Time series are everywhere…

- Time series, that is, sequences of observations made through time, are present in everyday’s life:
 - Temperature, rainfalls, seismic traces
 - Weblogs
 - Stock prices
 - EEG, ECG, blood pressure
 - Enrolled students at the Engineering Faculty
 - …

This as well as many of the following figures/examples are taken from the tutorial given by Eamonn Keogh at SBBD 2002 (XVII Brazilian Symposium on Databases)

www.cs.ucr.edu/~eamonn/
Why is similarity search in t.s.’s important?

- Consider a large time series DB:
 - 1 hour of ECG data: 1 GByte
 - Typical Weblog: 5 GBytes per week
 - Space Shuttle DB: 158 GBytes
 - MACHO Astronomical DB: 2 TBytes, updated with 3 GBytes a day
 (20 million stars recorded nightly for 4 years)

- Similarity search can help you in:
 - Looking for the occurrence of known patterns
 - Discovering unknown patterns
 - Putting “things together” (clustering)
 - Classifying new data
 - Predicting/extrapolating future behaviors
 - …
How to measure similarity

- Given two time series of equal length D, the commonest way to measure their (dis-)similarity is based on Euclidean distance.

- However, with Euclidean distance we have to face two basic problems:
 - High-dimensionality: (very) large D values
 - Sensitivity to “alignment of values”

- For problem 1. we need to define effective lower-bounding techniques that work in a (much) lower dimensional space.

- For problem 2. we will introduce a new similarity criterion:

$$L_2(s, q) = \sqrt{\sum_{t=0}^{D-1} (s_t - q_t)^2}$$
Dimensionality reduction: DFT (i)

- The first approach to reducing the dimensionality of time series, proposed in [AFS93], was based on Discrete Fourier Transform (DFT).
- **Remind**: given a time series \(s \), the Fourier coefficients are complex numbers (amplitude, phase), defined as:
 \[
 S_f = \frac{1}{\sqrt{D}} \sum_{t=0}^{D-1} s_t \exp(-j2\pi ft/D) \quad f = 0,\ldots,D-1
 \]
- From Parseval theorem we know that DFT preserves the energy of the signal:
 \[
 E(s) = \sum_{t=0}^{D-1} s_t^2 = E(S) = \sum_{f=0}^{D-1} |S_f|^2
 \]
- Since DFT is a linear transformation we have:
 \[
 L_2(s,q)^2 = \sum_{t=0}^{D-1} (s_t - q_t)^2 = E(s - q) = E(S - Q) = \sum_{f=0}^{D-1} |S_f - Q_f|^2 = L_2(S,Q)^2
 \]
 thus, DFT preserves the Euclidean distance.
- **And? What can we gain from such transformation??**
Dimensionality reduction: DFT (ii)

- The key observation is that, by keeping only a small set of Fourier coefficients, we can obtain a good approximation of the original signal.

- Why: because most of the energy of many real-world signals concentrates in the low frequencies ([AFS93]):

- More precisely, the energy spectrum ($|S_f|^2$ vs. f) behaves as $O(f^{-b})$, $b > 0$:
 - $b = 2$ (random walk or brown noise): used to model the behavior of stock movements and currency exchange rates
 - $b > 2$ (black noise): suitable to model slowly varying natural phenomena (e.g., water levels of rivers)
 - $b = 1$ (pink noise): according to Birkhoff’s theory, musical scores follow this energy pattern

- Thus, if we only keep the first few coefficients ($D' << D$) we can achieve an effective dimensionality reduction.
 - Note: this is the basic idea used by well-known compression standards, such as JPEG (which is based on Discrete Cosine Transform).
An example: EEG data

- Sampling rate: 128 Hz

Time series (4 secs, 512 points)
Energy spectrum
Another example

128 points

s' = approximation of s with 4 Fourier coefficients
Comments on DFT

- Can be computed in $O(D \log D)$ time using FFT (provided D is a power of 2)
- Difficult to use if one wants to deal with sequences of different length
- Not really amenable to deal with “signals with spots” (time-varying energy)

- An alternative to DFT is to use wavelets, which takes a different perspective:
 - A signal can be represented as a sum of contributions, each at a different resolution level
 - Discrete Wavelet Transform (DWT) can be computed in $O(D)$ time

- Experimental results however show that the superiority of DWT w.r.t. DFT is dependent on the specific dataset

![Graph showing comparison between wavelets and Fourier](image)
Dimensionality reduction: PAA

- **PAA** (Piecewise Aggregate Approximation) [KCP+00,YF00] is a very simple, intuitive and fast (O(D)) method to approximate time series
 - Its performance is comparable to that of DFT and DWT
- We take a window of size \(W \) and segment our time series into \(D' = D/W \) “pieces” (sub-sequences), each of size \(W \)
- For each piece, we compute the average of values, i.e.
- Our approximation is therefore \(s' = (s'_1,\ldots,s'_{D'}) \)
- We have \(\sqrt{W} \times L_2(s',q') \leq L_2(s,q) \)
 - (arguments generalize those used for the “global average” example)
 - The same can be generalized to work with arbitrary L\(_p\)-norms [YF00]
The “alignment” problem

- Euclidean distance, as well as other Lp-norms, are not robust w.r.t., even small, contractions/expansions of the signal along the time axis
 - E.g., speech signals
- Intuitively, we would need a distance measure that is able to “match” a point of time series s even with “surrounding” points of time series q
 - Alternatively, we may view the time axis as a “stretchable” one
- A distance like this exists, and is called “Dynamic Time Warping” (DTW)!

Fixed Time Axis
Sequences are aligned “one to one”

“Warped” Time Axis
Non-linear alignments are possible
How to compute the DTW (i)

- Assume that the two time series s and q have the same length D
 - Note that with DTW this is not necessary anymore!
- Construct a $D \times D$ matrix d, whose element $d_{i,j}$ is the distance between s_i and q_j
 - We take $d_{i,j} = (s_i - q_j)^2$, but other possibilities exist (e.g., $|s_i - q_j|$)

The “rules of the game”:
- Start from $(0,0)$ and end in $(D-1,D-1)$
- Take one step at a time
- At each step, move only by increasing i, j, or both
 - i.e., never go back!
- “Jumps” are not allowed!
- Sum all distances you have found in the “warping path”

$$L_2(s,q) = \sqrt{29}$$
How to compute the DTW (ii)

- The figure shows a possible warping path \(w \), whose “cost” is 21
 - The “Euclidean path” moves only along the main diagonal, and costs 29

\[
\begin{array}{ccccccccc}
7 & 25 & 16 & 25 & 36 & 16 & 9 \\
3 & 1 & 0 & 1 & 4 & 0 & 1 \\
4 & 4 & 1 & 4 & 9 & 1 & 0 \\
5 & 9 & 4 & 9 & 16 & 4 & 1 \\
2 & 0 & 1 & 0 & 1 & 1 & 4 \\
1 & 1 & 4 & 1 & 0 & 4 & 9 \\
\end{array}
\]

warping path \(w \)

The DTW is the minimum cost among all the warping paths

- But the number of path is exponential in \(D \)
- Ok, but we can use dynamic programming, with complexity \(O(D^2) \)
How to compute the DTW (iii)

- From the d matrix, incrementally build a new matrix WP, whose elements $w_{p,i,j}$ are recursively defined as:

$$w_{p,i,j} = d_{i,j} + \min\{w_{p,i-1,j}, w_{p,i,j-1}, w_{p,i-1,j-1}\}$$

\[
\begin{array}{ccccccc}
7 & 25 & 16 & 25 & 36 & 16 & 9 \\
3 & 1 & 0 & 1 & 4 & 0 & 1 \\
4 & 4 & 1 & 4 & 9 & 1 & 0 \\
5 & 9 & 4 & 9 & 16 & 4 & 1 \\
2 & 0 & 1 & 0 & 1 & 1 & 4 \\
1 & 1 & 4 & 1 & 0 & 4 & 9 \\
d & 2 & 3 & 2 & 1 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
7 & 40 & 22 & 31 & 43 & 24 & 15 \\
3 & 15 & 6 & 7 & 11 & 8 & 6 \\
4 & 14 & 6 & 9 & 18 & 8 & 5 \\
5 & 10 & 5 & 11 & 18 & 7 & 5 \\
2 & 1 & 2 & 2 & 3 & 4 & 8 \\
1 & 1 & 5 & 6 & 6 & 10 & 19 \\
WP & 2 & 3 & 2 & 1 & 3 & 4 \\
\end{array}
\]

- Then set $d_{DTW}(s,q) = \sqrt{w_{p,D-1,D-1}}$
A real-world graphical example

Power-Demand time series
Each sequence corresponds to a week’s demand for power in a Dutch research facility in 1997

Monday was a holiday

Wednesday was a holiday
Fast searching with DTW

- We have now 2 problems to face, if we want to use DTW for searching:
 1. Computing the DTW is very time-consuming
 2. How to index it?

- Both problems can be solved:
 1. Use a lower-resolution approximation of the time series
 - However the method can introduce false dismissals

![Graph showing time series with DTW distance calculations](image)
How to index DTW?

- Using metric trees!
- Unfortunately, DTW is **not** a metric…
- Proof:
 - $s=<0,0>$
 - $t=<1,2>$
 - $q=<1,2,2>$

 $\text{DTW}(s,q) = 9 > (\text{DTW}(s,t) + \text{DTW}(t,q)) = 5 + 0$
Indexing the DTW (sketch) (i)

- An effective indexing technique for DTW has been proposed in [Keo02].
- The method applies only if we have some “global constraint” on the allowed warping paths.

The Sakoe-Chiba band of width h=4

Our example with h=2
Final considerations

- We have just seen some basic techniques to deal with (large) time series databases

- Other relevant problems exist and have attracted interest, among which:
 - Searching for similar sub-sequences
 - Searching for multi-dimensional time series (i.e., trajectories)