
Dynamic Multi-version Ontology-based Personalization
 Fabio Grandi

DISI, University of Bologna
Viale Risorgimento, 2

I-40136, Bologna BO - Italy
+39 051 2093555

fabio.grandi@unibo.it

ABSTRACT

In this paper, we describe a storage scheme that allows the

representation and management of the evolving hierarchical

structure of a multi-version ontology. The proposed scheme is

aimed at supporting ontology-based personalization and temporal

access to resources (data, documents, etc.) stored in a dynamic

environment.

Categories and Subject Descriptors

E.1 [Data Structures]: Graphs and networks; H.2.4 [Database

Management]: Systems - query processing; H.3.1 [Information

Storage and Retrieval]: Content Analysis and Indexing -

indexing methods.

General Terms

Algorithms, Management, Design.

Keywords

Ontology, trees, personalization, temporal database, versioning

1. INTRODUCTION
The adoption of reference ontologies and their deployment for the

personalization of multi-version resources has been recently

proposed by several authors in the medical domain [1,2,3] and

other application fields (e.g., e-Government [4]). The considered
resources range from descriptive data to textual documents, from

Web pages to the specification of processes. References to

ontology classes are added to the computer encoding of resources

(e.g., for which an XML [5] format can conveniently be used) to
introduce a sort of semantic indexing of contents representing

their applicability, relevance or eligibility with respect to ontology

classes. Hence, starting from a user-supplied list of ontology

classes, a suitable query engine can exploit semantic indexing to
retrieve the relevant contents only and produce a personalized

version of the desired resources.

However, in a dynamic environment, the management of this kind

of semantic versioning is interleaved with temporal aspects. For
example, we can choose as resources clinical guidelines [6], that

is “best practices” encoding and standardizing health care

procedures, in textual or executable format, and consider their

personalization with respect to an ontology of diseases, patients or
available hospital facilities they are applicable to [1].

Personalization will produce a guideline version tailored to a

specific use case. The fast evolution of medical knowledge and

the dynamics involved in clinical practice imply the coexistence

of multiple temporal versions of the clinical guidelines stored in a
repository, which are continually subject to amendments and

modifications. Therefore, it is crucial to reconstruct the

consolidated version of a guideline as produced by the

application of all the modifications it underwent so far, that is the
form in which it currently belongs to the state-of-the-art of clinical

practice and, thus, must be applied to patients today. However,

also past versions are still important, not only for historical

reasons: for example, a physician might be called upon to justify
his/her actions for a given patient at a past time on the basis of the

clinical guideline versions applicable to the pathology of patient

and which were valid at that time.

Moreover, in a dynamic environment, the definition of domain
ontologies themselves is also subject to modification and, thus,

ontologies come out versioned as a consequence of updates

periodically effected by domain experts and knowledge engineers

or even standardization committees. As we showed in [7] for the
legal domain (but it also happens for the medical one),

personalization of a resource with respect to a past point in time

must be effected by taking into account, in order to consider

semantic indexing of the desired temporal version of the resource,

the version of the reference ontology which was valid at the same

time point. In other words, the selected resource version and the

ontology version used for personalization must be mutually

temporally consistent. Since clinical guidelines have also been
recently proposed to be used as evidence of the legal standard of

care in medical malpractice litigation [8], enforcement of

temporal consistency is crucial to assess the responsibility of

physicians having followed the guidelines in the past.

Therefore, in this work we will show how temporal multi-version

ontologies can be represented and maintained in a relational

setting and how they can be used during the processing of a

personalization query. The rest of the paper is organized as
follows: in Sec. 2, the ontology-based personalization method

proposed in [1,4] is briefly recalled; in Sec. 3, we present our

storage scheme and manipulation primitives for temporal

ontology versioning; Section 4 is devoted to personalization query
processing in the presence of a multi-version ontology.

Conclusions can finally be found in Sec. 5.

2. A FRAMEWORK FOR ONTOLOGY-

BASED PERSONALIZATION
The personalization method proposed in [1,4] is based on the

adoption of reference domain ontologies and the introduction of

semantic indexing of resource contents with respect to ontology

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

EDBT/ICDT’13, March 18 - 22, 2013, Genoa, Italy.

Copyright 2013 ACM 978-1-4503-1599-9/13/03…$15.00.

224

mailto:fabio.grandi@unibo.it

classes. For example, in the medical domain, reference ontologies

to be used to this purpose can be derived from the ICD-101
international classification of diseases or from the SNOMED-CT2

comprehensive healthcare terminologies. Semantic indexing can

then be used by personalization services to adapt generic

resources to specific use cases, for example, to derive and enact
individual care plans as proposed in [1,2,3].

The main ontology feature which is relevant for our

personalization approach is the hierarchy of classes (taxonomy)

induced by the IS-A relationship. Hence, we do not consider
properties or other features and also follow the simplified

assumption made in [1,4] that the class hierarchy underlying the

ontology is tree-shaped, that is each node in the class hierarchy

(but the root) has a single parent. Owing to the tree structure,
nodes can be assigned a preorder and a postorder code,

corresponding to the sequence in which nodes are visited during a

preorder or postorder traversal of the tree, respectively. Preorder

and postorder codes can be used for efficiently characterizing the

descendants of a node [9,10]:

N is a descendant of M iff M.Pre < N.Pre and N.Post<M.Post

with obvious meaning of the used dotted notation. For example,

we can consider the sample ontology depicted in the left part of
Fig.1, where the corresponding preorder, postorder and level code

of nodes can be found in the table to the right. Level is the

distance from the top, assuming level 1 for the root node. The

structure of the class hierarchy is completely defined by the
information present in the table (actually, level values are not

necessary, but will be used for speeding up query processing as

described in Sec. 4), which, thus, can enable storage of the

ontology definition in a relational table.

Id Pre Post Lev

A 1 7 1

B 2 1 2

C 3 4 2

D 4 2 3
E 5 3 3

F 6 6 2

G 7 5 3

Figure 1. A sample ontology and its tabular representation.

Once defined and stored the ontology in this way, node identifiers

can be used as a reference to ontology classes for semantic

indexing of the resources which are the object of personalization.
In [1,4], preorder codes are directly used as node identifiers,

whereas we will keep them distinguished and associate preorder,

postorder and level codes to time-invariant class identifiers (Id) in

order to support ontology versioning. Hence, if the same class
belongs to two ontology versions, the class Id is the same in both

of them, while the preorder (postorder and level) code is very

likely different as long as the two ontology versions have a

different structure. In this way, the proposed encoding scheme
implies an indirect reference from class identifiers used for

1 http://www.who.int/classifications/icd/en/
2 http://www.ihtsdo.org/snomed-ct/

semantic indexing of resources and preorder and postorder codes

used for query processing.

…
<foo>

<version number=”1”>

 <pertinence>

 <valid from=”T1” to=”T2”/>

 <applies to=”B”>

 </pertinence>

 Contents of foo–version 1
</version>

<version number=”2”>

 <pertinence>

 <valid from=”T2” to=”UC”/>

 <applies to=”C”>

 </pertinence>

 Contents of foo–version 2
 <bar>

 <version number=”1”>

 <pertinence>

 <applies also=”G”>

 </pertinence>

 Contents of bar–version 1
 </version>

 </bar>

</version>

</foo>

…

Figure 2. A chunk of multi-version XML resource.

In this work, like in [1,4], we consider personalization of

resources with an inner hierarchical organization (e.g., a text
organized with chapters, sections, subsections and paragraphs),

which, thus, can be represented and stored as XML documents.

Each element within the resource can be represented by means of
multiple versions of its contents, each of which can be assigned a

temporal validity (by means of timestamps) and a semantic

pertinence (by means of references to ontology classes). Owing to

the hierarchical organization of resources, temporal validity and
semantic applicability properties of an element are inherited by its

subelements, unless locally redefined. Considering applicability

properties, because of the IS-A semantics (e.g., an individual

which is instance of C is also instance of A in Fig.1), if we are
looking for all the resource portions that qualify for an instance of

an ontology class, we should retrieve the resource portions which

are directly applicable to the ontology class itself and also the

resource portions which are applicable to its superclasses. For

example, if a query retrieves resources concerning an individual

belonging to the ontology class C, then the returned resources

should be those applicable to class C but also those applicable to

the ancestor classes of C (i.e., class A in Fig. 1). Whichever is the
most specific class to which our individual of interest belongs, the

query results would include all the resource portions applicable to

all its ancestor classes up to the ontology root class, which may

come out too generic to be of real interest for a specific use case.
For instance, considering an ontology of diseases in the medical

domain, this would mean to also retrieve all resources generically

applicable to “patients” when looking for resources concerning an

individual affected by “microvascular angina”. In such a case, as
proposed in [1,4], using a optional depth parameter in order to

focus on the most interesting resources only, the user can limit the

applicability scope of a query to the ancestors located up to depth

steps above the most specific class our individual of interest

A

CB F

D E G

225

http://www.who.int/classifications/icd/en/
http://www.ihtsdo.org/snomed-ct/

belongs in the class hierarchy (in order to easily find them, the

level codes can be used, as will be shown in Sec. 4).

For instance, let us consider the sample chunk in Fig. 2 of a multi-

version resource encoded in XML. It is made of an element “foo”

with two versions, the former (version 1) valid from T1 to T2 and

applicable to class B of the ontology in Fig. 1 and the latter
(version 2) valid from T2 on and applicable to class C of the

ontology in Fig. 1. The special time value UC (Until Changed

[11]) is used to represent the To value of a right-unlimited time

interval. The second version of element “foo” contains a
subelement “bar”, which inherits the validity of its parent element

(from T2 on) and extends the applicability inherited from its

parent also to class G of the ontology in Fig. 1 (i.e., the

applicability of “bar” is C or G). The only version (version 1)
defined for “bar” is necessary in order to redefine the inherited

semantic pertinence (notice that the “pertinence” XML element is

defined as a subelement of the “version” XML element).

The XML encoding of multi-version resources exemplified in Fig.
2, which has been proposed in [1,4], has been adopted in this

work for the reasons which follow:

 is general enough to be applied to any kind of resources (as is

independent on the non versioned resource schema) and to

allow the seamless adoption of an arbitrary number of
temporal and semantic versioning dimensions;

 its simplicity allows a self-contained presentation;

 efficient algorithms implemented in a prototype processor are

available for personalization query support [1,4] (required

extensions to this approach will be presented in Sec. 4).

However, as far as semantic markup is concerned, other encoding
schemes proposed for linking resource contents to ontological

information, from the ones proposed as standards like RDFa3 and

microformats4 to the more exotic ones customary in specific

application domains (e.g., medical domain), could also be
adopted. In such a case, simple modifications, which are beyond

the scope of this work, have to be introduced to the

personalization query processing methods presented in Sec. 4.

3. TEMPORAL ONTOLOGY VERSIONING
In this section, we will introduce primitive operations for applying

ontology changes to produce a new version, and show how they

can be defined in order to maintain a multi-version ontology

represented and stored as a valid-time relation in a temporal

database [11].

3.1 Ontology Evolution Support
In this Subsection, we will show how the evolution of an ontology

with a tree-shaped class hierarchy in tabular representation can be
supported. To this purpose, we introduce three primitive change

operations, which can be used in sequence and combination to

make arbitrary changes to the ontology structure, and present

algorithms to implement their action on the tabular representation
exemplified in Fig. 1.

3 http://rdfa.info/
4 http://microformats.org/

3.1.1 Insertion of a leaf node
The operation InsertUnder(N) can be used to create a new leaf

node as child of the existing node N. If the node N already has

children, the new node is created as the rightmost child (the order
of siblings does not matter for personalization query processing,

as the ancestor-descendant relationships only are relevant). Owing

to the definition of preorder, postorder and level codes, the action

of the insertion reflects on their values as explained in the
following. All the nodes which were visited after N in postorder

and N itself must have their postorder code increased by 1 (as they

will be visited after the new node). Notice that, being created as

the rightmost child of N, the new node will be visited in preorder
right after all the nodes in the subtree rooted on N (which satisfy

the descendant relations Pre>N.Pre and Post<N.Post). Hence, the

nodes which must have their preorder code increased by 1 are all

the nodes which were visited after N both in preorder and in
postorder (i.e., nodes visited after N in preorder but not belonging

to the subtree rooted on N). The new node must be assigned a

preorder code equal to the maximum preorder code found in the

subtree rooted on N plus 1, inherits the postorder code from N and
has a level equal to the level of N plus 1. A slightly optimized

algorithm for updating the tabular representation is the following:

InsertUnder(N:NodeRow)

 MaxPreSub:=N.Pre;

 ForEach Node in TreeTable Do

 If Node.Post>=N.Post

 Then Node.Post++

 If Node.Pre>N.Pre

 Then Node.Pre++ EndIf

 ElseIf Node.Pre>N.Pre

 and Node.Pre>MaxPreSub

 Then MaxPreSub:=Node.Pre

 EndIf

 EndFor

 AddRow(NewId(),MaxPreSub+1,N.Post,N.Lev+1)

Return

The function NewId() is assumed to create an unused identifier,

which acts like a time-invariant key, for the newly added node.
For instance, starting from the ontology in Fig. 1, the execution of

the operation InsertUnder(F) produces the new ontology version

shown in Fig. 3 with the new node created as H.

Id Pre Post Lev

A 1 8 1
B 2 1 2

C 3 4 2

D 4 2 3

E 5 3 3
F 6 7 2

G 7 5 3

H 8 6 3

Figure 3. Second version of the ontology in Fig.1.

3.1.2 Insertion of an intermediate node
The operation InsertOver(N) can be used to create a new node in

the path between the node N and its parent (i.e., the new node

becomes the new parent of N and a child of the former parent of

N). If N is the tree root node, the created node will become the
new root. The action of the insertion reflects on the preoder,

A

CB F

D E G H

226

http://rdfa.info/
http://microformats.org/

postorder and level values as explained in the following. All the

nodes which were visited after N in preorder and N itself must
have their preorder code increased by 1 (as they will be visited

after the new node and no other descendant of N can be visited

before). All the nodes which were visited after N in postorder

must have their postorder code increased by 1 (as they will be
visited after the new node). All the nodes which were in the

subtree rooted on N (inclusive) must have their level increased by

1. The new node inherits the preorder code and the level from N

and must be assigned a postorder code equal to the postorder code
of N plus 1. A slightly optimized algorithm for accordingly

updating the tabular representation is the following:

InsertOver(N:NodeRow)

 ForEach Node in TreeTable Do

 If Node.Pre>=N.Pre

 Then Node.Pre++

 If Node.Post<=N.Post

 Then Node.Lev++ EndIf

 EndIf

 If Node.Post>N.Post Then Node.Post++ EndIf

 EndFor

 AddRow(NewId(),N.Pre,N.Post+1,N.Lev)

Return

For instance, starting from the ontology in Fig. 3, the execution of

the operation InsertOver(C) produces the new ontology version

shown in Fig. 4 with the new node created as I.

Id Pre Post Lev

A 1 9 1
B 2 1 2

C 4 4 3

D 5 2 4

E 6 3 4
F 7 8 2

G 8 6 3

H 9 7 3

I 3 5 2

Figure 4. Third version of the ontology in Fig.1.

3.1.3 Deletion of a node
The operation DeleteNode(N) can be used to delete node N from

the ontology (former children of N become children of the former

parent of N). The DeleteNode procedure can be applied to the tree
root node only if it has a single child (which becomes the new

root). All the nodes which were visited after N in preorder (or

postorder) must have their preorder (or postorder) code decreased

by 1 (as they will be reached in both visit orders one step earlier).
All the nodes which were in the subtree rooted on N must have

their level decreased by 1. A slightly optimized algorithm for

updating the tabular representation is the following:

DeleteNode(N:NodeRow)

 ForEach Node in TreeTable Do

 If Node.Pre>N.Pre Then Node.Pre--

 If Node.Post<N.Post

 Then Node.Lev-- EndIf

 EndIf

 If Node.Post>N.Post Then Node.Post-- EndIf

 EndFor

 DeleteRow(N.Id,N.Pre,N.Post,N.Lev)

Return

For instance, starting from the ontology in Fig. 4, the execution of

the operation DeleteNode(B) produces the new ontology version

shown in Fig. 5.

Id Pre Post Lev

A 1 8 1

C 3 3 3
D 4 1 4

E 5 2 4

F 6 7 2

G 7 5 3

H 8 6 3

I 2 4 2

Figure 5. Fourth version of the ontology in Fig.1.

3.2 Use of a Temporal Relation for Storing a

Multi-version Ontology

In this Subsection, we show how the whole evolution of a tree-

shaped ontology can be represented and maintained as a temporal

relation storing all the time-stamped ontology versions. In this

work, we assume valid time [11] is used as time dimension, which
allows ontology designers to also apply retro- and pro-active

modifications. However, the adoption of transaction time [11] (in

a transaction-time or bitemporal relation) would require simple

modifications to the proposed management. Hence, a multi-
version ontology can be stored in a temporal relation with schema:

TreeRelation(Id, Pre, Post, Lev, From, To)

where tuples like the ones considered in Sec. 3.1 are augmented

with the timestamping attributes From and To, representing the
boundaries of a right-open time interval [From,To). Such relation

can be stored in a relational database and manipulated via SQL

statements.

Before applying any other modification, an empty TreeRelation
temporal table must be initialized via the root creation by means

of a call to the following procedure:

CreateRoot(T:TimePoint)

 { INSERT INTO TreeRelation

 VALUES (NewId(),1,1,1,T,’UC’) }

Return

The algorithms presented in Sec. 3.1 for maintenance of

ontologies in their tabular representation translate into the

procedures which are listed in the rest of this subsection, where

embedded SQL statements are also used to manage the ontology
stored in the TreeRelation temporal table. For example, we will

make use of a kind of snapshot query [11]:

 SELECT * INTO TreeCursor

 FROM TreeRelation WHERE To=’UC’

A

C

B F

D E

G H

I

A

C

F

D E

G H

I

227

which extracts the current snapshot from the temporal relation

TreeRelation to select all the tuples belonging to the ontology
consolidated version, which are then accessed through a cursor

TreeCursor in main memory, for further processing by the

procedure one tuple at a time (within the ForEach loop).

The three procedures corresponding to the ontology maintenance
algorithms in Sec. 3.1 are listed in the following (using pseudo-

code with embedded SQL statements). Procedures have a second

argument, T, representing the validity start of the modification For

the insertion of a new leaf node, the algorithm presented in Sec.
3.1.1 becomes as follows:

InsertUnder(N:NodeTuple,T:TimePoint)

 MaxPreSub:=N.Pre;

 { SELECT * INTO TreeCursor

 FROM TreeRelation WHERE To=’UC’ }

 ForEach Node in TreeCursor Do

 New.Pre:=Node.Pre;

 New.Post:=Node.Post;

 If Node.Post>=N.Post

 Then Node.To:=T; New.Post++

 If Node.Pre>N.Pre Then New.Pre++ EndIf

 ElseIf Node.Pre>N.Pre

 and Node.Pre>MaxPreSub

 Then MaxPreSub:=Node.Pre

 EndIf

 If Node.To=T

 Then { UPDATE TreeRelation

 SET Pre=Node.Pre,Post=Node.Post

 Lev=Node.Lev,To=T

 WHERE Id=Node.Id and From=Node.From;

 INSERT INTO TreeRelation

 VALUES (Node.Id,New.Pre,New.Post,

 Node.Lev,T,’UC’) }

 EndFor

 { INSERT INTO TreeRelation

 VALUES (NewId(),MaxPreSub+1,N.Post,

 N.Lev+1,T,’UC’) } EndIf

Return

For the insertion of an intermediate node within the class

hierarchy, the procedure introduced in Sec. 3.1.2 becomes:

InsertOver(N:NodeTuple,T:TimePoint)

 { SELECT * INTO TreeCursor

 FROM TreeRelation WHERE To=’UC’ }

 ForEach Node in TreeCursor Do

 New.Pre:=Node.Pre;

 New.Post:=Node.Post;

 New.Lev:=Node.Lev;

 If Node.Pre>=N.Pre

 Then Node.To:=T; Node.Pre++

 If Node.Post<=N.Post Then Node.Lev++ EndIf

 EndIf

 If Node.Post>N.Post

 Then Node.To:=T; Node.Post++

 EndIf

 If Node.To=T

 Then { UPDATE TreeRelation

 SET Pre=Node.Pre,Post=Node.Post

 Lev=Node.Lev,To=T

 WHERE Id=Node.Id and From=Node.From;

 INSERT INTO TreeRelation

 VALUES (Node.Id,New.Pre,New.Post,

 New.Lev,T,’UC’) } EndIf

 EndFor

 { INSERT INTO TreeRelation

 VALUES (NewId(),N.Pre,N.Post+1,

 N.Lev,T,’UC’) }

Return

Finally, the procedure deriving from the algorithm in Sec. 3.1.3 to

be used for the deletion of a node is as follows:

DeleteNode(N:NodeTuple,T:TimePoint)

 { SELECT * INTO TreeCursor

 FROM TreeRelation WHERE To=’UC’ }

 ForEach Node in TreeCursor Do

 New.Pre:=Node.Pre;

 New.Post:=Node.Post;

 New.Lev:=Node.Lev;

 If Node.Pre>N.Pre

 Then Node.To:=T;New.Pre--

 If Node.Post<N.Post Then New.Lev-- EndIf

 EndIf

 If Node.Post>N.Post

 Then Node.To=T;New.Post--

 EndIf

 If Node.To=T

 Then { UPDATE TreeRelation

 SET Pre=Node.Pre,Post=Node.Post

 Lev=Node.Lev,To=T

 WHERE Id=Node.Id and From=Node.From;

 INSERT INTO TreeRelation

 VALUES (Node.Id,New.Pre,New.Post,

 Node.Lev,T,’UC’) } EndIf

 EndFor

Return

For the sake of simplicity, in writing the code, we assumed so far

that only one ontology version be affected by the modification

(i.e., the one with To equal to UC, which is part of the

consolidated version valid at present time, further assuming that
no versions with From>Now are currently stored in the

TreeRelation temporal table).

Otherwise, if more than one version can be affected, the SQL

SELECT which loads TreeCursor at the beginning of the three
procedures must be replaced by the SQL statements which follow:

 DELETE FROM TreeRelation WHERE From>=T;

 SELECT * INTO TreeCursor

 FROM TreeRelation WHERE From<=T AND T<To

In fact, the creation of a new version valid from T involves all the

tuples whose timestamp is totally or partially overlapped by the
validity of the modification [T,UC). In order to clarify what

happens when a modification is applied to the history of an object

in the most general case, we can consider the graphical example

shown in Fig. 6.

Figure 6. Effects of a modification in the most general case.

In particular, Fig. 6(a) displays the history of an object composed
of five versions (i.e., Vi valid from ti to ti+1, i=1..4, and V5 valid

t1 t2 t3 t4 t5 UC

V1 V2 V3 V4 V5

time

T

V (modification)

t1 t2 t3 UC

V1 V2

T

V3 V

time

(a)

(b)

228

from t5) and the placement on the time axis of a modification

which must be applied to the history to produce a new version
with contents V and validity from T. As shown in Fig. 6(b)

presenting the history of the object after the application of the

modification, the modification left versions V1 and V2 untouched,

completely overlapped versions V4 and V5 (which have been
removed) and partially overlapped version V3, whose validity has,

thus, been restricted to [t3,T). After the deletion of the completely

overlapped versions, the version affected by the modification is

the one whose timestamp contains the validity start of the

modification (i.e., V3 in Fig. 6(a), as t3 T t4).

Hence, the two SQL statements listed above accomplish the tasks,

respectively, of deleting all the completely overlapped versions

and of putting all the partially overlapped versions into
TreeCursor for further processing by the procedures.

Table 1. Temporal relation storing the first ontology version

Id Pre Post Lev From To

A 1 7 1 T0 UC

B 2 1 2 T0 UC

C 3 4 2 T0 UC

D 4 2 3 T0 UC
E 5 3 3 T0 UC

F 6 6 2 T0 UC

G 7 5 3 T0 UC

Coming back to the running example introduced in Sec. 3.1, we

can easily store the first ontology version depicted in Fig. 1,
which has been created with validity starting at time T0, in the

temporal relation displayed in Table 1. Then we can consider the

application of the following sequence of modifications which

correspond to the ontology updates exemplified in Sec. 3.1:

 InsertUnder(F,T1);

 InsertOver(C,T2);

 DeleteNode(B,T3);

For instance, Table 2 shows the contents of the TreeRelation
temporal table after the execution of InsertUnder(F,T1) on the

initial state in Table 1. Notice how nodes A and F are represented

through two tuples each, representing their versions belonging to

the two ontology versions, respectively (e.g., the first version of A
with preorder 1, postorder 7, level 1 and validity [T0,T1) belongs

to the first ontology version, whereas the second version of A with

postorder changed to 8 and validity [T1,UC) belongs to the

second ontology version). Nodes represented through a single
tuple (e.g., B) have a single version with validity [T0,UC) shared

by both ontology versions.

Table 2. TreeRelation after the creation of leaf node H

(it contains the first and second ontology versions)

Id Pre Post Lev From To

A 1 7 1 T0 T1

B 2 1 2 T0 UC
C 3 4 2 T0 UC

D 4 2 3 T0 UC

E 5 3 3 T0 UC

F 6 6 2 T0 T1
G 7 5 3 T0 UC

A 1 8 1 T1 UC

F 6 7 2 T1 UC

H 8 6 3 T1 UC

Obviously, the newly created node (H) has a single version with

validity [T1,UC) belonging to the second ontology version only.

After the execution of InsertOver(C,T2), the contents of

TreeRelation now containing the first three ontology versions are

as displayed in Table 3.

Table 3. TreeRelation after the insertion of intermediate

node I (it contains the first three ontology versions)

Id Pre Post Lev From To

A 1 7 1 T0 T1
B 2 1 2 T0 UC

C 3 4 2 T0 T2

D 4 2 3 T0 T2

E 5 3 3 T0 T2
F 6 6 2 T0 T1

G 7 5 3 T0 T2

A 1 8 1 T1 T2

F 6 7 2 T1 T2

H 8 6 3 T1 T2

A 1 9 1 T2 UC

C 4 4 3 T2 UC

D 5 2 4 T2 UC
E 6 3 4 T2 UC

F 7 8 2 T2 UC

G 8 6 3 T2 UC

H 9 7 3 T2 UC
I 3 5 2 T2 UC

After the execution of DeleteNode(B,T3), the final outcome is the

temporal relation displayed in Table 4, fully exemplifying the

storage of our multi-version ontology in a single temporal

relation.

Table 4. TreeRelation storing the multi-version ontology

after deletion of B (it contains all the four ontology versions)

Id Pre Post Lev From To

A 1 7 1 T0 T1

B 2 1 2 T0 T3

C 3 4 2 T0 T2

D 4 2 3 T0 T2
E 5 3 3 T0 T2

F 6 6 2 T0 T1

G 7 5 3 T0 T2

A 1 8 1 T1 T2
F 6 7 2 T1 T2

H 8 6 3 T1 T2

A 1 9 1 T2 T3

C 4 4 3 T2 T3
D 5 2 4 T2 T3

E 6 3 4 T2 T3

F 7 8 2 T2 T3

G 8 6 3 T2 T3
H 9 7 3 T2 T3

I 3 5 2 T2 T3

A 1 8 1 T3 UC

C 3 3 3 T3 UC
D 4 1 4 T3 UC

E 5 2 4 T3 UC

F 6 7 2 T3 UC
G 7 5 3 T3 UC

H 8 6 3 T3 UC

I 2 4 2 T3 UC

229

Considering then the execution of a classical snapshot query [11]

(retrieving the snapshot valid at time T):

 SELECT Id,Pre,Post,Lev FROM TreeRelation

 WHERE From<=T AND T<To

over the temporal relation in Table 4, we can notice that the

retrieved snapshot: if T [T0,T1), coincides with the table in Fig.

1; if T [T1,T2), coincides with the table in Fig. 3; if T [T2,T3),

coincides with the table in Fig. 4; and if T>T3, the retrieved

snapshot coincides with the table in Fig. 5. This clearly confirms

how the temporal relation in Table 2 is actually a comprehensive

representation and a suitable storage scheme for a multi-version

ontology.

As far as indexing of multi-version resources by means of

references to ontology classes are concerned, we can underline the

fact that the solution —used for the sake of simplicity in [1,4]—

based on the bookkeeping of a single ontology version (i.e., the
consolidated version) to index all resource versions is very

inefficient from a practical point of view, besides being simplistic

and rather incorrect from a semantic and application requirement

point of view [7]. As a matter of fact, a reference ontology might
have to be used to index a very large repository of multi-version

resources in a realistic environment. Hence, when even small

changes (e.g., addition or deletion of a single class) are applied to

an ontology in this scenario, where preorder codes are used as
class identifiers, a large number of classes in the ontology may

have their identifiers changed as a consequence of the update.

Thus, such a change in class identifiers has to be propagated to all

resources in order to preserve the correct semantic indexing,
which would require to access and rewrite a large fraction of the

whole resource repository to update class identifiers. With the

indirect reference solution proposed in this work, ontology

changes only affect the corresponding TreeRelation table and do
not require any changes to be applied the resource repository.

4. QUERY PROCESSING WITH MULTI-

VERSION ONTOLOGIES
The semantic indexing of resources which links their contents to

reference ontologies is designed to support personalization queries
[1,4]. To this purpose, and in order to show how query processing

works in the presence of multi-version ontology, we consider the

XQuery-like query template which follows:

 FOR $x IN resources.xml

 WHERE TEXT_CONSTRAINT($x,CC)

 AND VALID($x,T) AND APPLICABLE($x,Cx:depth)

 RETURN $x

which is a simplified form of the template introduced in [1,4] and

for which a query engine has been implemented in a prototype

system. The function TEXT_CONSTRAINT() applies textual
constraints to the contents of the resources to be retrieved. Textual
constraints can include both structural and lexical constraints,

being expressible as an XPath expression [12] which can be used

for matching keywords within the resource structured contents.

The function VALID() effects a temporal snapshot of the
resources by selecting the content versions valid at time “T”. The

function APPLICABLE() effects a semantic slicing of the
resources by selecting the content versions which are applicable to

instances of ontology class “Cx” and of its ancestors up to “depth”

levels (in [1,4], the expression “Cx:depth” is called a navigational

pattern with respect to the reference ontology). In the presence of

multi-version ontologies, the first step in query processing is the

determination of the ontology classes denoted by the navigational
pattern “Cx:depth” and of the preorder and postorder codes of

such classes. This information can be retrieved from the

TreeRelation temporal table which stores the encoding of the

multi-version ontology. SQL queries similar to the ones which
follow can be used to this purpose:

 SELECT * INTO CX FROM TreeRelation AS Node

 WHERE Node.From<=T AND T<=Node.To

 AND Node.Id=Cx;

 SELECT * INTO CY FROM TreeRelation AS Node

 WHERE Node.From<=T AND T<=Node.To

 AND Node.Pre<CX.Pre AND Node.Post>CX.Post

 AND CX.Lev-Node.Lev=depth

The first query retrieves the data of the class CX whose identifier

is “Cx” in the ontology version valid at time “T”. Then, making

use of the level information associated to nodes, the second query

retrieves, in the ontology version valid at time “T”, the ancestor

CY of the class CX, that can be reached in “depth” steps starting

from CX. The two queries return two ontology classes which must

be used, in the second query processing step, to select the
qualifying resource contents through their preorder and postorder

codes. In particular, a resource version qualifies if its semantic

pertinence implies the query navigational pattern [1,3,4]. Thanks
to the properties of the preorder/postorder encoding, this notion of

implication translates into verifying whether at least one of the

ontology classes which make up the semantic pertinence of the

resource is contained in a rectangular region defined in the
preorder/postorder plane by the navigational pattern [1,4]. Such

rectangular region, in which all and only the nodes in the

inheritance path from CY to CX fall, can be determined as the

Cartesian product [CY.Pre,CX.Pre] x [CX.Post,CY.Post] (i.e., the

lower right corner of the rectangle is CX, whereas the upper left
corner is CY). Owing to the fact that preorder, postorder and level

codes associated to the same classes are different in different

ontology versions, we will have a different containment

relationship to be checked for each ontology version.

For example, let us consider the multi-version ontology stored in

our sample TreeRelation displayed in Table 4 and the query

navigational pattern “D:2”. Depending on the time “T” of interest,

the CX and CY values retrieved by the above two queries
navigating the ontology will be as summarized in the Table which

follows:

Table 5. Evaluation of the navigational pattern “D:2” in

different versions of the ontology of Tab. 2

 CX CY

Time Id Pre Post Id Pre Post

[T0,T1) D 4 2 A 1 7

[T1,T2) D 4 2 A 1 8

[T2,T3) D 5 2 I 3 5

[T3,UC) D 4 1 I 2 4

Let us further consider the resource chunk in Fig. 2. The element

foo(v1) is applicable to class B in [T1,T2); the element foo(v2) is
applicable to class C in [T2,UC); the element foo/bar(v1) is

applicable to class C or class G in [T2,UC). The relative

positioning of such resource pertinences with respect to the

regions individuated by the navigational pattern “D:2” in the
preorder/postorder plane for different time values is displayed in

Fig. 7.

230

Figure 7. Query processing in the preorder/postorder plane.

Placement of candidate resources is shown with blue circles

Hence, at any time T [T0,T1) there are no contents in the

considered resource chunk which can qualify (the navigational
pattern “D:2” translates into the [1,4] x [2,7] region). At any time

T [T1,T2) the only valid element is foo(v1), which does not

qualify since its semantic pertinence is class B (which has

coordinates (2,1) in the preorder/postorder plane) which lays

outside of the region individuated by the navigation pattern “D:2”

(which is [1,4] x [2,8] in the plane). At any time T [T2,T3), valid

elements are foo(v2), which qualifies since its semantic pertinence

is class C (which has coordinates (4,4)) and is contained in the

region individuated by “D:2” (which is [3,5] x [2,5]), and its

subelement foo/bar(v1), which also qualifies as it inherits the
applicability class C from its parent (whereas its other

applicability class G with coordinates (8,6) lays outside of the

region). At any time T [T3,UC), valid elements are foo(v2),

which qualifies since its semantic pertinence is class C (which has
coordinates (3,3)) and is contained in the region individuated by

“D:2” (which is [2,4] x [1,4]), and its subelement foo/bar(v1),

which also qualifies as it inherits the applicability class C from its

parent (whereas its other applicability class G with coordinates
(7,5) lays outside of the region also in this case). Therefore,

considering the chunk in Fig. 2 as the only available resource, a

query with navigational pattern “D:2” returns an empty result if

the temporal selection condition involves a time T<T2 and
retrieves the second version of the element foo (inclusive of the

only version of the subelement foo/bar) if the temporal selection

involves a time T T2.

As outlined in [1; Sec. 3.6], in order to obtain a fully fledged
efficient and scalable personalization engine, the selection of

resource contents based on the semantic indexing described above

can be combined with the holistic technology described in [1] and

relying on the holistic temporal slicing techniques presented in
[13]. In a few words, the holistic technology relies on a four-level

architecture on which stack-based algorithms can be executed for

efficient path and twig matching in querying an XML file [14].
For details on such an approach for personalization and for better

characterization of usefulness of the personalization approach in

the medical domain, readers are referred to [1].

Finally, we can observe that the query template considered in this
section can easily be extended to support other temporal selection

operators (e.g., to test overlap or containment of intervals) and to

retrieve data valid over temporal intervals (i.e., also belonging to

more than one temporal version of the resource) like in the more
general formulation presented in [1]. Furthermore, also the

applicability constraint can be extended to the general form

presented in [1], where combinations with “AND” and “OR”

logical operators of several navigational patterns in positive or
negated form can be specified (in order to qualify for a negated

navigational pattern, a resource must have its representative point

outside the region defined by the navigational pattern in the

plane). Also applicability constraints involving multiple reference

ontologies in the same query can be specified and processed as

shown in [1].

5. CONCLUSIONS
In this work, we introduced a storage scheme based on a temporal
relation which can be used to represent and manage a multi-

version ontology (embodying a tree-shaped class hierarchy) in a

relational database. The definition of primitive operations, which

can be used for the maintenance of a multi-version ontology in
such a framework, has also been provided. Finally, it has been

shown how the query processing method described in [1] has to

be augmented in order to deal with multi-version ontologies in the

presence of the storage scheme presented in this work.

In future work, we will also consider performance aspects of the

proposed solutions. In particular, we will test the efficiency of the

approach in the presence of very large ontologies, with thousands

of classes and hundreds of versions each. In such a case, the

adoption of traditional indices like B+trees or of some sort of

temporal index structure might reveal itself necessary in order to

cope with the size growth of the TreeRelation temporal table, and

avoid excessive execution times for ontology modifications and
for the first step of resource personalization queries.

We will also consider the extension of the present approach to non

tree-shaped ontologies, that is ontologies where a class is allowed

to be the child of more than one parent in the class hierarchy (e.g.,
where intersection classes can be defined and multiple inheritance

is allowed). To this aim, we plan to try to extend our temporal

relation approach to the GRIPP numbering scheme used in [15],

which provides for the introduction of non-tree edges in order to
apply the preorder/postorder numbering scheme of trees also to

general directed acyclic graphs.

6. REFERENCES
[1] Grandi, F., Mandreoli, F., and Martoglia, R. 2012. Efficient

management of multi-version clinical guidelines. Journal of

Biomedical Informatics 45, 6 (Dec. 2012), 1120–1136. DOI=

http://dx.doi.org/10.1016/j.jbi.2012.07.005.

[2] Riaño, D., Real, F., López-Vallverdú, J.A., Campana, F.,
Ercolani, S., Mecocci, P., Annicchiarico, R., and Caltagirone,

C. 2012. An ontology-based personalization of health-care

knowledge to support clinical decisions for chronically ill

p
o

s
to

rd
e

r

preorder

1 2 3 4 5

1

2

3

4

5

D

A

6

6 7 8

7

8

[T0,T1)

p
o

s
to

rd
e

r
preorder

1 2 3 4 5

1

2

3

4

5

D

A

B

6

6 7 8

7

8

[T1,T2)

p
o

s
to

rd
e

r

preorder

1 2 3 4 5

1

2

3

4

5

D

I

C

G
6

6 7 8

7

8

[T2,T3)

p
o

s
to

rd
e

r

preorder

1 2 3 4 5

1

2

3

4

5

D

I

C

G

6

6 7 8

7

8

[T3,UC)

231

http://dx.doi.org/10.1016/j.jbi.2012.07.005
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Ria=ntilde=o:David.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Real:Francis.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/L=oacute=pez=Vallverd=uacute=:Joan_Albert.html
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Campana:Fabio.html
http://www.informatik.uni-trier.de/~ley/pers/hd/e/Ercolani:Sara.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mecocci:Patrizia.html
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Caltagirone:Carlo.html

patients. Journal of Biomedical Informatics 45, 3 (June

2012), 429–446 .
DOI=http://dx.doi.org/10.1016/j.jbi.2011.12.008.

[3] Tu, S.W., Peleg, M., Carini, S., Bobak, M., Ross, J.,

Rubin, D., and Sim, I. 2011. A practical method for

transforming free-text eligibility criteria into computable
criteria. Journal of Biomedical Informatics 44, 2 (April

2011), 239–250.

DOI=http://dx.doi.org/10.1016/j.jbi.2010.09.007.

[4] Grandi, F., Mandreoli, F., Martoglia, R., Ronchetti, E.,
Scalas, M.R., and Tiberio, P. 2009. Ontology-Based

Personalization of E-Government Services. In Intelligent

User Interfaces: Adaptation and Personalization Systems

and Technologies, P. Germanakos and C. Mourlas, Eds.
Information Science Reference Series. IGI Global, Hershey,

PA, 167–187. DOI=http://dx.doi.org/10.4018/978-1-60566-

308-1.ch010.

[5] W3C Consortium, Extensible Markup Language (XML)
Home Page, Retrieved December 1, 2012 from

http://www.w3.org/XML/.

[6] Field, M.J., and Lohr, K. N. (Eds.). 1990. Clinical Practice

Guidelines: Directions for a New Program. National
Academy Press, Washington, DC.

[7] Grandi, F., and Scalas, M.R., 2009. The Valid Ontology: a

Simple OWL Temporal Versioning Framework. In

Proceedings of the 3rd International Conference on
Advances in Semantic Processing (Sliema, Malta, October 11

- 16, 2009). SEMAPRO'09. IEEE, Los Alamitos, CA, 98–

102. DOI=http://dx.doi.org/10.1109/SEMAPRO.2009.12.

[8] Mackey, T.K., and Liang, B.A. 2011. The Role of Practice
Guidelines in Medical Malpractice Litigation. Virtual Mentor

13, 1 (January 2011), 36–41. Retrieved December 1, 2012

from http://virtualmentor.ama-assn.org/2011/01/hlaw1-

1101.html.

[9] Dietz, P.F. and Sleator D.D. 1987. Two Algorithms for

Maintaining Order in a List. In Proceedings of the 19th

Annual ACM Symposium on Theory of Computing (New

York, NY, May 25 - 27, 1987). STOC'87. ACM, New York,
NY, 365–372.

DOI=http://doi.acm.org/10.1145/28395.28434.

[10] Grust, T., van Keulen, M. and Teubner, J. 2004. Accelerating

XPath evaluation in any RDBMS. ACM Trans. Database
Syst. 29, 1 (March 2004) 91–131. DOI=

http://doi.acm.org/10.1145/974750.974754.

[11] Jensen, C.S., Dyreson, C.E., Böhlen, M.H., Clifford, J.,

Elmasri, R., Gadia, S.K., Grandi, F., Hayes, P.J., Jajodia, S.,
Käfer, W., Kline, N., Lorentzos, N.A., Mitsopoulos, Y.G.,

Montanari, A., Nonen, D.A., Peressi, E., Pernici, B.,

Roddick, J.F., Sarda, N.L., Scalas, M.R., Segev, A.,

Snodgrass, R.T., Soo, M.D., Tansel, A.U., Tiberio, P., and
Wiederhold, G. 1998. The Consensus Glossary of Temporal

Database Concepts - February 1998 Version. In Temporal

Databases, Research and Practice, O. Etzion, S. Jajodia and

S. Sripada, Eds. LNCS, Vol. 1399. Springer Verlag,
Heidelberg, Germany, 367–405.

DOI=http://www.doi.org/10.1007/BFb0053710.

[12] Clark, J. and DeRose, S. 1999. XML Path Language (XPath)

Version 1.0. (November 1999). W3C Recommendation.

Retrieved December 1, 2012 from

http://www.w3.org/TR/xpath/.

[13] Mandreoli, F., Martoglia, R. and Ronchetti, E. 2006.

Supporting Temporal Slicing in XML Databases. In
Proceedings of the 10th International Conference on

Extending Database Technology (Munich, Germany, March

26 - 31). EDBT'06. LNCS, Vol. 1399. Springer Verlag,

Heidelberg, Germany, 295–312.
DOI=http://dx.doi.org/10.1007/11687238_20.

[14] Bruno, N., Koudas, N. and Srivastava, D. 2002. Holistic twig

joins: optimal XML pattern matching. In Proceedings of the

SIGMOD International Conference on Management of Data
(Madison, WI, June 3 - 6, 2002). SIGMOD'02. ACM, New

York, NY, 310–321.

DOI=http://doi.acm.org/10.1145/564691.564727.

[15] Trißl, S. and Leser, U. 2007. Fast and practical indexing and
querying of very large graphs. In Proceedings of the

SIGMOD International Conference on Management of Data

(Beijing, China, June 12 - 14, 2007). SIGMOD'07. ACM,

New York, NY, 845–856.
DOI=http://doi.acm.org/10.1145/1247480.1247573.

232

http://www.informatik.uni-trier.de/~ley/db/journals/jbi/jbi45.html#RianoRLCEMAC12
http://dx.doi.org/10.1016/j.jbi.2011.12.008
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tu:Samson_W=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Carini:Simona.html
http://www.informatik.uni-trier.de/~ley/pers/hd/b/Bobak:Michael.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Ross:Jessica.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Rubin:Daniel_L=.html
http://www.informatik.uni-trier.de/~ley/db/journals/jbi/jbi44.html#TuPCBRRS11
http://dx.doi.org/10.1016/j.jbi.2010.09.007
http://www.w3.org/XML/
http://dx.doi.org/10.1109/SEMAPRO.2009.12
http://virtualmentor.ama-assn.org/2011/01/hlaw1-1101.html
http://virtualmentor.ama-assn.org/2011/01/hlaw1-1101.html
http://dx.doi.org/10.1145/28395.28434
http://doi.acm.org/10.1145/974750.974754
http://www.doi.org/10.1007/BFb0053710
http://www.w3.org/TR/xpath/
http://dx.doi.org/10.1007/11687238_20
http://dx.doi.org/10.1145/564691.564727
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Leser:Ulf.html
http://dx.doi.org/10.1145/1247480.1247573

