Il linguaggio SQL: query innestate

Sistemi Informativi T

Versione elettronica: 04.4.5QL.subquery.pdf

DB di riferimento per gli esempi

SQL: subquery

Sistemi Informativi T

Imp Sedi

Codimp Nome Sede Ruolo Stipendio Sede Responsabile Citta
EO01 Rossi So1 Analista 2000 So1 Biondi Milano
E002 Verdi S02 Sistemista 1500 S02 Mori Bologna
E003 Bianchi S01 | Programmatore 1000 S03 Fulvi Milano
E004 Gialli S03 | Programmatore 1000
E005 Neri S02 Analista 2500 Prog
E006 Grigi S01 Sistemista 1100
EO07 Violetti S01 Programmatore 1000 P01 Milano
E008 Aranci S02 | Programmatore 1200 POl Bologna

P02 Bologna

Subquer
= query

= Oltre alla forma “flat” vista sinora, in SQL & anche possibile esprimere
delle condizioni che si basano sul risultato di altre interrogazioni
(subquery, o query innestate o query nidificate)

SELECT CodImp -- impiegati delle sedi di Milano

FROM Imp

WHERE Sede IN (SELECT Sede m
FROM Sedi so1

WHERE Citta = “Milano”) 503

= La subquery restituisce I'insieme di sedi (‘S01’,’S03’), e quindi il predicato
nella clausola WHERE esterna equivale a
WHERE Sede IN (“S01”,“S03”)

SQL: subquery Sistemi Informativi T 3

Subquery: confronto di righe

= Nel caso generale e possibile confrontare tra loro tuple, anziché singoli
valori (questo si puo fare anche senza avere subquery!)

SELECT CodImp
FROM Imp Codimp
WHERE Sede <> “S01”
AND (Ruolo, Stipendio) IN

(SELECT Ruolo, Stipendio

FROM Imp

WHERE Sede = “S017)

= La query trova gli impiegati delle sedi SO2 e SO3 cha hanno stesso ruolo e
stipendio di qualche impiegato della sede SO1

SQL: subquery Sistemi Informativi T 4

Subquery scalari

= Gli operatori di confronto =, <,... si possono usare solo se la subquery
restituisce non piu di una tupla (subquery “scalare”)

SELECT CodlImp -— impiegati con stipendio minimo
FROM Imp
WHERE Stipendio = (SELECT MIN(Stipendio)

FROM Imp)

= La presenza di vincoli puo essere sfruttata a tale scopo

SELECT Responsabile

FROM Sedi

WHERE Sede = (SELECT Sede -- al massimo una sede
FROM Imp
WHERE CodImp = “E0017)

SQL: subquery Sistemi Informativi T

Subquery: caso generale

= Se la subquery puo restituire piu di un valore si devono usare le forme
= <op> ANY: la relazione <op> vale per almeno uno dei valori
= <op> ALL : la relazione <op> vale per tutti i valori

SELECT Responsabile

FROM Sedi
WHERE Sede = ANY (SELECT Sede

FROM Imp

WHERE Stipendio > 1500)
SELECT CodImp -— impiegati con stipendio minimo
FROM Imp
WHERE Stipendio <= ALL (SELECT Stipendio

FROM Imp)
s Laforma=ANY equivale a IN

SQL: subquery Sistemi Informativi T

Subquery: livelli multipli di innestamento

Una subquery puo fare uso a sua volta di altre subquery. Il risultato si puo
ottenere risolvendo a partire dal blocco pil interno

SELECT CodlImp

FROM Imp
WHERE Sede IN (SELECT Sede
FROM Sedi
WHERE Citta NOT IN (SELECT Citta

FROM Prog
WHERE CodProg = “P027))
Attenzione a non sbhagliare quando ci sono negazioni! Nell’esempio, i due
blocchi interni non sono equivalenti a:
WHERE Sede IN (SELECT Sede
FROM Sedi, Prog
WHERE Sedi.Citta <> Prog.Citta
AND Prog.CodProg = “P027)

SQL: subquery Sistemi Informativi T 7

Subquery: quantificatore esistenziale

Mediante EXISTS (SELECT * ...) & possibile verificare se il risultato di una
subquery restituisce almeno una tupla

SELECT Sede

FROM Sedi S
WHERE EXISTS (SELECT =
FROM Imp
WHERE Ruolo = “Programmatore”)

Facendo uso di NOT EXISTS il predicato € vero se la subquery non
restituisce alcuna tupla

In entrambi i casi la cosa non € molto “interessante” in quanto il risultato
della subquery & sempre lo stesso, ovvero non dipende dalla specifica
tupla del blocco esterno

SQL: subquery Sistemi Informativi T 8

Subquery correlate

= Se la subquery fa riferimento a “variabili” definite in un blocco esterno,
allora si dice che e correlata

SELECT Sede -- sedi con almeno un programmatore
FROM Sedi S
WHERE EXISTS (SELECT *
FROM Imp
WHERE Ruolo = “Programmatore”
AND Sede = S.Sede)

= Adesso il risultato della query innestata dipende dalla sede specifica, e la
semantica quindi diventa:

Per ogni tupla del blocco esterno,
considera il valore di S.Sede
e risolvi la query innestata
SQL: subquery Sistemi Informativi T 9

Subquery: “unnesting” (1
= query g” (1)

= E spesso possibile ricondursi a una forma “piatta”, ma la cosa non &
sempre cosi ovvia. Ad esempio, nell’esempio precedente si pud anche
scrivere

SELECT DISTINCT Sede

FROM Sedi S, Imp 1
WHERE S.Sede = 1.Sede
AND I _.Ruolo = “Programmatore”

= Sinotila presenza del DISTINCT

= Laforma innestata & “piu procedurale” di quella piatta e, a seconda dei
casi, puo risultare piu semplice da derivare

SQL: subquery Sistemi Informativi T 10

Subquery: “unnesting” (2
= query g” (2)

= Con la negazione le cose tendono a complicarsi. Ad esempio, per trovare
le sedi senza programmatori, nella forma innestata basta sostituire NOT
EXISTS a EXISTS, ma nella forma piatta:

SELECT DISTINCT Sede

FROM Sedi S LEFT OUTER JOIN Imp 1 ON
(S.Sede = 1.Sede) AND (I.Ruolo = “Programmatore”)

WHERE I.CodImp IS NULL

= E facile sbagliare, ad esempio la seguente query non & corretta

SELECT DISTINCT Sede
FROM Sedi S LEFT OUTER JOIN Imp 1 ON (S.-Sede = 1.Sede)
WHERE [I_.Ruolo = “Programmatore”

AND 1.CodImp IS NULL

perché la clausola WHERE non & mai soddisfatta!
SQL: subquery Sistemi Informativi T 11

Subqguery: come eseguire la divisione

= Con le subquery & possibile eseguire la divisione relazionale
Sedi in cui sono presenti tutti i ruoli
equivale a Sedi in cui non esiste un ruolo non presente

SELECT Sede FROM Sedi S
WHERE NOT EXISTS (SELECT * FROM Imp 11
WHERE NOT EXISTS (SELECT * FROM Imp 12
WHERE S.Sede = 12.Sede
AND I1.Ruolo = 12.Ruolo)))

= |l blocco pili interno viene valutato per ogni combinazione diSe |1
= |l blocco intermedio funge da “divisore” (interessa I11.Ruolo)

s Data unasedeS, se in S manca un ruolo:
= la subquery piu interna non restituisce nulla
= quindi la subquery intermedia restituisce almeno una tupla

+ auiggl g dlausola WHERE non & saddisfatta per.S 12

Subquery: aggiornamento dei dati

= Le subquery si possono efficacemente usare per aggiornare i dati di una
tabella sulla base di criteri che dipendono dal contenuto di altre tabelle

DELETE FROM Imp -- elimina gli impiegati di Bologna
WHERE Sede IN (SELECT Sede
FROM Sedi

WHERE Citta = “Bologna”)

UPDATE Imp
SET Stipendio = 1.1*Stipendio
WHERE Sede IN (SELECT S.Sede
FROM Sede S, Prog P
WHERE S.Citta = P.Citta
AND P.CodProg = “P027)

SQL: subquery Sistemi Informativi T 13

Subquery e CHECK
= query

= Facendo uso di subquery nella clausola CHECK sarebbe possibile
esprimere vincoli arbitrariamente complessi...

Ogni sede deve avere almeno due programmatori

... —- quando si crea la TABLE Sedi
CHECK (2 <= (SELECT COUNT(*) FROM Imp 1
WHERE [I.Sede = Sede -- correlazione
AND 1.Ruolo = “Programmatore?))
= ..ma DB2 non lo consente: il CHECK si limita alla singola tupla!
= ..Mma e utile saperlo per quello che vedremo parlando di progettazione
= Supponendo di avere due tabelle ImpBO e ImpMI e di volere che uno
stesso codice (Codimp) non sia presente in entrambe le tabelle:
... —-—- gquando si crea la TABLE ImpBO
CHECK (NOT EXISTS (SELECT * FROM ImpMI
WHERE ImpMI .CodImp = CodImp))

SQL: subquery Sistemi Informativi T 14

Riassumiamo:

Oltre alla forma “flat”, in SQL é possibile fare uso di subquery

Una subquery che restituisca al massimo un valore & detta scalare, e per
essa si possono usare i soliti operatori di confronto

Le forme <op> ANY e <op> ALL si rendono necessarie quando la
subquery puo restituire piu valori

Il quantificatore esistenziale EXISTS e soddisfatto quando il risultato della
subquery non e vuoto (e NOT EXISTS quando & vuoto)

Una subquery si dice correlata se referenzia variabili definite in un blocco
ad essa piu esterno

In molti casi & possibile scrivere una query sia in forma piatta che in
forma innestata

SQL: subquery Sistemi Informativi T 15

