One image is worth 1,000 words...

- Undoubtedly, images are the most wide-spread MM data type, second only to text data.
- Thus, it’s not surprising that most efforts related to the management of MM data have concentrated on images, in particular:
 - Automatic extraction of features
 - Similarity measures
 - Indexing
 - ...

- In the following we will provide basic information on the basic features of images.
Physically speaking a digital image represents a 2-D array of samples, where each sample is called pixel.

The word pixel is derived from the two words “picture” and “element” and refers to the smallest element in an image.

Color depth is the number of bits used to represent the color of a single pixel in a bitmapped image or video frame buffer (also known as bits per pixel – bpp).

- Higher color depth gives a broader range of distinct colors.

Binary images: 1 bpp (2 colors), e.g., black white photographic

Computer graphics: 4 bpp (16 colors), e.g., icon

Grayscale images: 8 bpp (256 colors)

Color images: 16 bpp, 24 bpp or more, e.g., color photography

According to the color depth, images can be classified into:

- Binary images: 1 bpp (2 colors), e.g., black white photographic
- Computer graphics: 4 bpp (16 colors), e.g., icon
- Grayscale images: 8 bpp (256 colors)
- Color images: 16 bpp, 24 bpp or more, e.g., color photography

The table shows the color depths used in PCs today:

<table>
<thead>
<tr>
<th>Color depth</th>
<th># displayed colors</th>
<th>Bytes of storage per pixel</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-bit</td>
<td>16</td>
<td>0.5</td>
<td>Standard VGA</td>
</tr>
<tr>
<td>8-bit</td>
<td>256</td>
<td>1.0</td>
<td>256-Color Mode</td>
</tr>
<tr>
<td>16-bit</td>
<td>65,536</td>
<td>2.0</td>
<td>True Color</td>
</tr>
<tr>
<td>24-bit</td>
<td>16,777,216</td>
<td>3.0</td>
<td>High Color</td>
</tr>
</tbody>
</table>

- Dimension is the number of pixels in an image; identified by the width and height of the image as well as the total number of pixels in the image (e.g., an image 2048 x 1536 contains 3,145,728 pixels - 3.1 Mp)

- Spatial resolution is the number of pixels per inch – bpi; the higher the bpi, the better the resolution (clarity) of the image. Resolution changes according to the size at which the image is being reproduced.

Size [Byte] = (width * height) * color depth/8
Color depth

Example: these images of Former President Clinton demonstrate the effects of different spatial resolutions. Each higher level of resolution allows you to distinguish more detail.

Spatial resolution
Color

- According to the tri-chromatic theory, the sensation of color is due to the stimulation of 3 different types of receptors (cones) in the eyes
 - Each color has a wavelength, in the range 400-700 nanometers (10^-9 meters)
- Consequently, each color can be obtained as the combination of 3 component values (one per receptor type)
- A color space defines 3 color channels and how values from such channels have to be combined in order to obtain a given color
- There is a large variety of color spaces (e.g., RGB, CMY, XYZ, HSV, HSI, HLS, Lab, UVW, YUV, YCrCb, Luv, L'*u'*v*'), each designed for specific purposes, such as displaying (RGB), printing (CMY), compression (YIQ), recognition (HSV), etc.
- It is important to understand that a certain “distance” value in a color space does not directly correspond to an equal difference in colors’ perception
 - E.g., distance in the RGB space badly matches human’s perception

Color spaces: RGB

- The RGB space is a 3-D cube with coordinates Red, Green, and Blue
- The line of equation R=G=B corresponds to gray levels
- It can represent only a small range of potentially perceivable colors
Color spaces: HSV

- The HSV space is a 3-D cone with coordinates Hue, Saturation, and Value:
 - **Hue** is the "color", as described by a wavelength
 - Hue is the angle around the circle or the regular hexagon; $0 \leq H \leq 360$
 - **Saturation** is the amount of color that is present (e.g., red vs. pink)
 - Saturation is the distance from the center; $0 \leq S \leq 1$
 - The axis $S = 0$ corresponds to gray levels
 - **Value** is the amount of light (intensity, brightness)
 - Value is the position along the axis of the cone; $0 \leq V \leq 1$

Saturation of colors

- Original image
- Saturation decreased by 20%
- Saturation increased by 40%
What the 3 channels represent

- The figure contrasts the information carried out by each channel of the RGB and HSI color spaces
 - HSI: similar to HSV, the color space is a “bi-cone”

![Diagram showing RGB and HSI color spaces]

Color spaces: from RGB to HSV

- The conversion from RGB to HSV values is based on the following equations:

\[
H = \cos^{-1} \frac{[(R - B) + (R - G)]/2}{[(R - G)^2 + (R - B)(G - B)]^{1/2}} \\
S = 1 - 3 \times \min(R, G, B)/(R + G + B) \\
V = (R + G + B)/3
\]

- HSV is much more suitable than RGB to support similarity search, since it better preserves perceptual distances
Representing color

- In a digital image, the color space that encodes the color content of each pixel of the image is necessarily discretized
 - This depends on how many bits per pixel (bpp) are used
 - Example: if one represents images in the RGB space by using $8 \times 3 = 24$ bpp, the number of possible distinct colors is $2^{24} = 16,777,216$
 - With 8 bits per channel, we have 256 possible values on each channel
- Although discrete, the possible color values are still too many if one wants to compactly represent the color content of an image
 - This also aims at achieving some robustness in the matching process (e.g., the two RGB values (123,078,226) and (121,080,230) are almost indistinguishable)
- In practice, a common approach to represent color is to make use of histograms...

Color histograms

- A color histogram h is a D-dimensional vector, which is obtained by quantizing the color space into D distinct color regions
 - Typical values of D are 32, 64, 256, 1024, ...
 - Example: the HSV color space can be quantized into $D=32$ colors:
 - H is divided into 8 intervals, and S into 4.
 - $V = 0$ guarantees invariance to light intensity
 - The i-th component (also called bin) of h stores the percentage (number) of pixels in the image whose color is mapped to the i-th color
 - Although conceptually simple, color histograms are widely used since they are relatively invariant to translation, rotation, scale changes and partial occlusions
Examples of color histograms

- Two D=64 color histograms

Comparing color histograms

- Since histograms are vectors, we can use any Lp-norm to measure the distance (dissimilarity) of two color histograms
- However, Lp-norms do not take into account colors’ correlation (similarity)
 - Depending on the query and the dataset, we might therefore obtain low-quality results
 - Weighted Lp-norms and relevance feedback can partially alleviate the problem...

- The problem is that Lp-norms just consider the difference of corresponding bins, i.e., they perform a 1-1 comparison
- With color histograms, our “coordinates” are not unrelated ("cross-talk" effect)
Sample queries based on color (1)

<table>
<thead>
<tr>
<th>QueryImage</th>
<th>Euclidean distance</th>
<th>32-D HSV histograms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Euclidean distance
- 32-D HSV histograms
- Weighted Euclidean distance

Sample queries based on color (2)

<table>
<thead>
<tr>
<th>QueryImage</th>
<th>Euclidean distance</th>
<th>32-D HSV histograms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Euclidean distance
- 32-D HSV histograms
- Weighted Euclidean distance
Quadratic distance

- Consider two histograms h and q, both with D bins
- Their quadratic distance [BF94] is defined as:

$$L_A(h,q;A) = \sqrt{\sum_{i=1}^{D} \sum_{j=1}^{D} a_{ij} (h_i - q_i) (h_j - q_j)}$$

$$= \sqrt{(h - q)^T \times A \times (h - q)}$$

where $A = \{a_{ij}\}$ is called the (color-)similarity matrix

- The value of a_{ij} is the “similarity” of the i-th and the j-th colors ($a_{ii} = 1$)
- Note that
 - when A is a diagonal matrix we are back to the weighted Euclidean distance,
 - when $A = I$ (the identity matrix) we obtain the L_2 distance
- In order to guarantee that L_A is indeed a distance ($L_A(h,q;A) \geq 0 \ \forall h,q$), it is sufficient that A is a symmetric positive definite matrix

Images

Quadratic distance vs. Euclidean distance

- As a simple example, let $D = 3$, with colors red, orange, and blue
- Consider 3 pure-color images and the corresponding histograms:

$h_1=(1,0,0)$ h$_2=(0,1,0)$ h$_3=(0,0,1)$

- Using L_2, the distance between two different images is always $\sqrt{2}$
- On the other hand, let the color-similarity matrix be defined as:

$A = \begin{bmatrix}
1 & 0.8 & 0 \\
0.8 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}$

- Now we have $L_A(h_1,h_2) = \sqrt{0.4}$, whereas $L_A(h_1,h_3) = L_A(h_2,h_3) = \sqrt{2}$
Approximating the quadratic distance (1)

- From a geometric point of view, the quadratic distance defines iso-distance (hyper-)surfaces that are arbitrarily oriented (hyper-)ellipsoids.

- Since computing the quadratic distance of two points (histograms) requires $O(D^2)$ time, for moderately large values of D the cost becomes prohibitive.

Approximating the quadratic distance (2)

- Graphically, we can speed-up the computation of L_A by enclosing the query (hyper-)ellipsoid into a minimum bounding (hyper-)sphere.

- Analytically, it can be proved that

$$L_2(h,q) \leq \frac{1}{\min \{ \lambda_j \}} \times L_A(h,q;A)$$

where the λ_j’s are the eigenvalues of the matrix A.

- Other possibilities to approximate L_A exist, which are based on dimensionality-reduction techniques applied to the indexed images [SK97].
Texture

- Unlike color, texture is not a property of the single pixel, rather it is a collective property of a pixel and its, suitably defined, “neighborhood”

- Intuitively, texture provides information about the uniformity, granularity and regularity of the image surface

- It is usually computed just considering the gray-scale values of pixels (i.e., the V channel in HSV)

What texture measures

- A common model to define texture is based on the properties of coarseness, contrast and directionality:

 - Coarseness - coarse vs. fine: it provides information about the “granularity” of the pattern

 - Contrast - high vs. low contrast: it measures the amount of local changes in brightness

 - Directionality - directional vs. non-directional: it’s a global property of the image
Texture extraction with Gabor filters

- A Gabor filter is a Gaussian modulated by a sinusoid, which can reveal the presence of a pattern along a certain direction and at a certain scale (frequency).

To extract texture information, one chooses a number of directions/orientations (e.g., 6) and scales (e.g., 5) according to which the image has to be analyzed [MM96].

- For each orientation and scale, the average and the variance (standard deviation) of the filter output are computed.
- This leads to, say, $2 \times 6 \times 5 = 60$-dimensional feature vectors, which are usually compared using the L_1 (Manhattan) distance.
- By the way, there is strong evidence that some cells in the primary visual cortex can be modeled by Gabor functions tuned to detect different orientations and scales...

Let I be an image, with $I(x,y)$ being the gray-scale value of the pixel in position (x,y).

A Gabor function is written as

$$G(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left(-\frac{1}{2} \left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right) \right) \cos(2\pi\omega x)$$

and is completely determined by its frequency (ω) and bandwidth (σ_x, σ_y).

The Gabor filter $G_{m,n}(x,y)$ for scale m and orientation n is then defined as

$$G_{m,n}(x,y) = a^{-m}G(x',y')$$

where $x' = a^{-m}(x \cos \theta_n + y \sin \theta_n)$, $y' = a^{-m}(-x \sin \theta_n + y \cos \theta_n)$, $\theta_n = n\pi/K$

where K is the total number of orientations.

Finally, the image is analyzed by convolution with the filter:

$$w_{m,n}(x,y) = \sum_i \sum_j G_{m,n}(x-i,y-j)I(i,j)$$
Shape

- Strictly speaking, an image has no relevant shape at all 😊
- When we talk about shape, we refer to that of the “object(s)” represented by the image
- Object recognition is a hard task, hardly solvable by any algorithm that operates in a general scenario (i.e., no knowledge about what to look for)
- In practice, shape information is often obtained by “segmenting” the image into a set of “regions”, and then recovering the contours of such regions
 - ...and segmentation is typically performed by analyzing color and texture information...

An example of segmentation

- A classical problem with segmentation is the trade-off between homogeneity of a region and number/significance of regions:
 - How many regions?
 - How “homogeneous” pixels within a same region should be?

 No general answer!

- In the limit cases: a single region(?!), each pixel is a region(?!)

Images Sistemi Informativi M 27

Images Sistemi Informativi M 28
Shape representation

- Once one has succeeded in extracting an object’s contour, the next step is how to represent/encode it.
- A common approach is to navigate the contour, which leads to an ordering of the pixels in the contour:
 \[\{(x(t), y(t)) : t = 1,...,M\} \]
- A 2nd step is to represent the resulting curve in a parametric form.
- For instance, a possibility is to resort to complex values, by setting \(z(t) = x(t) + jy(t) \).
- Thus, now we have vectors of complex values...
- The problem is that each vector has a different length (i.e., \(M \) depends on the specific image)...

Representative points

- The idea is to keep only the \(D \) most “interesting” points.
- Some methods are:
 - Equally-spaced sampling (a)
 - Grid-based sampling (b)
 - Maximum curvature points (c)
 - Fourier-based methods, which first compute the DFT of the contour, and then keep only the first \(D \) coefficients.
- Working in the frequency domain has several advantages:
 - It can be proved that by properly modifying Fourier coefficients one can achieve invariance to scale, translation and rotation.
 - Further, by viewing shape as a “signal”, one can adopt distance measures that have been developed for the comparison of time series and that are somewhat insensitive to signals’ modifications.
Sample queries based on shape ([BCP05])

`R` = relevant (same type of fish)

<table>
<thead>
<tr>
<th>Query</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
<th>Image 4</th>
<th>Image 5</th>
<th>Image 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>R⁺</td>
<td>R⁺</td>
<td>R⁺</td>
<td>R⁺</td>
<td>R⁺</td>
<td>R</td>
</tr>
</tbody>
</table>

Final observations

- Effective and efficient image retrieval is not an easy task
- We have just scratched the surface of available techniques and ideas
- An impressive amount of work indeed exists, mainly originated in the pattern recognition area
 - Look at the [SWS+00] survey for detailed pointers
- Besides “generic” features, any specific image domain/application needs to extract and manage specific features, which in general require much more sophisticated tools than the one we have seen
 - E.g., face recognition
- Nonetheless, the problem of how to search in large image DB’s remains (almost) the same