
1

Il linguaggio SQL: query innestate

Sistemi Informativi T

Versione elettronica: 04.4.SQL.subquery.pdf

SQL: subquery Sistemi Informativi T 2

DB di riferimento per gli esempi

Citta

BolognaP02

Bologna P01

MilanoP01

CodProg

Responsabile Citta

MilanoFulviS03

BolognaMoriS02

MilanoBiondiS01

Sede

Imp

Prog

Sedi

1000ProgrammatoreS03GialliE004

2500AnalistaS02NeriE005

1100SistemistaS01GrigiE006

1000ProgrammatoreS01ViolettiE007

1200ProgrammatoreS02AranciE008

S01

S02

S01

Sede

1000

1500

2000

StipendioNome Ruolo

ProgrammatoreBianchiE003

SistemistaVerdi E002

AnalistaRossiE001

CodImp

2

SQL: subquery Sistemi Informativi T 3

Subquery

Oltre alla forma “flat” vista sinora, in SQL è anche possibile esprimere
delle condizioni che si basano sul risultato di altre interrogazioni
(subquery, o query innestate o query nidificate)

SELECT CodImp -- impiegati delle sedi di Milano

FROM Imp
WHERE Sede IN (SELECT Sede

FROM Sedi
WHERE Citta = ‘Milano’)

La subquery restituisce l’insieme di sedi (‘S01’,’S03’), e quindi il predicato
nella clausola WHERE esterna equivale a

WHERE Sede IN (‘S01’,‘S03’)

S03

S01

Sede

SQL: subquery Sistemi Informativi T 4

Subquery: confronto di righe

Nel caso generale è possibile confrontare tra loro tuple, anziché singoli
valori (questo si può fare anche senza avere subquery!)

SELECT CodImp

FROM Imp
WHERE Sede <> ‘S01’
AND (Ruolo, Stipendio) IN

(SELECT Ruolo, Stipendio
FROM Imp
WHERE Sede = ‘S01’)

La query trova gli impiegati delle sedi S02 e S03 cha hanno stesso ruolo e
stipendio di qualche impiegato della sede S01

E004

CodImp

3

SQL: subquery Sistemi Informativi T 5

Subquery scalari

Gli operatori di confronto =, <,… si possono usare solo se la subquery
restituisce non più di una tupla (subquery “scalare”)

SELECT CodImp -- impiegati con stipendio minimo
FROM Imp
WHERE Stipendio = (SELECT MIN(Stipendio)

FROM Imp)

La presenza di vincoli può essere sfruttata a tale scopo

SELECT Responsabile
FROM Sedi
WHERE Sede = (SELECT Sede -- al massimo una sede

FROM Imp
WHERE CodImp = ‘E001’)

SQL: subquery Sistemi Informativi T 6

Subquery: caso generale

Se la subquery può restituire più di un valore si devono usare le forme
<op> ANY: la relazione <op> vale per almeno uno dei valori
<op> ALL : la relazione <op> vale per tutti i valori

SELECT Responsabile
FROM Sedi
WHERE Sede = ANY (SELECT Sede

FROM Imp
WHERE Stipendio > 1500)

SELECT CodImp -- impiegati con stipendio minimo
FROM Imp
WHERE Stipendio <= ALL (SELECT Stipendio

FROM Imp)

La forma = ANY equivale a IN

4

SQL: subquery Sistemi Informativi T 7

Subquery: livelli multipli di innestamento

Una subquery può fare uso a sua volta di altre subquery. Il risultato si può
ottenere risolvendo a partire dal blocco più interno

SELECT CodImp
FROM Imp
WHERE Sede IN (SELECT Sede

FROM Sedi
WHERE Citta NOT IN (SELECT Citta

FROM Prog
WHERE CodProg = ‘P02’))

Attenzione a non sbagliare quando ci sono negazioni! Nell’esempio, i due
blocchi interni non sono equivalenti a:
WHERE Sede IN (SELECT Sede

FROM Sedi, Prog
WHERE Sedi.Citta <> Prog.Citta
AND Prog.CodProg = ‘P02’)

SQL: subquery Sistemi Informativi T 8

Subquery: quantificatore esistenziale

Mediante EXISTS (SELECT * …) è possibile verificare se il risultato di una
subquery restituisce almeno una tupla

SELECT Sede
FROM Sedi S
WHERE EXISTS (SELECT *

FROM Imp
WHERE Ruolo = ‘Programmatore’)

Facendo uso di NOT EXISTS il predicato è vero se la subquery non
restituisce alcuna tupla

In entrambi i casi la cosa non è molto “interessante” in quanto il risultato
della subquery è sempre lo stesso, ovvero non dipende dalla specifica
tupla del blocco esterno

5

SQL: subquery Sistemi Informativi T 9

Subquery correlate

Se la subquery fa riferimento a “variabili” definite in un blocco esterno,
allora si dice che è correlata

SELECT Sede -- sedi con almeno un programmatore
FROM Sedi S
WHERE EXISTS (SELECT *

FROM Imp
WHERE Ruolo = ‘Programmatore’
AND Sede = S.Sede)

Adesso il risultato della query innestata dipende dalla sede specifica, e la
semantica quindi diventa:

Per ogni tupla del blocco esterno,
considera il valore di S.Sede
e risolvi la query innestata

SQL: subquery Sistemi Informativi T 10

Subquery: “unnesting” (1)

È spesso possibile ricondursi a una forma “piatta”, ma la cosa non è
sempre così ovvia. Ad esempio, nell’esempio precedente si può anche
scrivere

SELECT DISTINCT Sede

FROM Sedi S, Imp I
WHERE S.Sede = I.Sede

AND I.Ruolo = ‘Programmatore’

Si noti la presenza del DISTINCT

La forma innestata è “più procedurale” di quella piatta e, a seconda dei
casi, può risultare più semplice da derivare

6

SQL: subquery Sistemi Informativi T 11

Subquery: “unnesting” (2)

Con la negazione le cose tendono a complicarsi. Ad esempio, per trovare
le sedi senza programmatori, nella forma innestata basta sostituire NOT
EXISTS a EXISTS, ma nella forma piatta:

SELECT DISTINCT Sede
FROM Sedi S LEFT OUTER JOIN Imp I ON

(S.Sede = I.Sede) AND (I.Ruolo = ‘Programmatore’)
WHERE I.CodImp IS NULL

È facile sbagliare, ad esempio la seguente query non è corretta
SELECT DISTINCT Sede
FROM Sedi S LEFT OUTER JOIN Imp I ON (S.Sede = I.Sede)
WHERE I.Ruolo = ‘Programmatore’

AND I.CodImp IS NULL

perché la clausola WHERE non è mai soddisfatta!

SQL: subquery Sistemi Informativi T 12

Subquery: come eseguire la divisione

Con le subquery è possibile eseguire la divisione relazionale
Sedi in cui sono presenti tutti i ruoli

equivale a Sedi in cui non esiste un ruolo non presente

SELECT Sede FROM Sedi S
WHERE NOT EXISTS (SELECT * FROM Imp I1

WHERE NOT EXISTS (SELECT * FROM Imp I2
WHERE S.Sede = I2.Sede
AND I1.Ruolo = I2.Ruolo))

Il blocco più interno viene valutato per ogni combinazione di S e I1
Il blocco intermedio funge da “divisore” (interessa I1.Ruolo)
Data una sede S, se in S manca un ruolo:

la subquery più interna non restituisce nulla
quindi la subquery intermedia restituisce almeno una tupla
quindi la clausola WHERE non è soddisfatta per S

7

SQL: subquery Sistemi Informativi T 13

Subquery: aggiornamento dei dati

Le subquery si possono efficacemente usare per aggiornare i dati di una
tabella sulla base di criteri che dipendono dal contenuto di altre tabelle

DELETE FROM Imp -- elimina gli impiegati di Bologna
WHERE Sede IN (SELECT Sede

FROM Sedi
WHERE Citta = ‘Bologna’)

UPDATE Imp
SET Stipendio = 1.1*Stipendio
WHERE Sede IN (SELECT S.Sede

FROM Sede S, Prog P
WHERE S.Citta = P.Citta

AND P.CodProg = ‘P02’)

SQL: subquery Sistemi Informativi T 14

Subquery e CHECK

Facendo uso di subquery nella clausola CHECK sarebbe possibile
esprimere vincoli arbitrariamente complessi…

Ogni sede deve avere almeno due programmatori
... -- quando si crea la TABLE Sedi

CHECK (2 <= (SELECT COUNT(*) FROM Imp I
WHERE I.Sede = Sede -- correlazione
AND I.Ruolo = ‘Programmatore’))

…ma DB2 non lo consente: il CHECK si limita alla singola tupla!
…ma è utile saperlo per quello che vedremo parlando di progettazione

Supponendo di avere due tabelle ImpBO e ImpMI e di volere che uno
stesso codice (CodImp) non sia presente in entrambe le tabelle:
... -- quando si crea la TABLE ImpBO

CHECK (NOT EXISTS (SELECT * FROM ImpMI

WHERE ImpMI.CodImp = CodImp))

8

SQL: subquery Sistemi Informativi T 15

Riassumiamo:

Oltre alla forma “flat”, in SQL è possibile fare uso di subquery
Una subquery che restituisca al massimo un valore è detta scalare, e per
essa si possono usare i soliti operatori di confronto
Le forme <op> ANY e <op> ALL si rendono necessarie quando la
subquery può restituire più valori
Il quantificatore esistenziale EXISTS è soddisfatto quando il risultato della
subquery non è vuoto (e NOT EXISTS quando è vuoto)
Una subquery si dice correlata se referenzia variabili definite in un blocco
ad essa più esterno
In molti casi è possibile scrivere una query sia in forma piatta che in
forma innestata

