]
and we show that this is also the case for shape matching.

The rest of the paper is organized as follows: Section 2 presents
the details of our WARP approach, formally demonstrating how
the invariance properties are obtained. Experimental results are
shown in Section 3, where we also compare WARP with other
approaches. Section 4 concludes the paper.
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Fig. 1. Three different images, their relative magnitude spectra (i.e., the amplitude
of the DFT coefficients), and their phase spectra.
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2 THE WARP METHOD

Fig. 2 presents a general overview of our method, called WARP.

(WARP stands for “WARP: Accurate Retrieval based on Phase.”)

Starting from a boundary description obtained through a shape

extraction algorithm, we first parameterize the boundary to obtain a

complex discrete-time periodic signal whose period N equals the

number of points in the object boundary. Then, the DFT of the signal

is computed. In order to reduce the size of shape descriptors, in the

subsequent step (“dimensionality reduction”), only the firstM low-

frequencyDFT coefficients are retained. Finally, theseM coefficients

are modified so as to achieve the invariances we are interested in

and are then stored in the database.
At query time (see Fig. 3), the shape descriptor of the query object

is obtained in the same way. To compare it with a database object,

the Inverse DFT is applied to the two descriptors and the two

reconstructed signals are then compared using the DTW distance.

2.1 Boundary Respresentation

As in [2], [3], [7], [8], [9], we consider the boundary of an object as a

discrete-time complex periodical signal, z ¼ hz0; . . . ; zN�1i, where

zl ¼ xl þ j yl (j ¼
ffiffiffiffiffiffiffi
�1

p
) and xl and yl are the real coordinate values

of the lth sampled point (l ¼ 0; . . . ; N � 1). The z signal is then

mapped to the frequency domain by way of the Discrete Fourier

Transform:

Zm ¼
XN�1

l¼0

zle
�j2�lmN ¼ Rme

j �m

m ¼�N=2; . . . ;�1; 0; 1; . . . ; N=2� 1;

ð1Þ

where Rm and �m are the module and the phase of the mth DFT

coefficient, respectively.

2.2 Dimensionality Reduction

In order to guarantee compactness and robustness to noise, we use

only low frequency DFT coefficients as in [8], [9]. In particular, we

keep only the M (M � N) coefficients whose frequency is closer to

0, i.e., those obtained for m 2 ½�M=2;M=2� 1�.
The choice of a suitable value for M has to trade off the

accuracy in representing the original signal with the compact-

ness and the extraction efficiency.1 To this end, we consider the

spectral characteristics of the data set at hand, in particular, the

energy of the signal retained by the M coefficients, defined as

EðMÞ ¼
P

M=2�1

m¼�M=2
m6¼0

jZmj2. The reason for excluding the DC (zero

frequency) coefficient is that it only provides information about

object position and says nothing about the actual object shape

(see also Section 2.3).
As an example, Fig. 4 plots the average value of EðMÞ=EðNÞ

for the FISHES data set described in Section 3. From the graph,
we see that, when choosing M 2 ½16; 64�, the retained energy
varies from 83.7 percent to 93.4 percent of the total. On the other
hand, to obtain, say, EðMÞ=EðNÞ ¼ 0:99, M should be equal to
512, which is far too high.

Experiments on the FISHES data set, described in [13], show
that the effectiveness of WARP using M ¼ 16 is much lower than
that obtained for M ¼ 32, whereas increasing the value of M to 64
does not lead to further improvements, only inflating extraction
and distance times. Thus, in the experiments of Section 3, we will
use M ¼ 32.

2.3 The Shape Descriptor

As anticipated in Section 1, a change in the position of the object, in

its size, orientation, or the initial point used to parameterize the

boundary, introduces amodification in theDFT coefficients. In order

to guarantee the translation, scaling, rotation, and starting point

invariances, we have to modify the DFT coefficients accordingly. In

Table 1, we show how Normalized DFT (N-DFT) coefficients bZZm ¼bRRme
jb��m satisfying the invariance requirements can be obtained.2

If one wants to achieve both rotation and starting point
invariances, the two corresponding modifications have to be
integrated, leading to b��m ¼ �m � ��1þ�1

2 þm ��1��1

2 . The translation
and scaling invariances are obtained as in [2], [3], [7], [8], [9],
whereas, for rotation and starting point invariances, thederivation is
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Fig. 2. WARP: Basic steps.

Fig. 3. WARP: Assessing the similarity between two shape descriptors.

1. The complexity of computingM DFT coefficients isOðM �NÞ. Since we
do not require N to be a power of 2, we cannot make use of the Fast Fourier
Transform (FFT), which would reduce the complexity to OðN logNÞ.

2. Note that the WARP method for phase normalization is similar,
although simpler, to that proposed in [14], which is unnecessarily complex
for our goals.



as follows (see also [13]): Consider the origin-centered signals z and
z0, where z0 is obtained from z by rotating each point counter-
clockwise by a constant factor � and by shifting the starting point by
l0 positions, i.e., z

0
l ¼ zl�l0e

j�. The correspondingDFT coefficients are:

Z0
m ¼ Zme

j�e�j
2�l0m

N ¼ Rme
j �mþ��2�l0m

Nð Þ; ð2Þ

thus, it is �0
m ¼ �m þ �� 2�l0m

N , in particular �0
1 ¼ �1 þ �� 2�l0

N and
�0

�1 ¼ ��1 þ �þ 2�l0
N . By referring to Table 1, it is obtained:

b��0
m ¼ �0

m ��0
�1 þ�0

1

2
þm

�0
�1 ��0

1

2

¼ �m þ �� 2�l0m

N
���1 þ�1

2
� �þm

��1 ��1

2
þ 2�l0m

N

¼ �m ���1 þ�1

2
þm

��1 ��1

2
¼ b��m:

ð3Þ

By simply performing the Inverse DFT on N-DFT coefficients,
we then obtain a modified (normalized) signal bzz, which satisfies all
the requested invariances:

bzzl ¼ 1

M

XM=2�1

m¼�M=2

bZZme
j2�lmM l ¼ 0; . . . ;M � 1: ð4Þ

2.4 Comparing Shape Descriptors

The standard approach [3], [7], [8], [9] to compare (normalized,
in our case) signals bzz and bzz0 makes use of the Euclidean

distance, L2 bzz;bzz0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM�1

l¼0 bzzl � bzz0l�� ��2q
. This, by exploiting the

Parseval Theorem, can be replaced by L2
bZZ; bZZ0

� �
, thus without

the need to perform the Inverse DFT on the shape descriptors.
The Euclidean distance has the major drawback of not

considering elastic shiftings of the time axis, which is a necessity
with signals which are similar although partially unaligned at
some sample points, as exemplified in Fig. 5a. To obviate this
problem, in WARP we consider the use of the Dynamic Time
Warping (DTW) distance [10]:

Definition 2.1 (DTW Distance). Given two sequences, bzz ¼
hbzz0; bzz1; . . . ; bzzM�1i and bzz0 ¼ hbzz00; bzz01; . . . ; bzz0M�1i of length M, let us
denote with tailðbzzÞ ¼ hbzz1; . . . ; bzzM�1i the sequence obtained from bzz by
removing its first element. The Dynamic Time Warping (DTW)
distance dtwðbzz;bzz0Þ is recursively defined as follows:

dtwðhi; hiÞ ¼ 0

dtwðbzz; hiÞ ¼ dtwðhi;bzz0Þ ¼ 1

dtwðbzz;bzz0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðbzz0; bzz00Þ þmin

dtwðbzz; tailðbzz0ÞÞ
dtwðtailðbzzÞ;bzz0Þ
dtwðtailðbzzÞ; tailðbzz0ÞÞ

8>><
>>:

vuuuuut ;

ð5Þ

where � is an arbitrary distance function between samples (in the
following, we will use the (squared) Euclidean distance between the
two samples, �ðbzzi; bzz0jÞ ¼ jbzzi � bzz0jj2).

In the vast majority of applications of the DTW distance, the
warping path is constrained by limiting how far it can deviate from
the diagonal. The most frequently used constraint is the Sakoe-
Chiba band [15] (see Fig. 5d), which limits the deviation from the
diagonal up to a value !, which is called the window length.3 The
motivation for this constraint is two-fold: First, it limits the
complexity of computing dtw from OðM2Þ to OðM � !Þ; second,
and more importantly, it prevents the creation of pathological
paths, aligning samples which are far away from each other.

Even if the DTW distance has a number of desirable properties,
it suffers from the problem of not being a metric since it does not
satisfy the triangle inequality [11]. However, as demonstrated in
[16], indexing without losing relevant objects is still possible as
long as we can find a metric dI which lower-bounds dtw, i.e.,
dIðbzz;bzz0Þ � dtwðbzz;bzz0Þ, 8bzz;bzz0. In [12], a lower-bounding metric
distance for dtw is proposed under the conditions that the two
sequences to be compared have equal length and that a global
constraint on alignment, like the Sakoe-Chiba band, is used. Since
this is exactly our case, we conclude that such a lower-bounding
distance can be used in conjunction with a metric access method,
like the QIC-M-tree [16], for indexing shape descriptors.

3 EXPERIMENTAL EVALUATION

We implemented the WARP method in C++ under Windows
NT 4.0. For performance evaluation, we used the FISHES data set
provided by [17], consisting of 1,100 text files containing the
coordinates of boundary points of an object with each object
representing a marine animal. The length of each boundary varied
from 256 to 1,653 points.

We manually classified each image based on 10 semantic
categories (“Seahorses” (5 images), “Seamoths” (6), “Sharks” (58),
“Soles” (52), “Tonguefishes” (19), “Crustaceans” (4), “Eels” (26), “U-
Eels” (25), “Pipefishes” (16), and “Rays” (41)). Images not belonging
to any category were assigned to a default class (848). Table 2 shows
some images in the data set, along with their category.

The query workload used in our experiments consists of
30 query images chosen from the 10 semantic categories. For
evaluation purposes, any image in the same category of the query
is considered relevant to that query, whereas all other database
images are considered irrelevant. To measure the retrieval effec-
tiveness, we considered classical precision (P) and recall (R) metrics
averaged over the set of processed queries.

3.1 Parameterization and Dimensionality Reduction

In our first experiment, we compare the parameterization and
dimensionality reduction approach of WARP to the one based on
the extraction from the boundary of the M points having highest
curvature values, hereafter called MAXC [3]. We do not consider
methods that reduce dimensionality by simply resampling the
original boundary every N=M points [2], [3], [7] since this easily
leads to missing significant shape details. Results in Fig. 6a clearly
show that WARP consistently outperforms MAXC, that improve-
ment in precision varies between 65 percent and 220 percent up to
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TABLE 1
The N-DFT WARP Coefficients

3. It is worth noting that, by setting ! ¼ 0, we obtain the Euclidean
distance. Therefore, it is also dtwðbzz;bzz0Þ � L2ðbzz;bzz0Þ, for any value of !.

Fig. 4. Fraction of energy associated to the first M DFT coefficients.



R ¼ 0:7, and that it is always positive even for higher recall levels.
A similar trend can be also observed on specific query images, as
shown in Fig. 6b and Fig. 6c (see also Fig. 7 for visualization of
retrieval results).

3.2 Effect of Phase Information and Distance Function

We now turn to considering the effects of maintaining phase

information and using the DTW distance. To this end, in Fig. 8a

we compare WARP with a method, termed NoPhase-EU, that

discards the phase of DFT coefficients and uses the Euclidean

distance to compare shape descriptors. Note that this is, with

slight variations, the method used by almost all of the existing

Fourier-based shape retrieval systems [3], [7], [8], [9]. As Fig. 8a

clearly shows, WARP consistently performs better than NoPhase-

EU, with a gain in precision that reaches 39 percent at R ¼ 0:7.
In order to better understand the separate contribution of phase

information and DTW distance, in Fig. 8a, we also show results for
a variant of WARP, called WARP-EU, which retains phase

information but applies the Euclidean distance. From the graphs,

it can be observed that only using phase leads to a swinging

behavior, depending on the level of recall. This demonstrates that

phase alone cannot guarantee adequate performance levels since

phase shiftings cannot be captured by the Euclidean distance, thus

it is only the combined use of phase and DTW distance that justifies

the better performance of WARP. We end this section by showing,

in Fig. 8b and Fig. 8c, P/R graphs for two specific queries (see Fig. 7

for visualization of retrieval results).

3.3 Invariance to Rotation

In order to better test robustness to noise and rotation, in the

following experiment, we consider the FISHES data set extended

with another 100 images, obtained by rotating 30 randomly chosen

images by different angles (e.g., 10, 30, 90, 180, and 270 degrees).

Note that, while a rotation of a multiple of �=2 produces a signal

without noise with respect to the original image, other rotation

angles introduce noise due to spatial discretization.
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TABLE 2
Sample Images from Some of the 10 Semantic Categories

Fig. 6. P/R graphs comparing WARP and MAXC. (a) Whole data set. (b) Query image in the category “Sole.” (c) Query image in the category “Ray.”

Fig. 5. An example of the (a) Euclidean and (b) Dynamic Time Warping distance on two real signals. (c) The alignment matrix for computing the warping path. (d) An

illustration of the Sakoe-Chiba band for constraining the warping path. In this example, the window length, !, is 2.



Fig. 9 shows two examples where the first image of each row is

the query image and the others are the most similar images

retrieved by WARP. As can be observed, WARP is able to retrieve

images rotated by a multiple of �=2 as well as those freely rotated.

3.4 Comparison with the MPEG-7 Standard

We compare the results of WARP on the MPEG-7 data set for the

Core Experiment CE-Shape-1, part B, illustrated in [18], with those

obtained by the curvature scale-space (CSS) approach [19], which

is the standard for MPEG-7 shape representation [20].
The CSS method adopts a curvature parameterization of a

boundary that is smoothed by applying several Gaussian kernels,

each with a different width �. The CSS image of a boundary is then

defined as the locus of points (l; �) for which the (smoothed)

curvature has zero value and the CSS descriptor consists of the

peaks (maxima) of the CSS image. The CSS descriptor is invariant

to translation, scale, and rotation transformations and can be made

invariant with respect to the starting point by shifting the whole

descriptor so as to have the highest peak in the origin. When

comparing two CSS descriptors, the peaks are matched and the

overall distance is obtained by summing all of the peak differences.
For comparison purposes, we use the data set from [21],

consisting of 1,400 images divided in 70 shape classes of 20 images

each. Each image is used as a query and the relevant images are

those found in the first 40 results; thus, precision is always one half

of the recall.
According to [18], on this data set, CSS (method P320 in [18])

attains an average precision of 37.72 percent, whereas the precision

of WARP is 29.25 percent (note that precision cannot be more than

50 percent in this experiment). Although CSS outperforms WARP

in terms of effectiveness, this does not come without a price.

Indeed, CSS shape descriptors are indexed, as described in [22], by

using their aspect ratio, i.e., the ratio between the higher CSS peak

and the contour length. If the aspect ratio of an image differs more

than a user-specified threshold value from that of the query, the

image is filtered out, thus without computing the exact match

between the two CSS descriptors. This is an approximate query

processing algorithm since it can easily lead to false dismissals (i.e.,

best-matching images may be filtered out). From this we can

conclude that CSS is not suitable if one wants to find the exact best

matches of a query image on a large database. Further, since the

method requires the user to supply a value for the threshold, it is

difficult to calibrate.
Finally, it should be noted that other techniques [23], [24], [25]

are able to attain results similar to, or even slightly better than,

those obtained by WARP for the MPEG-7 data set. However, such

techniques cannot be efficiently indexed, thus they are only

suitable for shape recognition in small-size databases.
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Fig. 7. Results for the “Ray” query. (a) WARP. (b) MAXC. (c) NoPhase-EU. Relevant images have label “R.”

Fig. 8. (a) Precision gain of WARP over NoPhase-EU and WARP-EU. (b) P/R graph for the query image “Sole.” (c) P/R graph for the query image “Ray.”



4 CONCLUSIONS

In this paper, we have presented a novel Fourier-based method for

shape matching and retrieval, called WARP, which is characterized

by the combined preservation of phase information and use of the

Dynamic Time Warping (DTW) distance in place of the more

common Euclidean distance. We have detailed how invariance

properties, such as scaling, shifting, rotation, and starting point,

can be obtained by properly normalizing DFT coefficients and

have experimentally demonstrated that WARP consistently out-

performs state-of-the-art Fourier-based methods, as substantiated

by an average improvement of 35 percent in retrieval accuracy at a

20 percent recall level.
Even if the DTW distance does not satisfy the metric postulates

[11], thus preventing the use of indices to speed-up the retrieval

phase, by exploiting recent results on metric access structures [16]

and on the DTW distance itself [12], we can still guarantee the

indexability of DFT coefficients extracted from large data sets.
We are now integrating WARP into our image retrieval system,

Windsurf [26], andweplan to conduct thorough experimentation on
retrieval efficiency when an index like the QIC-M-tree [16] is used.
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Fig. 9. Results of WARP for queries extracted from the categories (a) “Rays” and (b) “Sharks,” respectively. Relevant images have label “R.” Rotated versions of the

query image are labeled “*.”


