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Abstract multimedia indexing [9], CAD [17], molecular biology (for

In this paper, we present a new cost model for nearest neigH1® docking of molecules) [24], string matching [1], etc. Most

bor search in high-dimensional data space. We first ana|yzé@1pplic¢';1tions use some kind of feature vector for an efficient

different nearest neighbor algorithms, present a generaliza2¢C€ss t0 the complex original data. Examples of feature vec-

tion of an algorithm which has been originally proposed for 10rS are color histograms [23], shape descriptors [16, 18],
Quadtrees [13], and show that this algorithm is optimal_Fourlervectors [26],.text c!escnpftors [15], etc. Nearest neigh-
Then, we develop a cost model which - in contrast to previoug?©" search on the high-dimensional feature vectors may be

models - takes boundary effects into account and therefor&l€fined as follows:

also works in high dimensions. The advantages of our model Given a data sdDS of d-dimensional points, find the data

are in particular: Our model works for data sets with an arbi- pointNN from the data set which is closer to the given query
trary number of dimensions and an arbitrary number of data pointQ than any other point in the data set. More formally:
points, is applicable to different data distributions and index ~ NN(Q) = {e0DS|0eUDS: [e-Q| <]e-Ql}.
structures, and provides accurate estimates of the expected

query execution time. To show the practical relevance and acUsually nearest neighbor queries are executed using some
curacy of our model, we perform a detailed analysis usingkind of multidimensional index structure such as k-d-trees,
synthetic and real data. The results of applying our model tdR-trees, Quadtrees, etc. In section 2, we discuss the different
Hilbert and X-tree indices show that it provides a good esti-nearest neighbor algorithms proposed in the literature. We
mation of the query performance, which is considerably bet-present a generalization of an algorithm, which has been
ter than the estimates by previous models especially for highoriginally proposed for Quadtrees [13] and show that this al-
dimensional data. gorithm is optimal.

Key Words: Nearest Neighbor Search, Cost Model, Multidimen- A problem of index-based nearest neighbor search is that it
sional Searching, Multidimensional IndeStruc- is difficult to estimate the time which is needed for executing
twres, High-Dimensional Data Space the nearest neighbor query. The estimation of the time, how-

ever, is important not only for a theoretic complexity analysis
of the average query execution time but it is also crucial for
In this paper, we describe a cost model for nearest neighbobptimizing the parameters of the index structures (e.g., the
queries in high-dimensional space. Nearest neighbor querieblock size) and for query optimization. An adequate cost
are very important for many applications. Examples includemodel should work for data sets with an arbitrary number of
dimensions and an arbitrary number of data points, it should
be applicable to different data distributions and index struc-
tures, and most important, it should provide accurate esti-
mates of the expected query execution time.

1. Introduction

Unfortunately, existing models fail to fulfill these require-
ments. In particular, none of the models provides accurate es-
timates for nearest neighbor queries in high-dimensional
space, and most models pose awkward and unrealistic re-



quirements on the number of necessary data points preventi niti ali ze PartitionList with the

ing the models from being practically applicable. One of the subpartitions of the root-partition
reasons for the problems of existing models is that basically sort PartitionLi st by M NDI ST;

none of them accounts for boundary effects, i.e. effects thatwhil e (PartitionList is not enpty)

occur if the query processing reaches the border of the data i f (top of PartitionList is a |eaf)
space. As we will show later, boundary effects play an im- find nearest point NNCin |eaf;
portant role in processing nearest neighbor queries in high- if (NNC closer than NN)

dimensional space. Our model determines the expected num- prune PartitionList with NNC
ber of page accesses when performing a nearest neighbor I et NNC be the new NN

query by intersecting all pages with the minimal sphere el se

around the query point containing the nearest neighbor. In replace top of PartitionList with

contrast to previous approaches, our cost model considers its son nodes;

boundary effects and therefore also provides accurate esti-
mates for the high-dimensional case. Furthermore, our model 3
works for an arbitrary number of data points and is applicable endwhi | e

to a wide range of index structures such as k-d-trees, R-treesQUt Put NN\;

guadtrees, etc. Figure 1: Algorithm NN-opt

Besides describing our cost model, we provide a detailed eXfree algorithm of Friedmann, Bentley and Finkel [12]. In con-
perimental evaluation showing the accuracy and practical..«: 1o Welch's algorithm, the order in which the k-d-algo-

relevance of our model. In our experiments, we use artificial jn o yisits the partitions of the data space is determined by
as well as real data and compare the model estimates with the,o siructure of the k-d-tree. Ramasubramanian and Paliwal

gctually measured page cou.nts obtained from two different[21] propose an improvement of the algorithm by optimizing
index structures: the Hilbert-index and the X-tree. the structure of the k-d-tree.

endi f
resort PartitionList by M NDI ST;

Roussopoulos et.al. [22] propose a different approach using
the R*-tree [4] for nearest neighbor search. The algorithm
In the last decade, a large number of algorithms and indexraverses the R*-tree and stores for every visited partition a
structures have been proposed for nearest neighbor search. ligt of subpartitions ordered by theninmaxdist. The min-

2. Algorithms for Nearest Neighbor Search

the following, we give an overview of these algorithms. maxdist of a partition is the maximal possible distance from
the query point to the nearest data point inside the partition.
2.1 Known Algorithms If a point is found having a distance smaller than the nearest

point determined so far, all partition lists can be pruned be-
cause all nodes with a larg@rnmaxdist cannot contain the
nearest neighbor. A problem of the R*-tree algorithm is that

Algorithms for nearest neighbor search may be divided into
two major groups: partitioning algorithms and graph-based
algorithms. Partitioning algorithms partition the data space

g g &g P P it traverses the index in a depth-first fashion. Subnodes are

(or the actual data set) recursively and store information ted before d ¢ but b h has b h "
about the partitions in the nodes. Graph-based aIgorithms?ore etore cescent, Dt once a branch nas been cnosen, Its

precalculate some nearest neighbors of points, store the didrocessing has to be completed, even if sibling branches ap-

tances in a graph and use the precalculated information for pear more likely to contain the NN. The algorithm therefore

more efficient search. Examples for such algorithms are the?¢eesses more partitions than actually necessary.

RNG* algorithm of Arya [2] and algorithms using Voronoi In [13], Hjaltason and Samet propose an algorithm using
diagrams [20]. Although in this paper we concentrate our dis-PMR-Quadtrees. In contrast to the algorithm of Roussopou-
cussion on partitioning algorithms, we believe that our re-10s et.al., partitions are visited ordered by thindist. The

sults are applicable to graph-based algorithms, as well. mindist of a partition is the minimal distance from the query

A rather simple partitioning algorithm is the bucketing algo- point Qto any poinp inside the partitio. More formally:

rithm of Welch [27]. The algorithm divides the data space MINDIST(P, Q) = min(lp-Ql).

into identical cells and stores the data objects inside a cell in pOP

a list which is attached to the cell. During nearest neighborThe algorithmic principle of the method of Hjaltason and
search the cells are visited in order of their distance to theSamet can be applied to any hierarchical index structure
guery point. The search terminates if the nearest point whictwhich uses recursive and conservative partitioning. In Figure
has been determined so far is nearer than any cell not visitedl, we present a generalization of the algorithm which works
yet. Unfortunately, the algorithm is not efficient for high-di- for any hierarchical index structure. Pruning the partition list
mensional or real data. A more practical approach is the k-dwith a pointNNC means that all partitions in the list which



have amindist larger than the distance BNC to the query
point are removed from the list.

2.2 Optimality of Algorithm NN-opt

In this section, we show that the algorithiN-opt (cf.Figure
1) is optimal. For this purpose, we need to define the minimal

sphere around the query point containing the nearest neigh

bor:

Definition 1: (NN-sphere)

Let Q be a query point andN be the nearest neighbor@f
Then NN-dist = |Q—NN]| is the distance of the nearest
neighbor and the query point. The NN-sph8REQ, r) of a
query pointQ is defined as the sphere with cer@eaind ra-
diusr =NN-dist.

Definition 2: (Optimality)
An algorithm for nearest neighbor search is optimal if the

pages accessed by the algorithm during the nearest neighbg

search arexactly the pages that intersect the NN-sphere.

Note that we use the term ‘Optimality’ relative to an under-

lying index structure and not relative to the nearest neighbor

problem itself.

Lemma 1:

Algorithm NN-opt is an optimal algorithm according to def-
inition 2, i.e. algorithmNN-opt accesses exactly the parti-
tions which intersect the NN-sphere but no other partitions.

Proof:

From the correctness of algoritiyiN-opt as provided in [13]
it follows that any partition intersecting the NN-sphere is ac-
cessed during the search process.

d number of dimensions
N number of data points
Ceit average number of data points
per ind page
- a edge length of a data page
NP; partition of the inde structure con-
taining partltlonsNPl, NPi -1
Q query point
DS data space
d d-dimensional fipersphere
SP(E, ) with centerE and radius
d volume of ad-dimensional
VOISIO(r) hypersphere

average wlume of ad-dimensional

d
TVol 4(r) hypersphere, boundaryfets con-

sidered
Vold (1) Minkowski sum of an indepage
Mink and a query sphere with radius
p(r), P(r) distribution function of the radius,

density function of the radius

NN-dist, E(NN-dist) | nearest neighbor distance,

expected nearest neighbor distance

number of page accesses,
expected number of page accesse

#pages, E(#pages)

r. Therefore, NA is pruned and not accessed which is in con-
tradiction to the assumptiom.

To show the minimality of the accessed partitions, let us as-

sume that algorithmN-opt accesses a partitid®A, which
does not intersect the NN-sphere, imendist(NA) >r . Let
NP, be the partition (data page) containing thearest
neighbor NP, be the partition containingNP,, ..., and
NP, be the partition in the root-page containiNg, ...
NP, _;. Thus,

r2mindist(NPy) = ... 2 mindist(NP,) .

Consequently,
mindist(NA) >r > mindist(NP,) = mindist(NP, ) .

Since NP, is in the root-pagelNP, is replaced during the
search process dyP, _; and so on, untiNP, is loaded. If,

as assumed, the algorithm acce$¢&sNA has to be on top

of the partition list at some point during the search. Since
mindist(NA) is smaller than thenindist of any partition
containing thenearest neighbpNA cannot be loaded until
NP, has been loaded. NP, is loaded, however, the algo-
rithm prunes all partitions which havemindist smaller than

3. The Cost Model

The objective of our cost model is to provide accurate esti-
mates of the execution time of nearest neighbor queries in-
cluding high-dimensional data. It is a well-known fact that
simple queries, including nearest neighbor queries, are 1/0O-
bound and only complex queries such as the spatial join may
be CPU-bound. Therefore, it is justified to take the number
of page accesses as a measure for the query performance. Our
cost model may be used for optimizing the parameters of the
index structures such as the block size as well as for query op-
timization.

3.1 Previous Approaches and their Problems

Due to the high practical relevance of nearest neighbor que-
ries, cost models for estimating the number of necessary page
accesses have been proposed already several years ago. The
first approach is the well-known cost model proposed by
Friedman, Bntley and Finkel [12]. The assumptions of the



model, however, are unrealistic for nearest neighbor queries
on high-dimensional data, since N is assumed to converge to
infinity and boundary effects are not considered. The model
by Cleary [7] extendsthe Friedman, Bentley and Finkel mod-
€l by allowing non-rectangul ar-bounded pages, but still does
not account for boundary effects. Sproull [25] uses the exist-
ing modelsfor optimizing the nearest neighbor searchiin high
dimensions and showsthat the number of data points must be
exponential in the number of dimensions for the models to
provide accurate estimates. According to [25], boundary ef-
fectssignificantly contributeto the costs unlessthefollowing
condition holds:

d
g
N >> Ces [

+ 10
dg O
spp0 O

where Vol gp(r) is the volume of a hypersphere with radius
r which can be computed as

d _ /\/Ej d
Volsp(r) = m r
with F'(x+1) = xO (x),
r(1) = 1 and

ao_
Fga= v

Unfortunately, the assumptions made in the existing models
do not hold in the high-dimensional case. The main reason
for the problems of the existing modelsisthat they do not ac-
count for boundary effects. Boundary effects is short for an
exceptional performance behavior, when the query reaches
the boundary of the data space. As we show later, boundary
effects occur frequently in high-dimensional data spacesand
lead to a pruning of major amounts of empty search space,
which is not considered by the existing models. To examine
these effects, we performed experiments to compare the nec-
essary page accesses with the model estimates. Figure 2
shows the real page counts versus the estimates of the Fried-
man, Bentley and Finkel model. For high-dimensional data,
themodel completely failsto estimate the number of page ac-

cesses.

Papadopoulos and Manolopoulos present in a very recent
work [19] an analysis of nearest neighbor queries using R-
trees. In arecent paper [3], Arya, Mount, and Narayan devel-
op amodel that is capable of accounting for boundary effects.
The problem of the Aryaapproach, however, isthat the mod-
d still assumes N to be growing exponentially with the di-
mension and it also usesthe L, metric, whichisnot suitable

for most database applications. Note that our model also con-
firmsthe earlier results of Yao and Y ao [29].

3.2 Overview of our Cost Model

Themain objective of thispaper isto present anew cost mod-
el for nearest neighbor queries in high dimensions. In con-
trast to existing models, our cost model provides accurate es-
timates of the number of page accesses in the high-
dimensional case sinceit accounts for boundary effects. Fur-
thermore, our model is based on the optimal algorithm for
nearest neighbor search (cf. subsection 2.2) and worksfor an
arbitrary number of data points. For the presentation of our
cost model, wefirst assumethat the datais uniformly distrib-
uted and that the split is performed in ak-d tree fashion. We
will show later that our model is also applicable to arbitrary
data distributions and a wide range of index structures such
as k-d-trees, R-trees, quadtrees, Z-indices, €tc.

The goal of our model is to determine the expected number
of pages which have to be accessed in performing a nearest
neighbor query. The number of data pages which have to be
accessed can be determined by intersecting all pageswith the
minimal sphere around the query point containing the nearest
neighbor. The first step in developing the cost functionisto
determine the average portion of a query spherewith agiven
guery radius, which is inside the data space. Note, that the
data space is assumed to be normalized to the unit hypercube
[0..1]9. Then, we determine the expected radius of the
sphere, which can be described as a stochastic variable. Tak-
ing boundary effects into account, we derive the distribution
function, probability density, and expected val ue of the near-
est neighbor distance (cf. subsection 3.3). In the next step, we
have to determine the number of pages intersected by the
guery sphere. For this purpose, we require the Minkowski
sum of the query sphere and the shape of an index page (e.g.,
the bounding box of the page in case of the R-tree). Due to
boundary effects, portions of the volume of the Minkowski
sum are outside of the data space, and therefore we have to
introduce some modifications to the standard Minkowski
sum (cf. subsection 3.4). Thelast step istheintegration of the
separate stepsinto the cost function. For determining the ex-
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Figure 2: Real Page Counts versus Estimates by Model [12]



pected number of page accesses, we have to form the weight-
ed average of the costs associated with the nearest neighbg
distances weighted by the probability of their occurrence.
The details are provided in subsection 3.5.

3.3 Expected Nearest Neighbor Distance

The goal of this subsection is to determine the expected dis
tance between a query point and its nearest neighbor in a da-

tabase oN points. Before we are able to solve this problem, Figure3: TransformingaSpherical Query intoaPoint Query
however, we first consider a simpler problem, namely the ex- by the Concept of Minkowski Sum

pected distance of two uniformly distributed points (one que-

ry point and one data point) in the data space. Let us first asion of DS and the NN-sphere. The corresponding distribu-
sume that the data point (data erijyhas a fixed positiog ~ tion functionP(r) is therefore:

= [eq, &, ..., &4]. Then, the probability that the distance from g N

the query poinQ = [qy, Oy, ..., 4] is less tham can be mod- P(r) =1-(1- Volavg(r) ) .

eled as the volume of the hypersphere ardtimdth radius

r. If point E is close to the border of the data space The density functiorp(r) of P(r) can be derived by deter-
[0 0{1..d}: (r>e)O(e>1-r)], we have to consider mining the derivative of this function
that part of the hypersphere volume is outside of the data

space and does not contribute to the probability. The volume  p(r) = Ep(r)

of the intersection of the data space and the hypersphere can dr

be expressed as the integral of a piecewise defined function

d d d N-1
integrated over all possible positions@f = g7 VOlayg(r) INH1=Volg,e(r)) .
VoI(SPd(E, r)n DS) = JT T 1 if |[E-Q|<r 0dQ From thls, we obtain the expected nearest neighbor distance
) (00 otherwise O by the integral
D
d . o
where [E-Q[<r < % (e-q) <r E(NN-dist) :J’r Cp(r) dr
i=1
1 1 0
andJ]’f(X)dX =IJ‘ f(Xq oy Xg)AXy ... AXy - o
DS =

%%'% = NDJ'r D(;j—r(VoI;vg(r))E(l—VoI;Vg(r))N_ldr.
0

If we assume that the data point is also randomly taken fron] . . .
0 section 4, we will show that this formula may be used to
the data space, the above formula has to be averaged over al

possible positions d&. accurately predict the expected nearest neighbor distance.

3.4 Number of Pages Intersected by the Query

Vol g,q(r) = J'J'VOI(SPd(E,r)n DS) dE . Sphere
DS

Note that VOladvg(r) corresponds 1o the probability In this subsection, we now det_ermin_e the number qf pages in-
PIE-Q <r). tersected by a query sphgre with a_glven re@Esr this pur-
pose, we have to determine the Minkowski sum of the query
To determine the expected distance between a query poingphere and the index pages. As can be seen in Hgthre
and its nearest neighbor in a databadé pdints, we have to  concept of the Minkowski sum transforms a spherical query
determine the probability distribution of the minimum dis- on a set of boxes into an equivalent point query on a set of
tance between query and data points. The probability that thenlarged objects. The Minkowski sum directly corresponds
nearest neighbor distance is at mosan also be described to the volume of the intersected pages. Graphically present-
by the opposite: None of tiidata points is in the intersec- ed, the Minkowski sum describes the volume which results
from moving the center of the query sphere over the surface
1.AsDSis [0..1f, thedenominator of thewerage is 1. of the bounding box of the index page (cf. Figure 4 for an ex-




/ \ To determine the Minkowski sum according to this formula,
we would need a stochastic model for the paramb{e&nd
bu of the index pages. In practical experiments, we observed
a’ .% Ca D\/olép(r) that in hlgh dlmen5|onal space usually one of the two param-
oo oo eters, b or b falls together with one of the borders of the
\ j; Vol2 ) data space WhICh results from the fact that each dimension
4 Sp has been split at most once. If all dimensions are of about the
Figure4: Exampleof the Minkowski Sum in Two Dimensions same significance, the split algorithm has to use all dimen-
sions as split axes in order to obtain a high selectivity. In this
case it is practically impossible in a high-dimensional space
to obtain more than one split per dimension since the number
of data points does not increase exponentially with the di-
mension. In general, the number of data points is even not
high enough that all dimensions are split once. Therefore,
without loss of generality, we may assume that only the first
d' < d dimensions have been split at positspim dimension
i(1l<i<d). d may be determined as

|

ample of the two-dimensional Minkowski sunfor calcu-
lating the Minkowski sum, we have to consider volumes of
each dimension between 1 asdvhich result from the dif-
ferent faces of the bounding box. If the index page is a bound-
ing box with an extensiaain all dimensions, the Minkowski
sum may be calculated as

d
Vol = 3 59 B8 ovoll. (1)
Mink £ OD i O Sp
The Minkowski sum is the expected value of the hyper-vol- d = Pogleg‘
ume of the bounding boxes of the data pages which are inter- €

sected by the NN-sphere. The expected value of the numbe]the Minkowski sum over all index pages which directly cor-

of data pages can easily be determined by normalizing the esponds to the average number of pages intersected by the
Minkowski sum using the volume of the bounding box
guery sphere can be determined as

d
Voly,: o (1
#Pagegr) = M—'d”k(z.
a #Pager) = 5 Vol(SP([s,, ....5,].1) n DS)
The Minkowski sum, however, does not consider boundary k=0{iy ...} OP({1 ....d})

effects which occur in high-dimensional space becabge

comes large and portions of the volume of the Minkowski FOr each k, the partitions have somel)-dimensional faces
sum are outside of the data space. To obtain a more realisti@side DS. At these faces, a hyper-cylinder arises which is
model for the high-dimensional case, we have to introducesPherical ink dimensions (with radius) and cubical in the
some modifications to the Minkowski sum. Similar to the fémaining dimensions (with side-length 1). The spherical
case described in the previous subsection, we integrate ovet@rt may be intersected wibSand only this intersection is
the data space and determine the intersection of partition gélevant. The second sum iterates over all elements of the

with the query sphere around Q: power set of {1, ...d'Jand thus, selects exactly all possible
q J k-dimensional projections of the split dimensions, encounter-
Vol yinkps(r) = Volyin(r) n DS ing all possible cylinders.

For umformly distributed data, tr@ are all at the same po-

Eﬂ] i O
JI 1 if MINDIST(B.Q)<r Qdr . sition (sj: 1) . In this case, the formula becomes

(00 otherwise a
If B isa rectllmear bounding box with a lower corner B d Kiooq
[bl, . bd] and an upper corngby, ... ,by] , MINDIST #Pagegr) = % 3 VoI(SP([5...5].r) n DY)

may be computed as k=0 {iy i OP{L, - d})

As the volume of alk-dimensional cylinders is identical

D - .
d E 0 if (b: <q < biu) now, we may simplify the formula to:
2 O 2
DIST(B,Q)” = Z E(b:_qi) if (g <b:) ¢ 040
i=1g ., 2 #Page¢r) = 3y O DWOl(SPk(E,...,%} r)n DS) .
Ok O

O(b; —q;) otherwise
O



[ee] d‘
N-1
E(#Pages) = N DJ'%VOI:Vg(r) Q1-Volgg()) O F 3 Vol(SP(s, ....s,].r) n DS) dr
0 K=0{iy it 0P{1,....d})

Figure5: Cost Formula for the Expected Number of Page Access

3.5 Expected Number of Page Accesses thus universally applicable for all subsequent cost computa-

In the previous section, we developed a model to determindons:

the number of page accesses for a query sphere with a givethe expected value of théN-distance can then be efficiently in-
radius. The goal of this section is to determine the expectedegrated from the precomputed fU”CWD';vg(r) by the ex-
number of page accesses for a nearest neighbor query.  tended trapezoidal rule. The same applies for the cost function.

To determine the expected number of page accesses for a
nearest neighbor query, we have to integrate over the radiu4.2 Experiments

multiplied with the probability with which the radius occurs. To show the accuracy of our model, we made several exper-

More formglly, the expected number of page apcesses for fents on both, synthetic and real data. We integrated the al-
nearest neighbor queB(#Pages) may be determined as gorithmNN-opt in an implementation of the well-known Hil-

o bert-index [11] and in the original implementation of the X-
E(#Pages) = [#Pages(r) Cp(r) dr . tree [5]. Thg Hilbert-index rnarlnl‘rdimer?sional points to a
one-dimensional space which is then indexed by -&rde.
0

According to subsection 2.1, the algoritiNiN-opt first ex-
If we integrate the partial results from subsections 3.3 andamines the partition (given by a range of Hilbert values) with

3.4, we obtain the formula presented in Figure 5. the lowesMINDI ST during the search process. The X-tree is
an R-tree-like multidimensional index structure which has
4. Experimental Evaluation been especially designed for indexing high-dimensional data.

In this section, we first describe the implementation of our Our cost model is based on an estimation of the radius of the
cost model presented in section 3. Then, we describe the eXN-sphere. To show the accuracy of our model, we compare

periments conducted to show the practicaj app||cab|||ty of the average nearest neighbor distance of a uniformly distrib-
our cost model and provide a short interpretation of the exJJted data set with the radius estimated by our model. For the

perimental results. experiments, we varied from 2 to 16 using up to 369,000
data points. We averaged the radius over 100 NN-queries and
4.1 Implementation of the Cost Model found our expected nearest neighbor distance perfectly con-

In subsection 3.3, we presented an integral formula to deteriirmed (cf. Figure 6).

mine the volume of the intersection between the data spaceo evaluate the accuracy of our cost function and its applica-
and a query sphere with radiu§ his volume integral can be  pility to various index structures, we performed several ex-
evaluated easily using numerical integration. Among the var-periments. In the first experiment, we fixed the dimension to
ious methods, the so-called Montecarlo integration is best-16 and varied the number of uniformly distributed data points
suited in the high-dimensional case. from 93,000 to 2,976,000. In this experiment, we used the
Montecarlo integration [14] is based on the principle of ran- Hilbert index with a B-tree page size of 3Bytes which
domization and can be concisely described, as follows: Thémplies an effective capacity of 360 data objects per data
volume of a complex object corresponds directly to the prob-
ability that a point, randomly selected from the data space, is
inside this object. Therefore, an approximation of the volume
can be gained by selecting a number of points and measuring
the fraction of points inside the object. Note that Montecarlo
integration may be used for arbitrary data distributions.

NN-distance

We used a variation of this technique to determine the vol-
umefunctionsVoI;Vg(r) andVoI(SPd(E,...,%} r)n DS)
as well as the corresponding derivative for the required rang- 2 4+ s s 10 12 . 1

es ofd andr. These functions are independent from individ- dmensen

ual parameters such as the number of points in the databasFigure 6 Expected NN-distance Depending on the Dimension

or the capacity or geometrical shape of the data pages and are
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page. The experiment confirmed @ast model up to a rel- Figure 9: Application of the Cost Model to Real Data

ative error of 5-8% (cf. Figure 7). This remaining error is due

to the impact of the specific split behavior, which is difficult \ya therefore determined the fractal dimension of the Fourier
to include in any formal model. data set which is 10.56. Using 10 as the dimension in our

In the experiment shown in Figure 8, we compare our cosfModel, we get an accurate estimation of the page accesses.
model to the performance of the X-tree with a fixed number Figure 9 shows the result of some experiments using different
of data pages and varying dimensionaldy=(2 .. 50). The ~ numbersN of data items.

performance of the X-tree is slightly better than the estimate

of our cost model. The reason for the better performance i®- Conclusion

that the X-tree ignores ‘dead space’, i.e. parts of the datgn this paper, we presented a new cost model for nearest
space which are not covered by any partition. As the experineighbor queries in high-dimensional data space using con-
ments show, however, the estimates of our model are suffiseryative recursive index structures such as the R-tree, k-d-
ciently close to the real performance of the X-tree. Even forg_tree or quadtree. Our cost model is accurate even in high
low and medium dimensions, the accuracy of our model isgimensions, where other models completely fail, because our
much better than the model of Friedn, Bentley and Finkel.  mode| considers boundary effects. As a further advantage,
Note that in general our model is also applicable to R-tree-gyr model uses the Euclidean metric which is relevant to

like index structures — especially in higher dimensions.  many database applications. We showed the applicability and

To show the practical relevance of our approach, we also pe|fglccuracy of our model by presenting the results of various ex-
formed experiments using real daEae test data used for the periments both on synthetic and real data sets comparing our

experiments originate from a real database consisting of high_pre,dlCtIonS with the perfprmance of X-tree and Hilbert-based
dimensional Fourier points. Each 16-dimensional Fourier'nqmes' Whereas prevpus . _SUCh as the model by
point corresponds to a region of a CAD-model describing anfriedman, Bentley and Finkel overestimate the cost by orders

industrial part. We stored the Fourier-points in the Hilbert-in- ©f Magnitude in high dimensions, our model is exact up to a
dex and performed 100 random nearest neighbor queriesmOderate relative error. Our further research will focus on the

Since in general the actual dimensionality of a real data set jgxtension of our model to k-nearest neighbor queries. In ad-

lower than the formal dimensionality [10], we have to use thedition’ we plan to perform a theoretically well-founded anal-
fractal dimension of the Fourier databasedar our model ysis of various index structures for high-dimensional data.
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