
Preference SQL - Design, Implementation, Experiences

Gerhard Köstler

Intershop Communications
Intershop Tower

D-07740 Jena
Germany

g.koestler@intershop.com

Werner Kießling

Institute of Computer Science
University of Augsburg

 D-86135 Augsburg
Germany

kiessling@informatik.uni-augsburg.de

Abstract

Current search engines can hardly cope ade-
quately with fuzzy predicates defined by
complex preferences. The biggest problem of
search engines implemented with standard SQL
is that SQL does not directly understand the
notion of preferences. Preference SQL extends
SQL by a preference model based on strict
partial orders (presented in more detail in the
companion paper [Kie02]), where preference
queries behave like soft selection constraints.
Several built-in base preference types and the
powerful Pareto operator, combined with the
adherence to declarative SQL programming
style, guarantees great programming producti-
vity. The Preference SQL optimizer does an effi-
cient re-writing into standard SQL, including a
high-level implementation of the skyline opera-
tor for Pareto-optimal sets. This pre-processor
approach enables a seamless application
integration, making Preference SQL available on
all major SQL platforms. Several commercial
B2C portals are powered by Preference SQL. Its
benefits comprise cooperative query answering
and smart customer advice, leading to higher e-
customer satisfaction and shorter development
times of personalized search engines. We report
practical experiences ranging from m-commerce
and comparison shopping to a large-scale
performance test for a job portal.

1. Introduction
When searching for items to be purchased over the
Internet, customer wishes and preferences are becoming
increasingly important. Just like in real shopping, a
customer has his or her personal criteria and tastes that
guide the search for the ideal product. These criteria can
be classified into two categories: Knock out criteria that
must be fulfilled versus soft criteria that should be
fulfilled as closely as possible. Going to a real shop the
customer expects to encounter a cooperative sales person,
who assists in finding the most suitable item compatible
with the stated hard and soft criteria. The same
expectation for good customer advice carries over to e-
shops in the Internet. However, the state of the art is far
away from this ideal situation. Current B2C or B2B e-
shops cannot cope adequately with real user preferences.
As a consequence, e-shopping sessions frequently leave
frustrated users behind. All too often no or no reasonable
answer is returned though one has tried hard filling out
query forms to match one’s personal preferences closely.
Most probably, one has encountered answers before
sounding like “no hotels, vehicles, flights, etc. could be
found that matched your criteria; please try again with
different choices”. The case of repeatedly receiving empty
query results turns out to be extremely disappointing to
the user, and it is even more harmful for the electronic
retailer (e-tailer). Studies by leading marketing research
companies like Forrester have revealed that it requires
only very few unsuccessful attempts that the user will
quit, and he or she will not login to this e-shop again for
quite some time.

 Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

Such an unpleasant system behavior has been
recognized by e-tailers too, leading to some more or less
ad hoc solutions. The simplest approach is to dictate the
user to radically deviate from his initial preferences by
leaving some entries in the query form unspecified. In
many cases instead of an empty answer the user is then

overloaded with lots of mostly irrelevant information.
In comparison to a real department store, this amounts to
tell the customer that the desired item can be found, if at
all, on maybe level 1, 3, 6 and 7 of the entire sales
complex. Another approach to remedy this unpleasant
situation is called parametric search. Here the user is
interactively guided through the search process to narrow
down the search space. At each step of this iterative
procedure the system reports back whether the current
result set has already become empty. If so, the user has to
backtrack and retry the search along a different search
path. Though reducing the frequency of empty query
result, the query process can still be very time-consuming
and constantly requires the user’s attention.

Scientifically there have been various approaches to

cope with these deficiencies, notably in the context of
cooperative database systems [Mot88, CYC96, Min98].
There the technique of query relaxation has been studied
in order to deal with the empty result problem. Other
approaches aiming to provide soft constraints are based
on fuzzy logic or case-based reasoning. None of these
attempts does support a declarative and semantically
intuitive model of preferences. Likewise, so far no smooth
and efficient integration of preferences with SQL
technology was available. Recently, [BKS01] can be
considered as a move into this direction. Other recent
work on preferences can be found in [AgW00, HKP01,
Cho02]. The theoretical foundations of Preference SQL as
described subsequently are provided in detail in [Kie02],
while [KHF01b] introduces Preference XPATH, which is
a practical implementation of this preference model for
the XML setting.

The rest of this paper is organized as follows. In

section 2 we present the language design of the
commercial product Preference SQL [Dat00], its key
feature being the notion of preferences as strict partial
orders. Preference SQL is an extension of standard SQL
supporting a bundle of built-in base preference types and
further operators, in particular Pareto accumulation, to
build more complex preference types. Section 3 presents
some implementation details of a plug-and-go application
integration, including a large-scale performance test with
real data. In section 4 we report various experiences with
building personalized search engines. A summary and
outlook is given in section 5.

2. Preference SQL Language Design
Search engines directly implemented with standard SQL
suffer from the fact that SQL does not directly understand
the notion of preferences, hence is incapable of directly
supporting soft constraints. Thus any preference must be
translated somehow into a hard criterion in the WHERE
clause. In fact, the user is forced to think like an SQL
database. What is really needed is an extension of

standard SQL adding preferences as first class citizen
language constructs. The crux of such an attempt is the
choice of a proper model of preferences. Such a model
must both be intuitive to the user and must have a suitable
formal semantics that allows a smooth and efficient
integration into the SQL world. Below we will introduce
the basics of our preference model based on strict partial
orders. Since [Kie02] provides the complete theoretical
foundations for this preference model including a
preference algebra, subsequently we will restrict ourselves
to those aspects relevant for the current implementation of
Preference SQL.

The idea of declarative database queries with partial
orders traces back to [KiG94]. The theoretical backbone
that allows a smooth amalgamation with declarative
database technology, guaranteeing the existence of a
model theory and an equivalent fixpoint theory, has been
laid in [KKT95].

2.1 A Model for Preferences

The phenomenon of preferences has at least two very
different facets, where both may be present in a given
real-life situation:

• Choices in an ‘exact world’:
Here all user wishes can be satisfied completely or not at
all. Often the user’s options are restricted to a pre-defined
set of fixed choices. Typical examples are software
configurations according to user profiles. In technical
terms, queries in this context are exact-match queries
with hard selection criteria, delivering exactly the dream
object if it is there and otherwise reject the user’s request.

• Choices in the ‘real world’:
Such choices behave quite differently. They are guided by
personal preferences in the sense of wishes: Wishes are
free, but there is no guarantee that they can all be satisfied
at all times. In case of failure for the perfect match people
are not always, but usually prepared to accept worse
alternatives or to negotiate compromises. Thus
preferences in the real world require a paradigm shift
from exact-matches towards match-making, which
means to find the best possible match between one’s
wishes and the reality. In other words, preferences here
will lead to the notion of soft constraints.

Therefore, successfully building personalized search

engines requires the following:

• Hard constraints in an exact-match world: This is the
strong point of standard SQL.

• Preference-driven choices in a real world: For this

paradigm nothing as convenient as in the exact world
technologies exists today.

We aim to fill the latter gap with Preference SQL. At
the heart of this is a suitable model of preferences.
Preferences in the real world show up in quite different
ways as everybody is aware of. However, a careful
examination of its vary nature reveals that they share a
fundamental common principle. Let’s examine our daily
life with its abundance of preferences that may come from
subjective feelings or other intuitive influences. In this
familiar setting it turns out that people express their
wishes frequently in terms of “I like A better than B“. In
this way people express a non-numeric ranking between
A and B. This kind of preference modeling is universally
applied and intuitively understood by everybody. In fact,
every child learns to apply it from its earliest youth on.
People are intuitively used to deal with such preferences,
in particular with those that are not expressed in terms of
numerical scores and calculations. Thinking of
preferences in terms of ‘better-than’ has a very natural
counterpart in mathematics: One can map such real life
preferences straightforwardly onto strict partial orders.
Mathematically a preference P = (A, <P) is an irreflexive,
transitive and asymmetric binary relation <P on the
domain of values associated with an attribute set A.

2.2 Language Overview of Preference SQL

People are also used to express their wishes in a
completely declarative manner. They simply don’t want
to be involved in technical details how their wishes are
satisfied. What really matters is that wishes get fulfilled as
good as possible. Preference SQL delivers this
convenience to the user. Now we introduce the key
features of the Preference SQL query language [Dat00].
Preference SQL pushes declarative SQL computing one
decisive step forward. It compatibly extends standard
SQL by introducing new language constructs that treat
preferences as first class citizens:

Preference SQL = Standard SQL + Preferences

This means that Preference SQL is an orthogonal

extension of standard SQL. Preferences are strict partial
orders.

Preferences can be constructed on the fly when issuing

a query, or they can be defined as persistent objects using
a Preference Definition Language. Preferences are
syntactically expressed inside an SQL query block
following the new keyword PREFERRING.

2.2.1 Built-in Preference Types

There are quite different selection criteria that turn out as
preferences in the sense of strict partial orders. For this
purpose Preference SQL provides several built-in base
preference types, which are particularly useful for
building search engines for e- or m-commerce. Let’s give
a survey by examples.

Approximation: AROUND, BETWEEN

‘AROUND’ preferences favor values close to a numerical
target value. This is useful when hitting the target value is
not a must or hardly possible. This query returns trips
taking 14 days if possible, else those with the closest
duration to 14:

SELECT * FROM trips
PREFERRING duration AROUND 14;

The ‘BETWEEN[low, up]’ preference type behaves
analogously: Values inside [low, up] are best, otherwise
being closer to the interval limits is considered better.

Minimization/Maximization: LOWEST, HIGHEST

A frequently occurring preference is asking for highest or
lowest values, if possible. Otherwise the closest value to
the maximum or minimum, resp., is considered
acceptable. The following preference query asks for the
largest apartment available

SELECT * FROM apartments
PREFERRING HIGHEST(area);

This query has a simple standard SQL counterpart. But
note that instead of a single attribute (like area) an
arithmetic expression over several attributes or even a
proper stored procedure are admissible, too.

Favorites, dislikes: POS, NEG

A POS preference expresses a soft condition that a desired
value should be one out of a given list of values. This
query looks for a programmer who should have Java or
C++ experience. If such an applicant does not exist,
programmers with other skills will be considered
alternatively.

SELECT * FROM programmers
PREFERRING exp IN ('java', 'C++');

"Should not have" criteria are supported by NEG
preferences. This query expresses a preference for a hotel
outside downtown. If only hotels in downtown have
rooms left, offering one of those is better than offering
nothing.

SELECT * FROM hotels
PREFERRING location <> 'downtown';

In the current release Preference SQL 1.3 various built-in
combinations of POS and NEG preferences (e.g.
POS/POS, POS/NEG) and a base preference type
CONTAINS on text attributes for simple full-text search
are supported, too. Any preference that can be expressed
by a finite set of ‘A is better than B’ relationships can be
created as a base preference of type EXPLICIT.

2.2.2 Assembling Complex Preferences

In general decisions are not based on a single preference,
but on a possibly complex combination of preferences.
Preference SQL offers means to inductively assemble
complex preferences.

Equal importance: Pareto accumulation (AND)

Pareto accumulation of preferences P1, …, Pn into a
complex preference P is defined as:

 v = (v1, …, vn) is better than w = (w1, …, wn)
 iff ∃ i such that vi is better than wi and

v is equal or better than w in any other
component value

The intuitive semantics of Pareto accumulation is a

non-discriminating combination of equally important
preferences P1, …, Pn. Pareto accumulation forms a strict
partial order again, hence is a preference in our sense. The
maximal values of P are called Pareto-optimal set. The
Pareto-optimality principle has been applied and studied
extensively for at least 50 years for multi-attribute
decision problems in the social and economic sciences.
Preference SQL’s syntax for Pareto accumulation is the
‘AND’-ing of base preferences.

Imagine, when buying a computer a customer

considers a maximum memory size and CPU speed as
equally important. This preference can be expressed as:

SELECT * FROM computers
PREFERRING HIGHEST(main_memory)
 AND HIGHEST(cpu_speed);

Ordered importance: Cascading of preferences
(CASCADE)

Cascading of preferences assigns different levels of
importance to the constituent preferences, applying
preferences one after the other. Preference SQL’s syntax
for ordered importance is ‘CASCADE’ (or as a synonym
the ‘,’ symbol).

Suppose someone wants to buy a computer, where its

color should be black or brown, which in turn is less
important than a maximal size of the main memory. This
wish can be expressed as:

 SELECT * FROM computers
 PREFERRING HIGHEST(main_memory)

 CASCADE color IN ('black','brown');

Combining Pareto accumulation and cascading

The full power of Preference SQL comes when
combining its basic constructs into complex wishes. To

give an impression of its intuitive expressiveness let’s
phrase a customer wish in natural language:

"My favorite car must be an Opel. It should be a

roadster, but if there is none, please no passenger car.
Equally important I want to spend around DM 40,000 and
the car should be as powerful as possible. Less important I
like a red one. If there remain several choices, let better
mileage decide."

The Preference SQL query features a hard and a soft
condition, the latter combining a POS/NEG preference on
category, an AROUND preference on price, a POS
preference on color and a LOWEST preference on
mileage. It is almost a one-to-one translation of the verbal
formulation above:

SELECT * FROM car
WHERE make = 'Opel'

 PREFERRING (category = 'roadster' ELSE
 category <> 'passenger'
 AND price AROUND 40000
 AND HIGHEST(power))
 CASCADE color = 'red'
 CASCADE LOWEST(mileage);

2.2.3 Answer Explanation

When a tuple is selected or rejected by a WHERE
condition in standard SQL, the reason is immediately
evident from the tuple's attributes: If they meet the
condition it belongs to the result, otherwise not. The
presence of a tuple in the result set of a Preference SQL
query does not only depend upon the quality of the tuple
itself, but also of its competitors. This raises the need to
justify the results of a preference query, just like in real
life. For this purpose Preference SQL supports special
quality functions, reporting which soft criteria are met by
a result tuple to which extent:

TOP(A) is a Boolean predicate reporting whether
attribute value A is a perfect match or not.

•

•

•

LEVEL(A) reports how far the A-value of a tuple is
apart from the maximal A-value (being at level 1).
DISTANCE(A) reports how far the numerical A-value
of a tuple is apart from the maximal A-value (being at
distance 0).

Consider this oldtimer car database:

oldtimer ident color age
Maggie white 19
Bart green 19
Homer yellow 35
Selma red 40
Smithers red 43
Skinner yellow 51

 The subsequent Preference SQL query Pareto-
combines a POS/POS preference with an AROUND
preference:

SELECT ident, color, age,

 LEVEL(color),
 DISTANCE(age)

FROM oldtimer
PREFERRING color = 'white' ELSE

 color = 'yellow'
 AND age AROUND 40;

The adorned Pareto-optimal result is as follows:

Thus one can see at a glance which of criteria are met

by the results and how much they differ from the
optimum. This marks an important improvement over the
unsatisfactory behavior of many search engines that rank
results by numerical scores without giving any hint what
these scores mean.

2.2.4 Quality Control

If perfect matches for preferences are not available, the
match-making process looks for best-possible alternative
answers. Preference SQL's quality functions are also
useful, if the user wants to enforce certain minimal quality
standards a result tuple must satisfy. E.g., assume an e-
customer is looking for a travel that starts around the 3rd
of July and takes around two weeks. But he or she is not
willing to accept variations above two days for each
criterion. Such quality restrictions can be expressed using
the ‘BUT ONLY’ clause of Preference SQL:

 SELECT *
 FROM trips
 PREFERRING start_day AROUND '1999/7/3'

 AND duration AROUND 14
 BUT ONLY DISTANCE(start_day)<=2

 AND DISTANCE(duration)<=2;

Clearly, an empty result may be possible now, but this
correlates with the user’s explicit intention!

2.2.5 The Preference SQL Query Block

The complete syntax of the current version Preference
SQL 1.3 is given in [Dat00]. In general, the Preference
SQL query block offers the following options, allowing
for hard and soft selections to co-exist within one single
query:

SELECT <selection>
FROM <table_references>
WHERE <where-conditions>
PREFERRING <soft-conditions>

GROUPING <attribute_list>
BUT ONLY <but_only_condition>
ORDER BY <attribute_list>

The elements that extend standard SQL appear in

bold; <selection> is bold because quality functions can
appear there. Like in standard SQL, the WHERE and
ORDER BY clauses are optional. Without a
PREFERRING clause, it is not a preference query. The
GROUPING (performing with soft constraints what
GROUP BY does with hard constraints) and BUT ONLY
clauses are both optional.

ident color age level distance
Selma red 40 3 0
Homer yellow 35 2 5
Maggie white 19 1 21

Preferences only apply to tuples fulfilling the WHERE
condition. The condition of the BUT ONLY clause is
logically tested after applying the preferences of the
PREFERRING clause. Preference SQL queries can also
be invoked as sub-queries of INSERT statements. As a
current restriction sub-queries in the WHERE clause may
not contain PREFERRING clauses. The ORDER clause
accepts whatever the backend SQL-system does, but no
quality functions so far. Thus if for some reasons an
additional weighing of the Pareto-optimal result set is
desired, if must be hand-coded using available SQL
functionality.

The answer semantics of Preference SQL follows a

‘Best Matches Only’ (BMO) query model:

Find all perfect matches wrt. preference P in the
PREFERRING clause. If this set is non-empty, we are
done.

•

• Otherwise, consider all other values within the BUT
ONLY quality threshold, but discard worse values wrt.
<P on the fly. All non-dominated values are returned.

Note that in case of Pareto accumulation BMO returns

exactly the Pareto-optimal set (see [Kie02] for more
details). The SQL extension proposed in [BKS01], using a
SKYLINE clause, is a proper subset of Preference SQL.

3. Implementation of Preference SQL
Preference SQL has been designed and implemented
starting late 1997 ([KiK97]) with its first commercial
product release available in the fall of 1999.

3.1 Plug-and-Go Application Integration

Preference SQL is implemented as an intermediate layer
between the application and the SQL database system (see
Fig. 1).

Figure 1: Preference SQL integration

It processes preference queries by translating them to
standard SQL queries and submitting them to the
database. Queries without preferences are just passed
through to the database system without causing any
noticeable overhead. Legacy SQL applications run
without any restriction.

In the current implementation of Preference SQL 1.3 a
Preference ODBC or JDBC driver is placed directly in
front of the Preference SQL Optimizer translating
Preference SQL (as, e.g., generated through a graphical
user interface) into standard SQL, pre-optimizing its novel
functionality. The standard ODBC or JDBC driver
forwards the transformed SQL program to the underlying
SQL database system, where it is optimized a second time
by the standard SQL optimizer. The executable program
is run against the existing SQL database. Any additional
code, generated for query rewriting by the Preference
SQL Optimizer, is fully SQL92 entry-level compliant.

Thus Preference SQL can run in combination with any
SQL92 entry-level compliant database system.

3.2 The Preference SQL Optimizer

Complex preferences can be formulated in a declarative
way within a single preference query. It becomes the
burden of the Preference SQL Optimizer to find the right
answers under the BMO query model. Recently various
methods have been proposed to implement the skyline
operator, which can be employed to compute Pareto-
optimal sets in special cases ([BKS01], [TEO01]). For the
scope of this paper we demonstrate how to efficiently
compute the Pareto-optimal answer set in our re-writing
approach, piggybacking on the power of the host SQL
system. The abstract algorithm is as follows:

Selection method for retrieving all maximal tuples from a
relation R wrt. a strict partial order P:

1. At the start the set of maximal tuples Max is empty.
2. Select a tuple t1 from the R. E/M-Commerce

application
Preference

ODBC/JDBC driver 3. Insert t1 into Max if there is no tuple t2 in R that is
better than t1 wrt. P.

4. Repeat steps (2) through (3) until all tuples t1 from R
have been selected.

5. The method is finished. Max contains the maximal
tuples from R wrt. P.

Preference SQL
Optimizer

We pose this Preference SQL query

SELECT * FROM Cars Standard

SQL DB system
Standard

ODBC/JDBC driver PREFERRING Make = 'Audi'
 AND Diesel = 'yes';

against the subsequent relation Cars:

Identifier Make Model Price Mileage Airbag Diesel

1 Audi A6 40000 15000 yes no
2 BMW 5 series 35000 30000 yes yes
3 Volkswagen Beetle 20000 10000 yes no

Our abstract selection method can be implemented by

the following SQL92-compliant query, after proper
creation of a temporary relation Max:

CREATE VIEW Aux AS
SELECT *, CASE WHEN Make = 'Audi'
 THEN 1 ELSE 2 END

AS Makelevel,
 CASE WHEN Diesel = 'yes'

THEN 1 ELSE 2 END
AS Diesellevel

FROM Cars;

INSERT INTO Max
SELECT Identifier, Make, Model,

 Price, Mileage, Airbag,
 Diesel

FROM Aux A1
WHERE NOT EXISTS
 (SELECT 1 FROM Aux A2
 WHERE A2.Makelevel <= A1.Makelevel

AND
 A2.Diesellevel <= A1.Diesellevel

AND
 (A2.Makelevel < A1.Makelevel OR

 A2.Diesellevel < A1.Diesellevel));

Having the right indices available current SQL
optimizers can efficiently process this complex SQL
query with a correlated NOT EXISTS sub-query as we
will demonstrate in the next section.

3.3 A Large Scale Performance Benchmark

One of the busiest Internet sites in Germany is a job
search engine. We have benchmarked Preference SQL

Figure 2: Large performance benchmark results

against this highly complex application where millions of
job-seeking people together with their professional
profiles are online accessible.

Benchmark description:

IBM Risc-Workstation 43P-140 running AIX 4.2
(mono-processor CPU, comparable to a 332 Mhz
PentiumII), 768 MBytes main memory, as dedicated
database raw device an Ultra SCSI hard disk Quantum
Viking II with 4.5 GBytes, 7.5 msec average seek
time, 14 MBytes/sec sustained data throughput

•

•
•

•

•

•

SQL database: Informix Universal Server 9.1
Data: 1 relation with ca. 1.4 million tuples each
having 74 attributes describing the profile of a job
applicant.

The search scenario of the search engine is as follows:

In a pre-selection a set of hard criteria has to be filled into
the search mask. If the result set size is below a default
number of hits, a second selection with more job details
can be issued to narrow down the candidate set. Thus
benchmark queries were designed as follows: The pre-
selection is turned into hard conditions in the WHERE–
clause in any case, whereas the second selection is treated
differently:

SQL, solution 1: Translation into 4 conjunctive
conditions in the WHERE-clause.
SQL, solution 2: Translation into 4 disjunctive
conditions in the WHERE-clause.
Preference SQL: Translation into 4 Pareto-accu-
mulated conditions in the PREFERRING-clause.

Examples for these very complex conjunctive SQL,

disjunctive SQL and Preference SQL queries can be
found in the appendix.

Fig. 2 shows the real time measurements for results set
sizes of 300, 600 and 1000 for the pre-selection and for
two different conditions chosen for the second selection.
We think that these performance results impressively
demonstrate the efficiency of our high-level approach for
implementing Pareto-optimality. Further optimizations
not mentioned here or implementing a generalized skyline
operator in the kernel of an SQL-system clearly hold
much promise for additional speed-ups.

4. Experiences with Preference SQL
Preference SQL is useful for all database applications
where customer wishes are naturally modeled by
preferences as opposed to hard conditions only. This
applies for most e-market places and products that have
complex properties and limited availability, like e.g. used
cars, flights, hotels, computers, real estate or jobs. Let us
demonstrate the power of Preference SQL from different
angles.

4.1 Building E-Shopping Search Engines

Search engine technology based on Preference SQL has
been integrated as Preference Search cartridge into two
of the leading e-commerce platform INTERSHOP 4
(running on Sybase ASE) and INTERSHOP enfinity
(running on Oracle 8i). In this way it has been deployed in
the e-commerce market, e.g., a very successful German e-
portal for office-supply and the regional marketplace
www.msp-info.de are powered by Preference SQL.

When designing a personalized search engine the issue
of preference modeling becomes crucial:

Which selection criteria are hard (WHERE clause) vs.
which are soft (PREFERRING clause)?

•

•
•

•

Which quality control (BUT ONLY condition)?
Importance of criteria (Pareto accumulation vs.
cascading)?
Where do preferences come from: Hard-wired into
search mask as determined by the e-service provider
vs. determined by the e-customers etc.?

Given the sample search mask in Fig. 3 for an e-shop

selling used cars, let’s assume that all preference
modeling decisions are hard-wired into the design of the
search mask, hence are invisible to the e-customer.

Using dynamic Preference SQL it is straightforward to
generate the subsequent single Preference SQL query
from a given user input. Note that an e-tailer has complete
freedom to add further so-called vendor preferences,
maybe on hidden attributes, to this query at his discretion.

http://www.msp-info.de/

Figure 3: Sample search mask for used cars

Figure 4: Result of used car search

SELECT *,
 TOP(manufacturer),
 TOP(model), TOP(price),
 TOP(mileage), TOP(regyear),
 TOP(diesel), TOP(airbag),
 TOP(autotransmission),
 TOP(aircondition)

FROM used_cars
PREFERRING

manufacture = 'BMW' AND
model = '7'

CASCADE
price BETWEEN 0, 75000 AND
mileage BETWEEN 0, 30000 AND
regyear between 1997, 1999 AND

 diesel = 'yes' AND
airbag = 'yes' AND
autotransmission = 'yes' AND
aircondition = 'yes';

The query result in Fig. 4 shows that not all conditions
could be satisfied simultaneously. But instead of
annoying the user with "Sorry, nothing could
be found", Preference SQL offers interesting alter-
natives. The two high priority conditions manufacture
= 'BMW' and model = '7' could be satisfied. The
color markup of the attributes is based on the TOP quality
function.

4.2 Mobile Search

In mobile environments including PDAs, WAP or I-mode
phones the quality of search engines matters even more
([WBK02, KiB02]). Retrying queries by tiresome typing
because of empty results or lengthy scrolling through lots
of unwanted results are major obstacles towards
successful m-commerce. Obviously, a search engine
based on Preference SQL’s BMO query model is an
appealing choice, in particular in combination with
location-based e-services.

Fig. 5 shows the search result of a product search with
Preference SQL via a mobile WAP phone. The first query

delivers already the best possible results only. This does
not only save typing effort, but also mobile phone costs!

4.3 Advanced Cooperative Sales Interfaces

The answer explanation capabilities of Preference SQL
lay the foundation for advanced cooperative e-sales
interfaces as recently demonstrated by the non-
commercial e-commerce application COSIMA
([KFH01]). COSIMA (see Fig. 6, downloadable free of
charge from www.myCOSIMA.com) features a meta-
search engine for comparison shopping over various
well-known e-shops like Amazon, BOL, etc. Intermediate
query results, gathered by agent technology over the
Internet from the participating e-shops, are stored in a
temporary COSIMA database running Preference SQL on
Oracle 8i. The discussed salient characteristics of
Preference SQL enable a novel type of cooperative sales
interface.

In the spirit of shops of the old economy the charming

avatar COSIMA, talking by dynamically generated smart
speech output with the e-customer, performs the
presentation of query results. Doing so, COSIMA
explains the quality of presented items, augmented by
ingredients of sales psychology.

COSIMA has been demonstrated already to a large

general audience at the computer fair SYSTEMS 2000 in
Munich and at the recent SIGMOD conference
([KHF01a]). Feedback gathered so far and a growing
community of many hundreds of user strongly indicate
that this is a promising path to pursue for next generation
e/m-commerce systems. Technically, the results in
[KFH01] give strong evidence that Pareto accumulation is
an indispensable operator when dealing with soft
constraints. E.g., predominantly the size of the Pareto-
optimal set was between 1 and 20, yielding an easy-to-
survey choice of products similar to a traditional sales
situation. Performance-wise the whole meta-search with
Preference SQL consumed 1-2 seconds on the average,
adding only a small overhead to the total response times,
dominated by accessing the participating e-shops.

5. Summary and Outlook
We have presented an overview of Preference SQL that
compatibly extends standard SQL with preferences under
a strict partial order semantics. Salient features include a
variety of built-in base preference types, the Pareto
accumulation constructor to assemble complex
preferences and several quality control functions. We
gave some insights into the Preference SQL optimizer and
presented a large-scale performance benchmark,
indicating that extending SQL by soft constraints can be
implemented efficiently. In particular we gave an efficient
high-level re-writing method for implementing a
generalized skyline operator. By selected applications

Figure 5: Result of a mobile search

 Figure 6: Advanced cooperative sales interface COSIMA

ranging from comparison shopping to m-commerce we
gave strong evidence that cooperative database interfaces
can substantially benefit from Preference SQL. Because
Preference SQL has been fully operational as commercial
product already since 1999, it has done a pioneering job in
this non-trivial, but important domain for the
personalization of information systems.

Preference SQL is one instance of a larger research

effort, which is in progress under the motto “It’s a
Preference World” at the University of Augsburg. This
preference technology based on strict partial-order
preferences is an integral part for developing advanced
personalized applications. Within the recently established
Bavarian Research Partnership FORSIP on “Situated,
Individualized and Personalized Man-Machine Inter-
action” (www.forsip.de), Preference SQL and Preference
XPATH are supposed to provide great added value to
many projects of the 9 participating research groups. E.g.,
the next version of COSIMA offers an interactive
preference-based bargaining interface with a speaking,
emotional avatar ([FKH02]), relying on Preference SQL
to find best matches to a customer’s request. The current
research project P-News, funded by the German Research
Society DFG, applies complex preference engineering to
the digital library problem of delivering a personalized
multimedia brochure of new books and articles in an
MPEG-7 setting, queried by Preference XPATH.
Furthermore, investigations on preference mining for
complex strict partial order preferences from query log
files are under way. Finally, we are in the progress of
developing a preference query optimizer based on
transformations of a preference algebra operator tree. In
summary, the vision of “It’s a Preference World” is to
provide foundations and prototype systems to
conveniently and efficiently cope with preference-driven
choices in a real world.

Note:

Gerhard Köstler is the former CEO of Database
Preference Software GmbH, Augsburg.

Acknowledgments:

We would like to thank Peter Rieger, Jutta Seidel and Jens
Wunderwald for their valuable contributions throughout
the product development of Preference SQL.

6. Appendix

Query PRESEL300_1:

Hard pre-selection of 301 tuples.

SELECT ROWID AS ID FROM PROFILEDATA
WHERE PROFESSION='3702'
INTO TEMP PRESEL300_1;

Query AND300_1:

Second selection (with 4 conditions on the profile of the
job application) as conjunctive query:
Job applicants that must satisfy pre-selection
PRESEL300_1 and that must show all four encoded
characteristics G167, H385, H379, U471 on one of the
profile attributes ATT1 to ATT18.

SELECT COUNT(ROWID)
FROM PROFILEDATA
WHERE ROWID IN
 (SELECT ID FROM PRESEL300_1)
AND '0'=
(HAS_PROFILEATTRIBUTE('G167',ATT1,ATT2,
 ATT3,ATT4,ATT5,ATT6,ATT7,ATT8,ATT9,

 ATT10,ATT11,ATT12,ATT13,ATT14,ATT15,
 ATT16,ATT17,ATT18))
AND '0'=
(HAS_PROFILEATTRIBUTE('H385',ATT1,ATT2,
 ATT3,ATT4,ATT5,ATT6,ATT7,ATT8,ATT9,
 ATT10,ATT11,ATT12,ATT13,ATT14,ATT15,
 ATT16,ATT17,ATT18))
AND '0'=
(HAS_PROFILEATTRIBUTE('H379',ATT1,ATT2,
 ATT3,ATT4,ATT5,ATT6,ATT7,ATT8,ATT9,
 ATT10,ATT11,ATT12,ATT13,ATT14,ATT15,
 ATT16,ATT17,ATT18))
AND '0'=
(HAS_PROFILEATTRIBUTE('U471',ATT1,ATT2,
 ATT3,ATT4,ATT5,ATT6,ATT7,ATT8,ATT9,
 ATT10,ATT11,ATT12,ATT13,ATT14,ATT15,
 ATT16,ATT17,ATT18));

Query OR300_1:

Second selection as disjunctive query:
Job applicants that must satisfy pre-selection
PRESEL300_1 and that must show at least one of the
four encoded characteristics G167, H385, H379, U471 on
one of the profile attributes ATT1 to ATT18.

SELECT COUNT(ROWID)
FROM PROFILEDATA
WHERE ROWID IN
 (SELECT ID FROM PRESEL300_1)
AND (
'0'=
(HAS_PROFILEATTRIBUTE('G167',ATT1,ATT2,
 ATT3,ATT4,ATT5,ATT6,ATT7,ATT8,ATT9,
 ATT10,ATT11,ATT12,ATT13,ATT14,ATT15,
 ATT16,ATT17,ATT18))
OR
'0'=
(HAS_PROFILEATTRIBUTE('H385',ATT1,ATT2,
 ATT3,ATT4,ATT5,ATT6,ATT7,ATT8,ATT9,
 ATT10,ATT11,ATT12,ATT13,ATT14,ATT15,
 ATT16,ATT17,ATT18))
OR
'0'=
(HAS_PROFILEATTRIBUTE('H379',ATT1,ATT2,
 ATT3,ATT4,ATT5,ATT6,ATT7,ATT8,ATT9,
 ATT10,ATT11,ATT12,ATT13,ATT14,ATT15,
 ATT16,ATT17,ATT18))
OR
'0'=
(HAS_PROFILEATTRIBUTE('U471',ATT1,ATT2,
 ATT3,ATT4,ATT5,ATT6,ATT7,ATT8,ATT9,
 ATT10,ATT11,ATT12,ATT13,ATT14,ATT15,
 ATT16,ATT17,ATT18)));

Query PREFSQL300_1:

Second selection as Preference SQL query: Job applicants
that must satisfy pre-selection PRESEL300_1 and that

should show all of the four encoded characteristics G167,
H385, H379, U471 on one of the profile attributes ATT1
to ATT18. The second selection is implemented as four
Pareto-accumulated LOWEST preferences.

SELECT COUNT(ROWID)
FROM PROFILEDATA
WHERE ROWID IN
 (SELECT ID FROM PRESEL300_1)
PREFERRING
LOWEST(HAS_PROFILEATTRIBUTE('G167',
 ATT1,ATT2,ATT3,ATT4,ATT5,ATT6,ATT7,
 ATT8,ATT9,ATT10,ATT11,ATT12,ATT13,
 ATT14,ATT15,ATT16,ATT17,ATT18))
AND
LOWEST(HAS_PROFILEATTRIBUTE('H385',
 ATT1,ATT2,ATT3,ATT4,ATT5,ATT6,ATT7,
 ATT8,ATT9,ATT10,ATT11,ATT12,ATT13,
 ATT14,ATT15,ATT16,ATT17,ATT18))
AND
LOWEST(HAS_PROFILEATTRIBUTE('H379',
 ATT1,ATT2,ATT3,ATT4,ATT5,ATT6,ATT7,
 ATT8,ATT9,ATT10,ATT11,ATT12,ATT13,
 ATT14,ATT15,ATT16,ATT17,ATT18))
AND
LOWEST(HAS_PROFILEATTRIBUTE('U471',
 ATT1,ATT2,ATT3,ATT4,ATT5,ATT6,ATT7,
 ATT8,ATT9,ATT10,ATT11,ATT12,ATT13,
 ATT14,ATT15,ATT16,ATT17,ATT18))
USING KEY (ROWID);

Stored Procedure HAS_PROFILEATTRIBUTE:

Stored procedure that checks whether one of the attributes
A1 – A 18 has the attribute value V.

CREATE PROCEDURE HAS_PROFILEATTRIBUTE
(V VARCHAR(5), A1 VARCHAR(5),
 A2 VARCHAR(5), A3 VARCHAR(5),
 A4 VARCHAR(5), A5 VARCHAR(5),
 A6 VARCHAR(5), A7 VARCHAR(5),
 A8 VARCHAR(5), A9 VARCHAR(5),
 A10 VARCHAR(5),A11 VARCHAR(5),
 A12 VARCHAR(5),A13 VARCHAR(5),
 A14 VARCHAR(5),A15 VARCHAR(5),
 A16 VARCHAR(5),A17 VARCHAR(5),
 A18 VARCHAR(5))
RETURNING CHAR(1);
IF A1=V OR A2=V OR A3=V OR A4=V OR
 A5=V OR A6=V OR A7=V OR A8=V OR
 A9=V OR A10=V OR A11=V OR A12=V OR
 A13=V OR A14=V OR A15=V OR A16=V OR
 A17=V OR A18=V
THEN RETURN '0';
ELSE RETURN '1';
END IF
END PROCEDURE;

7. References
 [AgW00] R. Agrawal, E. L. Wimmers: A Framework for

Expressing and Combining Preferences. Proc.
ACM SIGMOD Intern. Conf. on Management
of Data, May 2000, Dallas, pp. 297 - 306.

[BKS01] S. Borzsonyi, D. Kossmann, K. Stocker: The

Skyline Operator. Proc. 17th Intern. Conf. On
Data Engineering, Heidelberg, April 2001.

[Cho02] J. Chomicki: Querying with intrinsic

preferences. Proc. of the Intern. Conference
on Advances in Database Technology
(EDBT), Prague, Czech Republic, March
2002, pp. 34-51.

[CYC96] W. W. Chu, H. Yang, K. Chiang, M. Minock,

G. Chow, C. Larson: CoBase - A Scalable and
Extensible Cooperative Information System.
Journal of Intelligent Information Systems,
6(3):223-259, 1996.

[Dat00] Database Preference Software GmbH:

Preference SQL User Manual 1.3, Augsburg,
Germany, Febr. 2000.

[FKH02] S. Fischer, W. Kießling, S. Holland, M.

Fleder: The COSIMA Prototype for Multi-
Objective Bargaining, First Intern. Joint
Conference on Autonomous Agents & Multi-
agent Systems (AAMAS), Bologna, July 2002.

[HKP01] V. Hristidis, N. Koudas, Y. Papakonstantinou :

PREFER : A System for the Efficient Execution
of Multi-parametric Ranked Queries. Proc.
ACM SIGMOD Intern. Conf. on Management
of Data, 2001, Santa Barbara, pp. 259 - 269.

[Kie02] W. Kießling: Foundations of Preferences in

Database Systems. Proc. 28th Intern. Conf. on
Very Large Databases (VLDB), Hong Kong,
China, Aug. 2002, this volume.

[KiB02] W. Kießling, W.T. Balke: Mobile Search in a

Preference World. Proc. Workshop on Mobile
Search in conj. with 11th Intern. World Wide
Web Conf., Honolulu, May 2002, pp. 32-38.

[KiG94] W. Kießling, U. Güntzer: Database Reasoning
- A Deductive Framework for Solving Large
and Complex Problems by Means of Subsump-
tion. Proc. 3rd Workshop on Information
Systems and Artificial Intelligence, Springer
LNCS 777, pp. 118-138, Hamburg, 1994.

[KiK97] W. Kießling, G. Köstler: Preference SQL − A
New Paradigm for Online Information
Systems. Internal document, Database Pref-
erence Software GmbH, Augsburg, Oct. 1997.

[KFH01] W. Kießling, S. Fischer, S. Holland, T. Ehm:

Design and Implementation of COSIMA - A
Smart and Speaking E-Sales Assistant. Proc.
3rd Intern. Workshop on Advanced Issues of
E-Commerce and Web-Based Information
Systems, pp. 21-30, San Jose, June 2001.

[KHF01a] W. Kießling, S. Holland, S. Fischer, T. Ehm:

COSIMA - Your Smart, Speaking E-
Salesperson. Proc. ACM SIGMOD Intern.
Conf. on Management of Data, demo paper, p.
600, Santa Barbara, USA, May 2001.

[KHF01b] W. Kießling, B. Hafenrichter, S. Fischer, S.

Holland: Preference XPATH: A Query
Language for E-Commerce. Proc. 5th Intern.
Konferenz für Wirtschaftsinformatik,
Augsburg, Germany, Sept. 2001, pp. 425-440.

[KKT95] G. Köstler, W. Kießling, H. Thöne, U.

Güntzer: Fixpoint Iteration with Subsumption
in Deductive Databases. In Journal of
Intelligent Information Systems, Vol. 4, pp.
123-148, Boston, USA, 1995.

[Min98] J. Minker: An Overview of Cooperative

Answering in Databases. Proc. 3rd Intern.
Conf. on Flexible Query Answering Systems,
Springer LNCS 1495, pp. 282-285, Roskilde,
Denmark, 1998.

[Mot88] A. Motro: VAGUE - A User Interface to

Relational Databases that Permits Vague
Queries. ACM Transactions on Office
Information Systems , 6:187-214, 1988.

[TEO01] K.-L. Tan, P.-K. Eng, B. C. Ooi: Efficient

Progressive Skyline Computation. Proc. 27th
Intern. Conf. on Very Large Databases, pp.
301-310, Rome, Italy, Sept. 2001.

[WBK02] M. Wagner, W-T. Balke, W. Kießling: XML-

based Multimedia Middleware for Mobile
Online Auctions. Intern. Conf. on Enterprise
Information Systems (ICEIS), Setubal, Portu-
gal, 2001, pp. 934-944. Also published as
selected paper in J.Filipe, B. Sharp, P. Miranda
(eds.) Enterprise Information Systems III, pp.
259-269, Kluwer Academic Publishers, 2002.

