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Abstract

Two popular webpage ranking algorithms are HITS and
PageRank. HITS emphasizes mutual reinforcement be-
tween authority and hub webpages, while PageRank em-
phasizes hyperlink weight normalization and web surf-

ing based on random walk models. We systemati-
cally generalize/combine these concepts into a unified
framework. The ranking framework contains a large al-
gorithm space; HITS and PageRank are two extreme
ends in this space. We study several normalized rank-
ing algorithms which are intermediate between HITS
and PageRank, and obtain closed-form solutions. We
show that, to first order approximation, all ranking al-
gorithms in this framework, including PageRank and
HITS, lead to same ranking which is highly correlated
with ranking by indegree.

1 Introduction

Two most popular ranking algorithms are (i) the PageR-
ank algorithm developed by Brin and Page [3] and used
in the search engine Google, and (ii) the HITS (Hyper-
text Induced Topic Selection) algorithm developed by
Kleinberg[5]. HITS makes the distinction between hubs

and authorities and computes them in a mutually rein-
forcing way. PageRank considers the hyperlink weight

normalization and the equilibrium distribution of ran-

dom surfers as the citation score. There are a number
of further extensions and developments [1, 6, 2].

We generalize the key concepts of mutual reinforce-
ment and hyperlink weight normalization into a unified
framework. We clarify and formalize the notion of sim-
ilarity mediated score propagation and random surfing
score propagation schemes. In this unified framework,
new extensions of HITS or PageRank can be easily de-
signed and analyzed (Table 1 captures the main re-
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sults). We analyze three new extensions, the out-link
normalized ranking (OnormRank), the in-link normal-
ized ranking (InormRank), and symmetric normalized
ranking (SnormRank).

All three new ranking algorithms have closed-form
solutions. The authorities in OnormRank using random
surfing score propagation (see §5.2) are precisely given
by node indegrees (see Eq.5.13), and similar results for
hub ranking in InormRank, Using similarity mediated
score propagation (see §5.1), authorities scores are pre-
cisely given by square root of indegrees (Eq.7.14) and
hub scores are given by square root of outdegrees (see
Eq.7.15). By construction, all three new ranking algo-
rithms combine mutual re-inforcement with hyperlink
weight normalization; therefore their rankings are close
to the rankings produced by HITS and PageRank. From
these, we conclude that both HITS and PageRank au-
thority rankings have high correlation with the ranking
by indegree. The difference between rankings produced
by different algorithms reflects slightly different but use-
ful emphasis. These results provide theoretical basis for
the general intuition that in web ranking, indegree and
outdegree are of fundamental importance.

2 HITS Algorithm

In the HITS algorithm[5], each webpage pi has both a
hub score yi and an authority score xi. The intuition
is that a good authority is pointed to by many good
hubs (this defines the Iop operation) and a good hub

points to many good authorities (this defines the Oop

operation). This mutually reinforcing relationship can
be represented as the following general operations,

x = Iop(y), y = Oop(x). (2.1)

Here vectors x = (x1, · · · , xn)T and y = (y1, · · · , yn)T

contain the authority score and hub score of each web-
page, respectively. The mutual reinforcement opera-
tions Iop and Oop in HITS can be written in the fol-
lowing matrix representations

Iop(·) = LT, Oop(·) = L. (2.2)

where L is the adjacency matrix of the directed web
graph. The final authority and hub scores of every web-
page can be obtained through an iteratively updating
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Figure 1: Left: webpages pi, pj are co-cited by webpage
pk. Right: webpages pi, pj co-reference webpage pk.

process. If we use x(t),y(t) to denote authority and
hub scores at the tth iteration, the iterative processes to
reach the final solutions are

x(t+1) = Iop(Oop(x(t)) = LTLx(t) (2.3)

y(t+1) = Oop(Iop(y(t)) = LLTy(t)

Since LTL determines the authority ranking, we call
LTL the authority matrix. Similarly, we call LLT the
hub matrix. The final solutions x∗,y∗ are the principal
eigenvectors of LTL and LLT , which are the singular
value decomposition of L. In practical applications, a
modification of HITS [1] by suppressing the contribution
from different webpages from same host (site or root in
URL) is often adopted.

2.1 Co-citation and co-reference. The authority
and hub matrices have interesting connections [5] to
co-citation and co-reference in the fields of citation
analysis.

If two distinct webpages pi, pj are co-cited by many
other webpages pk as in Fig.1, pi, pj are likely to
be related in some sense. Thus co-citation Cij is a
similarity measure, defined as the number of webpages
that co-cite pi, pj. One can show the authority matrix
LTL is

LTL = Din + C,

where Din = diag(din). and din = (b1, · · · , bn)T is a
vector of in-degrees. Thus LTL is the sum of co-citation
and indegree [4]. This shows the close relationship
between authority and co-citation.

The fact that two distinct webpages pi, pj co-
reference several other webpages pk (right panel in Fig.
1) indicates that pi, pj have certain commonality. Co-
reference (also called bibliographic coupling) measures
the similarity between webpages. We use R = (Rij) to
denote the co-reference with Rij defined to be the num-
ber of webpages co-referenced by pi, pj. One can show
that the hub matrix LLT can be expressed as

LLT = Dout + R,
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Figure 2: Importance of hyperlink weight normaliza-
tion. Left: webpages pi, pj are co-cited by webpages
pk, pm, pn. However, since webpage pm also cites
webpages pp, pq, the co-citation of pi, pj by pm is not as
significant as the co-citation by either pk or pn. This
fact can be compensated by normalizing the weights
on the out-bound links of a webpage; the co-citation
of pi, pj by pm is then 2/4=50% as important as the
co-citation by either pk or pn.
Right: webpages pi, pj co-reference webpages
pk, pn, pm. However, since webpage pm also is ref-
erenced by other webpages pp, pq, the co-reference of
pi, pj to pm is not as significant as the co-reference
to either pk or pn. This fact can be compensated by
normalizing the weights on the in-bound links of a
webpage.

where Dout = diag(dout) and dout = (o1, · · · , on)T , is
the vector of out-degrees. Thus LLT is the sum of co-
reference and outdegree, revealing the close relationship
between hubs and co-references.

The average co-citation can be proved[4] to be
〈Cij〉 = din(i)din(j)/(n − 1) assuming that web graphs
are fixed degree sequence random graphs. The average
co-reference is 〈Rij〉 = dout(i)dout(j)/(n − 1). With
these results, the solutions (principal eigenvectors) are
further obtained in closed-form [4]. From that, it is
shown that the authority ranking by HITS in average
case is identical to the ranking by indegrees. Similarly,
hub ranking in HITS is identical to the ranking by
outdegrees.

In the following, we study co-citation and co-
reference (see Fig.2), focusing on hyperline weight nor-
malization which is a key issue in PageRank.

3 PageRank

In HITS, a webpage with a large number of out-going
links will have a large influence on the final ranking,
compared to a webpage with a smaller number of out-
going links. In PageRank, each out-going hyperlinks
from pi is weighted by 1/oi, thus every webpage has the
same total out-going weights. We may state this idea
as Internet Democracy: each website (webpage) has a



total of one vote. The bibliographic reason for weight
normalization is shown in Fig.2.

PageRank uses a web surfing model based on a
random walk process,

x = Iop(x) (3.4)

where the Iop operation is defined to be

Iop(·) = LTD −1
out ≡ P T . (3.5)

This amounts to rescale the adjacency matrix L such
that each row is sum-to-one. Thus P = (Pij) is a
stochastic matrix. At any moment, millions of people
are using the web. The stationary distribution x is
determined by P Tx = λx.

PageRank models two types of random jumps on
the Internet. (i) Link-tracking jump: a surfer often
follows the hyperlinks of webpages by simply clicking on
them; this is modeled by LTD −1

out . (ii) Link-interrupt
jump: a surfer sometimes jumps to another webpage
not hyperlinked by the current webpage. PageRank
models such link-interrupt jump with a simple uniform
distribution (1 − α)/n. The full transition probability
is P T = Iop(·) = αLTD −1

out + (1 − α)(1/n)eeT where
α = 0.9 and e = (1, · · · , 1)T .

3.1 Hubs in PageRank. We generalize the weight
normalization idea to in-bound hyperlinks. This corre-
sponds to normalization of each column of the adjacency
matrix L to LD −1

in .
There are two reasons for the in-link normalization

for hub ranking. First, hub ranking is mostly an
indication of co-references (§2.1). As illustrated in
Fig.2, co-reference to a webpage with a large indegree
is not as significant as co-reference to a webpage with
a small indegree. For example, the fact that we all
make reference to a highly referenced site such as New
York Times homepage says little about whether we are
similar. But if two person make reference to Knuth’s
The Art of Computer Programming, it is likely that both
persons are interested in computer science.

Second, a rare or unique resource is sometimes
pointed to by only a small number of hyperlinks and
is thus difficult to be located whereas finding a highly
popular website is an easy task. In-link normalization
equalizes the efforts for finding a unique resource since
the in-links of highly popular websites are weighted very
low while the in-links of rare websites are weighted
relative higher. This suggests that after the in-link
normalization, websites still standing-out must be of
special values. Remarkably, we found that the top
hubs after in-link normalization are generally have large
outdegrees, quite similar to the hubs without in-link

Scheme Iop Oop

HITS LT L

PageRank LTD −1
out LD −1

in

OnormRank LTD
−1/2
out D

−1/2
out L

InormRank D
−1/2
in LT LD

−1/2
in

SnormRank D
−1/2
in LTD

−1/2
out D

−1/2
out LD

−1/2
in

Table 1: Iop and Oop operations for HITS, PageRank,
the out-link normalized rank (OnormRank), the in-link
normalized rank (InormRank), and the symmetrically
normalized rank (SnormRank).

normalization. This indication some intrinsic nature
of these hub sites.

We propose to define hub in PageRank using the
same random surfer model as in definition of authority.
The hub scores are obtained through

y = Oop(y), (3.6)

where Oop is defined as

Oop(·) = αLD −1
in + (1− α)(1/n)eeT (3.7)

where LD −1
in is the dominant part, and eeT accommo-

dates the link-interrupt jump random surfing.

4 A Unified Framework

The most important feature of HITS is the mutual re-
inforcement (Eqs.2.1,2.2) between hubs and authorities,
while the most important feature of PageRank is the
hyperlink weight normalization (cf. Eqs.3.5,3.7). These
features can be generalized and combined into a ranking
framework with Iop,Oop extended to

Iop(·) = D −p
in LTD −q

out , Oop(·) = Iop(·)T . (4.8)

As discussed in §2, D −q
out describes the out-link nor-

malization, and Din describes the in-link normalization;
p, q ≥ 0 are constant parameters. In this unified frame-
work, one can easily design new ranking algorithms. In
this paper, we study three new normalized ranking algo-
rithms within this framework. They are defined in Table
1. The key observation is that HITS and PageRank are
two extreme ends of a wide spectrum of ranking algo-
rithms within this unified framework. By studying these
three intermediate ranking algorithms, we obtain the
general conclusion that, to first order approximation,
all these ranking algorithms lead to the same ranking.



In this paper, we also clarify and formalize two score
computation schemes: (1) similarity-mediated score

propagation and (2) random surfing score propagation.

5 Out-link normalized rank (OnormRank)

OnormRank extends the out-link weight normalization
in PageRank for authority ranking. PageRank uses L1

norm. In OnormRank, out-links are normalized using
L2 norm. Iop,Oop operations are defined by

Iop(·) = LTD
−1/2
out , Oop(·) = D

−1/2
out L. (5.9)

(see Table 1). OnormRank uses the mutual reinforce-
ment of HITS. Because OnormRank combines both fea-
tures of HITS and PageRank, the ranking produced by
OnormRank is expected to be somewhere between the
rankings produced by HITS and PageRank.

The authority scores are determined by the mutual
re-inforcing iteration process, x(t+1) = Iop(Oop(x(t)))
with proper normalization. Authority scores are con-
tained in the principal eigenvector of

A(O)x = λx, A(O) = LTD −1
out L. (5.10)

Using explicit index, elements of authority matrix are

A
(O)
ij =

∑

k

LkiLkj

ok
. (5.11)

Note
∑

k LkiLkj = Cij is the co-citation between

webpages pi, pj (see §2.1). Thus in A
(O)
ij the co-citation

is inversely weighted with the outdegree ok, precisely
the situation explained in Fig. 2.

Note that the positive and symmetric matrix
A(O) = LTD −1

out L defines the pairwise similarity be-
tween two webpages. By Rayleigh-Ritz theorem, the
principal eigenvector (the authority vector) is the solu-
tion to the maximization problem

max
x

xT A(O)x

xTx
.

The similarity matrix A(O) = LTD −1
out L induces an

undirected similarity graph G(A(O)) among webpages,
with A(O) as its adjacency matrix.

The induced similarity graph G(A(O)) has following
properties: (i) the node degree of the induced graph,

di(A
(O)) ≡

∑
j A

(O)
ij = (LTD −1

out Le)i = (LTe)i = bi,
is equal to the indegree of the original web graph.
We may write D(A(O)) ≡ diag(d(A(O))) = Din. (ii)∑

ij A
(O)
ij =

∑
ij Lij = |E|, where |E| is the number of

hyperlinks. (iii) The trace of A,
∑

i A
(O)
ii , is

Tr(A(O)) = Tr(LTD −1
out L) = Tr(D −1

out Dout) = n.

Thus the diagonal elements of A(O) is 1 on average, in
contrast to HITS authority matrix LTL whose diagonal
elements are node indegree (see §2.1). This is another
reason OnormRank is called normalized ranking.

We wish to compute the authority scores. We can
compute them using Eq.5.10. Here we interpret Eq.5.10
in a new way: similarity-mediated score propagation on
a similarity graph.

5.1 Similarity mediated score propagation.
Here we formalize the concept of similarity mediated

score propagation scheme. Consider PageRank: a
“good” authority should be pointed by or point to other
“good” authorities. This idea translates into the it-
erative procedure of linearly propagating scores on the
original directed web graph to an equilibrium state. In
HITS, a good authority is pointed to by good hubs which
by definition point to good authorities. We may com-
bine the two-step process into one-step and view it as
similarity-mediated authority score propagation on an
undirected graph, where connection strength is the sim-
ilarity between webpages, defined by the similarity ma-
trix induced through the iterative mutual reinforcement
Eq.(2.3). This is stated formally as
Definition. In similarity-mediated score propagation,
scores are computed as the principal eigenvector of
Ax = λx, where A contains pairwise similarities.
Remark. Mutual reinforcement on the original web
graph is equivalent to similarity-mediated score propa-
gation on the induced similarity graph.

5.2 Random surfing score propagation. Besides
similarity-mediated score propagation, we can adopt
PageRank’s random surfing on the similarity graph
G(A) to define authority scores. Here we only consider
the link-tracking random surfing. The associated transi-
tion probability is directly proportional to the similarity
between webpages, which is specified by the stochastic
matrix Â obtained by inversely scaling each row of A
such that the sum along each row is equal to one,

Â(O) = [D(A(O))]−1A(O) = D −1
in LTD −1

out L (5.12)

The equilibrium distribution of random surfers is the
solution to (Â(O))T x̂ = x̂. One can easily verify that

x̂1 = din/|E| = (b1, · · · , bn)T /|E|, (5.13)

is the desired solution. We summarize all these results
in the following theorem:
Theorem 5.1 For the authority similarity graph
G(A(O)), the node degree equals the indegree of the un-
derlying web graph. The diagonal element of A(O) is 1
on average. Furthermore, random surfers on this graph
will reach the equilibrium distribution of Eq.5.13.



6 In-link normalized rank (InormRank)

Iop(·),Oop(·) operations are defined in Table 1. All
results in §5 can be extended to here similarly.

7 Symmetric normalized rank (SnormRank)

For authority ranking in PageRank, out-links are nor-
malized, i.e., L is replaced by D −1

out L. For hub ranking
in PageRank in-links are normalized, i.e., L is replaced
by LD −1

in . Here we normalize both in-links and out-
links simultaneously in a symmetric fashion (note that
HITS also treats in-link and out-link symmetrically).
The mutual reinforcement operations are defined by

Iop(·) = D
−1/2
in LTD

−1/2
out , Oop(·) = D

−1/2
out LD

−1/2
in .

We consider the ranking through similarity-
mediated score propagation. The authority scores are
contained in the principal eigenvector of

A(S)x = λx, A(S) = D
−1/2
in LTD −1

out LD
−1/2
in .

Hub scores are contained in the eigenvector of

H(S)y = λy, H(S) = D
−1/2
out LD −1

in LTD
−1/2
out .

The principal eigenvectors of these equations have sim-
ple closed form solutions. For authority score, the eigen-
vector is

x1 = din
1/2 = (b

1/2
1 , b

1/2
2 , · · · , b1/2

n )T , λ1 = 1. (7.14)

For hub score, the eigenvector is

y1 = dout
1/2 = (o

1/2
1 , o

1/2
2 , · · · , o1/2

n )T , λ1 = 1, (7.15)

(Both can be easily verified.) We summarize them as
Theorem 7.1 The authority ranking scores of the
SnormRank are given in Eq.(7.14). They are exactly
the ranking by indegrees. The hub ranking scores of the
SnormRank are given in Eq.(7.15). They are exactly the
ranking by outdegrees.

Thus SnormRank and OnormRank lead to the same
authority ranking (the indegree ranking). By construc-
tion, OnormRank and SnormRank are intermediate be-
tween HITS and PageRank. From this, we conclude
that authority rankings of HITS and PageRank will be
close to these normalized rankings.

8 Experiments

The dataset is about the topic Running which contains a
total of 13152 webpages. This dataset is a sub-category
of a larger category Fitness which is obtained from the
Open Directory Project (www.dmoz.org). We give HITS
ranking (the modification [1] are adopted), PageRank
ranking (Page), OnormRank ranking (OnmR) with sim-
ilarity mediated score propagation (§5.1) and indegree
ranking (IndR).

Hits Page OnmR IndR URL

1 1 1 2 www.runnersworld.com/

2 5 4 5 sunsite.unc.edu/drears/...

3 2 3 4 www.usatf.org/

4 3 2 1 www.coolrunning.com/

5 4 5 6 www.clark.net/pub/pribut/...

6 8 6 8 www.runningnetwork.com/

7 7 8 9 www.iaaf.org/

8 15 7 14 www.sirius.ca/running.html

9 12 9 12 www.wimsey.com/~dblaikie/

10 14 11 15 www.kicksports.com/

11 6 10 7 www.nyrrc.org/

12 17 12 18 www.usaldr.org/

13 24 13 20 www.halhigdon.com/

14 19 21 25 www.ontherun.com/

15 40 19 10 www.runningroom.com/

16 20 17 23 www.webrunner.com/webrun/...

17 26 18 22 www.doitsports.com/

18 33 26 21 www.arfa.org/

19 21 27 19 www.adidas.com/

20 11 22 11 www.uta.fi/~csmipe/sport/

Here HITS ranking agree with PageRank ranking, es-
pecially in top 10. OnormRank is intermediate between
HITS and PageRank. They all correlate with the inde-
gree ranking quite well. All major websites relating to
running are represented in these top ranked webpages.

Lempel and Moran [6] define two Markov chains
simultaneously on a bipartite graph, constructed from
the original webgraph. Borodin et al [2] proposed two
more refined random surfing models. Both these models
are special cases of our unified ranking framework.

More detailed analyses, web graph experiments,
references are given in the full paper.
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