Querying Databases with Incomplete CP-nets

Paolo Ciaccia
DEIS, University of Bologna, Italy

pciaccia@deis.unibo.it

ABSTRACT

Preference queries aim to retrieve from large databases (DB’s) those
objects that better match user’s requirements. With the aim of sup-
porting modern DB applications, such as context-aware ones, in
which conditional preferences are the rule, in this paper we inves-
tigate the possibility of adopting conditional preference networks
(CP-nets) for DB querying. To this end, we also consider the rele-
vant case in which CP-nets are not completely specified, a likely
case for complex DB scenarios. We first show that the ceteris
paribus (all else being equal) semantics, commonly associated with
CP-nets, can lead to counterintuitive results if the CP-net is incom-
plete and the DB is incomplete as well. Then, we introduce a new
totalitarian (i.e., not ceteris paribus) semantics and, rather surpris-
ingly, prove that our semantics is equivalent to ceteris paribus for
complete acyclic CP-nets and that yields the same optimal results
if the DB is complete. Finally, we show that when both the CP-net
and the underlying DB are incomplete the totalitarian semantics
can lead to more accurate and intuitive results.

1. INTRODUCTION

The trend towards the personalization of information systems
functionalities requires new models and techniques able to provide
users with the “right information” at the “right time” in the “right
place”. Context-aware applications are a remarkable step towards
achieving this goal, the key idea being that of taking into account
context information when processing user requests. In particular,
ranking the result of a query should be based on the current user
context, rather than on some absolute criterion.

Example 1 Consider the following database of hotels:

Name Price Stars Rooms Internet
Jolly 40 2 50 Yes
Continental 55 2 30 No
Excelsior 80 3 50 Yes
Rome 80 5 100 Yes
Holiday 60 4 20 No

When travelling for work, the user does not care about price and
number of rooms, she preferring hotels with at least 4 stars and an

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Internet connection. In this case the (only) best alternative is hotel
Rome (5 stars and network-connected). However, if travelling for
leisure, the user prefers small hotels (< 30 rooms) and whose price
is at most 50 Euro. In this case no hotel satisfies both requirements,
yet it can be argued that Continental, Jolly, and Holiday are the
best available alternatives, since each of them satisfies one of the
two user preferences. o

Frameworks proposed so far in the DB field [5, 10] have paid no
specific attention to conditional preferences (see Section 5 for more
details). On the other hand, these have been largely investigated by
Al researchers, with a particular emphasis on CP-nets (Conditional
Preference networks), see [2, 1, 14, 9], a graph-based formalism
able to “factorize” the specification of preference statements over
a set of attributes. A CP-net statement like ¢ = p : a; > ay,
where a; and a; are values of attribute A and p is the value of other
attributes P, is given a ceferis paribus interpretation, i.e., “given p
prefer a; to a; only if values of other attributes are equal”.

In order to use CP-nets for the purpose of DB querying, two ma-
jor issues need to be addressed. First, since CP-nets are defined
only for finite attribute domains, an extension to infinite domains,
which are common in DB applications, is needed [6]. Second, the
case in which the CP-net is not completely specified has to be con-
sidered. This is to cover the likely case in which there are many
attributes, possibly with large domains, and the user only states a
limited set of preferences.

In this paper we concentrate on this second issue and show that
the ceteris paribus semantics yields counterintuitive results when
the CP-net is incomplete and the DB is incomplete as well, i.e.,
it does not contain all the possible alternatives for the preference
attributes. With the aim of preserving the strong points of CP-
nets, in particular their capability of concisely representing con-
ditional preferences, we study an alternative, so called rotalitarian,
semantics for CP-nets.! Our major formal result shows that, rather
surprisingly, the new semantics is equivalent to ceteris paribus for
complete acyclic CP-nets. Then we prove that for complete DB’s
the two semantics, although leading to different preferences, al-
ways yield the same set of optimal results. Finally, we consider
the case of incomplete DB’s and CP-nets and argue that the total-
itarian semantics is better suited to exclude from the result those
tuples that are apparently sub-optimal with respect to user prefer-
ences. Finally, we discuss possible extensions of the totalitarian
semantics.

'In the literature the “CP” acronym is sometimes used to stand for
“ceteris paribus” rather than for “conditional preference”. In this
paper we adhere to the original interpretation [2], thus we find no
contradiction in defining a totalitarian semantics for CP-nets.

2. BACKGROUND ON CP-NETS

In this section we provide the necessary formal background on
CP-nets. We adopt standard database terminology, the correspon-
dence with the one commonly used for describing CP-nets being
shown in Table 1.

DB terminology | CP-nets terminology | Symbol
attribute variable A B, C,..., A;
schema set of variables X

domain of A domain of A dom(A)

tuple (over X)) | outcome t =t[X]
relation feasible outcomes r C dom(X)

Table 1: Basic terminology

A CP-net over a set of attributes X = {A1,..., An} is a pair
N = (G,CPT), where G = (X, E) is a directed graph and C PT
is a function that associates to each A; € X a conditional pref-
erence table, CPT(A;). If the arc (A;, A;) € E, then Aj is a
parent of A;. Let P be the set of parents of attribute A. Then,
CPT(A) consists of a set of preference statements ¢ of the form
p=p:a > as,? where p € dom(P) and a1,a2 € dom(A).3
This expresses the conditional preference of a: with respect to
az given p. If A has no parents, then the statement simplifies to
p =1:a1 > a2 = a1 > az,i.e., a; is unconditionally preferred
to as.

Example 2 Figure I shows a simple CP-net over attributes Restau-
rantType (R), Table (T'), and Price (P), thus X = {R,T, P}.
For simplicity, all attributes have binary domains, in particular:
dom(R) = {it, chn} (Italian or Chinese), dom(T) = {in, out}
(inside or outside), and dom(P) = {low, high}. My prefer-
ences unconditionally go to Italian restaurants (it > chn), for
which I prefer to have a table inside (it : in > out) and pay
the less (it : low > high). On other hand, in a Chinese restau-
rant I prefer to sit outside (chn : out > in) and to pay more
(chn : high > low). a

it: low > high
c chn: high > low

o it: in > out
chn: out > in

Figure 1: The CP-net of Example 2

Definition 1 A CP-net N = (G,CPT) is:
e acyclic iff G is acyclic;

e locally consistent iff, for each attribute A with parents P and
for each p € dom(P), the order > induced by p on the
values of dom(A) is transitive and asymmetric, i.e., (at least)
a strict partial order.

In practice, each statement might specify a conjunction of pair
orderings of the form a; > ax, given a set of values from dom (P).
3Note that we simplify the notation and write > in place of >;‘ ,
since p and A will always be clear from the context.

e complete iff, for each A with parents P and for each p €
dom(P), > is a (strict) total order; i.e., a strict partial order
such that for each a1,a2 € dom(A), a1 # ae, either p :
ai > a20rp:az > ai.

The CP-net in Figure 1 is acyclic and complete (thus, also locally
consistent). Should we drop one statement (e.g., ¢t : in > out),
the CP-net would still be locally consistent, but incomplete. If the
CP-net is locally consistent, no contradiction is present as long as
we consider preferences over any single attribute. In the following
we only consider acyclic and locally consistent CP-nets.

2.1 The Ceteris Paribus Semantics

The standard ceteris paribus interpretation of a statement ¢ =
p:ai > az, p € CPT(A), is the set of pairs of tuples over X:

vop = {((p, a1, 9), (p, a2,)y € dom(X — P —{A})} (1)

in which y is any value of dom(Y), Y = X — P — { A} being the
set of attributes not involved in . Thus, each preference induced
by ¢ concerns two tuples that differ only in the value of A.

Let @4, op = Uec Pr(4,) Pop denote all preferences induced
by CPT(A;). Since the CP-net is locally consistent, no conflicts
are present in % .. Further, it is easy to see that, due to the
ceteris paribus (Cp) semantics, any two tuples ¢1 and ¢» are ordered
by at most one ®7, o, set. Taking the union of such sets leads to:

q);pu: U (I’jli,cp 2
AeX

Finally, let >¢py stand for the order obtained by taking the transitive
closure of <I>§pu.4 We say that tuple ¢1 dominates tuple t2 (accord-
ing to the ceteris paribus union (CpU) semantics) iff £1 >cpy t2, and
that ¢1 is optimal in arelation r C dom(X) if it is undominated in r.

A basic result on acyclic CP-nets is that >cpy is always a strict
partial order, which guarantees that at least one optimal tuple exists.
Further, if the CP-net is complete there is exactly one optimal tuple
in dom(X).

Example 3 Figure 2 shows the preference graph for the CP-net in
Figure 1, where there is an arc from t1 to t2 iff the pair (t1,t2)
is in ®gyy. Due to the ceteris paribus semantics, arcs exist only
between tuples that differ in the value of a single attribute [14].
There is a path in the graph from ti to ta iff t1 >cpu t2 (e.g.,
(it, out, low) >=cpy (chn,in, low) through the path (it, out, low),
(chn,out,low), (chn,in,low)). Since the CP-net is complete
there is one optimal tuple in dom(X), namely (it,in, low). O

(it,in,low) (chn,out,high)

(it,in,high) (it,out,low) (chn,out,low) (chn,in,high)

(it,out,high) (chn,in,low)

Figure 2: The >cpy order induced over tuples by the CP-net in
Figure 1

*Our graph-based formalization of the cpu semantics is quite dif-
ferent from that in [1], which is based on the notion of sequence of
worsening flips, yet it is equivalent and more suitable to the purpose
of this paper.

Concerning the proof procedure of CP-nets, needed to check if
t1 >cpu t2, it is known that for acyclic CP-nets its complexity can
be exponential in the number of attributes, depending on the struc-
ture of the G graph and on how C'PT"s are specified [1].

2.2 Incomplete CP-nets

Although the cpu semantics is adequate in many situations, it is
a fact that in most cases a complete CP-net is assumed. When pref-
erences are over many attributes and/or domains have large cardi-
nalities, it is unrealistic to expect that a user will completely specity
all the CPT"s.

The effects of having an incomplete CP-net can be seen by refer-
ring to Example 2. Assume the user has specified no preference on
where to sit in Italian restaurants. Then, it : in > out is dropped
from Figure 1 and the following preference graph results:

t, = (it,in,low) (chn,out,high)

(it,in,high) t, =(it,out,low) (chn,out,low) (chn,in,high)

t3 =(it,out,high) (chn,in,low)

If the DB relation is complete, i.e., v = dom(X), then the op-
timal tuples are t1 = (it, in, low) and t2 = (it, out, low), which
is perfectly reasonable given the absence of preference on where to

sit. Assume now that r = {t1 = (it, in, low), t3 = (it, out, high)}.

Since t1 ¥ cpu t3 (there is no path from ¢, to t3 in the above graph),
we conclude that both ¢ and ¢3 are optimal in 7. We find this quite
counterintuitive, since t3 has a high price, which contradicts the
preference it : low > high. Ideally, we would like to have that 1
dominates t3 even if the CP-net is incomplete.

Similarly, consider the preferences of Example 1 in the Intro-
duction. They can be represented by a CP-net over 5 attributes,
namely: Price (P), Stars (S), Rooms (R), Internet (I), and Travel
(T'), where the domain of Travel includes work (w) and leisure (1)
values. Travel, although not an attribute in the database, is a con-
text attribute needed to properly model user preferences. Figure 3
shows the CP-net for this example, in which statements are ex-
pressed in a compact form. For instance, the preference on hotels
with at least 4 stars is written as {> 4} > {< 4}. This net is highly
incomplete, since no domain is totally ordered for all parent (i.e.,

Travel) values.

[1{50)>(>50} | [w:iza>{<a} | |1<30)>{>30} | [wiyes>no |

Figure 3: The CP-net for Example 1

Consider the work context. From the relation in Example 1 we
see that the (only) best alternative is Rome (5 stars and Internet con-
nection, as required). The ceteris paribus semantics, on the other

hand, would return as optimal tuples the set {Jolly, Rome, Holiday }.

Hotel Jolly is in the answer since its Price value cannot be com-
pared to that of Rome (there is no preference on Price for the work
context), thus the cpu semantics is unable to infer that Rome is

definitely better than Jolly. Similar arguments hold for Holiday as
well as for the leisure context.

Note that, although in this simple example one could build one
different CP-net for each context value, in the general case this
would lead to combinatorial explosion. Further, this approach would
not exploit at all preferences shared by different contexts (i.e., par-
ents’ values).

Before introducing our novel semantics, a brief digression about
the interpretation of incomplete CP-nets is needed. Indeed, refer-
ring to the first of our examples, it is apparent the ceteris paribus
semantics assumes that the absence of preference on where to sit
in Italian restaurants has to be interpreted as incomparability [1]:
“given 1t, values in and out are incomparable, thus any two tuples
(it,in,p1) and (it, out, p2), with p1,p2 € dom(P), cannot be
ordered.” As above argued, equating absence of preference to in-
comparability does not seem to be the best choice to make, at least
from the user point of view.

Interpreting a missing preference in terms of indifference, al-
though not considered in CP-nets literature, in which indifference
between values is assumed to be explicitly declared (see [1]), seems
to be the only other possible alternative if one wants to stay with
the ceteris paribus semantics: “if the user has not specified a pref-
erence on where to sit, then values ¢n and out are indifferent given
the it context.” In terms of preference graph this interpretation
amounts to add bidirectional arcs among tuples when they differ by
values that are not ordered. In the example, this strategy would add,
among others, an arc from ¢; to ¢2 and vice versa. Although this
works in our example (when only ¢; and ¢3 are in r, now there is
a path from ¢; to t3 going through t2), it brings up with new, more
complex, problems to deal with. First, no strict partial order on tu-
ples can be defined anymore (since the preference graph contains
cycles), thus there is no consistent way to rank tuples. Second, in-
difference easily leads to the loss of “natural” dominance relations.
As a simple example (taken from [1]), consider the CP-net over
X = {A, B} with statements a1 : by > b2 and a2 : b2 > by (both
domains are binary). The optimal tuples in dom(X) are (a1, b1)
and (a2, b2). If we consider a1 and a2 indifferent, thus adding bidi-
rectional arcs between (a1, b1) and (a2, b1) and between (a1, b2)
and (a2, b2), there would be a path from any tuple ¢ to any other
tuple ¢', thus all tuples would be considered equally good.

It seems therefore that no adequate solution exists that is able to
guarantee that apparently worse tuples are excluded from the opti-
mal results and, at the same time, that “natural” preferences implied
by the CP-net are preserved. The incomparability interpretation of
missing preferences satisfies the second requirement but not the
first one, the opposite is true for the indifference interpretation.

In the following we pursue an approach that tries to solve above
dichotomy in two steps. First, in Section 3 we redefine the seman-
tics of preference statements and the way the so-resulting prefer-
ences have to be combined, and show that the ceteris paribus se-
mantics is not the only possible one for CP-nets. This provides
us with a new, so called fotalitarian (as opposed to ceteris paribus),
semantics which is equivalent to cpu for complete CP-nets, yet it is
more flexible if the CP-net is only partially specified. As a second
step, in Section 4 we show how our semantics behaves on incom-
plete CP-nets and discuss possible extensions.

3. TOTALITARIAN SEMANTICS FOR CP-
NETS

We start with a first, quite natural, way of interpreting preference
statements in a totalitarian way.

Definition 2 Let ¢ = p : ai;1 > a;,2 be a statement in CPT(A).
The strong totalitarian (St) interpretation of ¢ is the set of pairs of
tuples:

o5 ={((p,a1,9), (p,az,y"))|y, v € dom(X — P — {A})}

Thus, tuples ordered by ¢ differ in the value of A and, possibly,
also in the values of attributes Y not involved in ¢.

Since the CP-net is locally consistent, the sets &%, & =
Upecpr(a,) $st of preferences induced by C'PT'(A;) still have no
conflicts inside. However, two tuples ¢; and 2 might now be dif-
ferently ordered by two @7, sets, thus taking their union could
introduce cycles in the preference graph. As an example, given
@ = it : in > out and ¢’ = it : low > high and the tu-
ples t1 = (it,in, high) and to = (it,out,low), we have that
(t1,t2) € ®F g and (t2,t1) € Ph g, ie., a cycle if we take the
union of &7 o and O .

A way to preserve the strict partial order properties is to com-
pose preferences in the @7, o sets using a Pareto rule. Intuitively,
this is to say that tuple ¢ dominates ¢’ iff it does so over at least
one attribute and is never the case that this is true also for ¢'.
More precisely, we have that (¢,t") € ®gy iff there exists an at-
tribute A; such that (¢,¢) € ®}, and for no attribute A; it is
(', t) € @4, st- The strong totalitarian Pareto (stp) order - is
then defined as the transitive closure of g,

Theorem 1 For any complete acyclic CP-net N =gy is a strict
partial order.

PROOF. The proof is basically the same as that of Theorem 1
in [1], which proves that >cpy is a strict partial order for complete
acyclic CP-nets. Any transitive relation > (as, by definition, >stp
is) can be extended into at least one total order 1 iff it is asymmet-
ric, where the extension satisfies: if ¢ > ¢’ then ¢ 1 ¢'. Then, it
suffices to show that an extension exists for >~syp. The proof is by
induction on the number of attributes in X. The base case, n = 1,
follows from the hypothesis of completeness of the CP-net, which
in turn implies local consistency. Assume the result holds for all
CP-nets over n — 1 attributes and let NV be a net with n attributes.
Since N is acyclic, there is at least one attribute A with no parents.
Let dom(A) = {a1,a2,...,am}, withar > a2 > ... > am
being the total order specified by CPT(A). Let Y = X — {A}.
For each a; € dom(A), consider the CP-net N; over Y obtained
from N by removing attribute A and in which all attributes having
A as a parent have their C'PT"s restricted by keeping only state-
ments in which A = a;. By the inductive hypothesis we have that
each N; induces a strict partial order >; sy over dom(Y"). Let 1;
be an extension of >; sip. Consider now the total order J defined
as follows: if t[A] > t'[A] then t T t', if t{A] = t'[A] = a; and
t[Y] 3; t'[Y] then t O ¢'. It is immediate to verify that ¢ =stp ¢’
implies t 3 t'. It follows that =gy is asymmetric, thus a strict
partial order. [

Lemma 1 For any complete acyclic CP-net N, >cpu C >stp.

PROOF. We prove that ®¢,, C gy, from which the result fol-
lows due to the monotonicity of the transitive closure operator.
Let (¢,t") € ®&py. Thus, there is an attribute A such that (¢,t') €
% op- Clearly, (t,t) also belongs to @ , since ®% o C % g
always holds. Since, due to the cpu semantics, ¢ and ¢’ differ
only in the value of A, there can be no other attribute B such that
(t',t) € D . It follows that (¢,t") € Bgp. O

Above lemma shows that the strong totalitarian semantics in-

cludes all the ceteris paribus preferences. In many cases’ it is also
true that all the additional preferences in ®gy, — Py are in the
transitive closure of ®&,,, thus >stp=>cpu. For instance, this hap-
pens for the CP-net in Figure 1. However, this does not hold in
general, since Stp is sometimes unable to discover some preference
violations, as the following example demonstrates.

Example 4 Consider the CP-net in Figure 4, along with the pref-
erence graph of @, (solid arcs). The figure also shows as dashed
arcs 3 of the preferences in @3, — O, While the one from
(a1,b1,c1) 10 (az, b, c1), although not in ®,, is in >cpy (there
is a path in the &g, graph) the other two are not derivable us-
ing the cpu semantics. For instance, consider the pair (t,t') =
((a1,b2,c1), (a2, b2, c2)). This is in ®yy, since t is better than
t' on A, t[B] = t'[B], and on attribute C' the two tuples cannot
be compared, since they have different parent values ((al,b2) and
(a2, b2), respectively). However, C PT(C), written in the figure in
a compact form, asserts that if A = a2 or B = by then prefer-
ence is given to cs rather than to c1. We have t'[B] = t[B] = ba,
t'[C] = co, and t[C] = c1, thus t' should be better than t on
attribute C, yet Stp is unable to discover it. a

a;b;:cy>c,
adby:co,>¢

(81,b1,61) =g

(a1,b1,c2)

(ag,by,c2) (a1,b,c5)

(azby,cq) ===~ > t'=(azbyc)) €--- t= (al|b2101).""

(az,by,cy) €

Figure 4: A CP-net for which the cpu and stp semantics do not
coincide

Above example motivates the introduction of a new (weak) to-
talitarian semantics for interpreting the statements in a C' PT.°

Definition 3 (Weak totalitarian Pareto semantics)
Let a1, a2 € dom(A) and t1 and t2 be two tuples with t1[A] = a1
and t2[A] = ag. Let P be the parents of A, with p1 = t1[P)]
and pa = t2[P). If CPT(A) includes statements (not necessarily
distinct) o1 = p1 : a1 > a2 and p2 = p2 : a1 > ag then
(t17t2) € (I)z,wt-

The set of all preferences, @y, is the n-ary Pareto composition
of the @7, s sets, and the weak totalitarian Pareto (Wip) order = wip
is the transitive closure of ®,.

5A precise characterization of the CP-nets for which this occurs
seems to be a difficult problem, since it depends not only on the net
structure, but also on its CPT"’s.

®Indeed, this new semantics induces more preferences than the
strong one from the C'PT’s. However, the net effect is that less
preferences among tuples survive after the Pareto composition, as
Theorem 2 proves. This is why we say it is “weak”.

Consider again Figure 4. In CPT(C) there are two statements
(once we write them in extended form), o1 = a1,b2 : c2 > ¢1 and
(2 = az, by : ca > c1, from which we conclude, according to the
above definition, that the pair (t',t) € ®& . Since (£,t') € B
still holds, it follows that (¢,t") & Puyp.

Since checking if ¢ >cpy t' is NP-hard for arbitrary complete
acyclic CP-nets with binary domains [1],” it is clear that direct
comparison of tuples, based on Definition 3, cannot be a conclu-
sive test for checking dominance according to the wtp semantics.
Indeed, Definition 3 offers a polynomial-time method able to check
only if (¢,t") € ®yyp, yet it can be well the case that (¢,t") & ®uyp
but ¢ =wp t’. The following example shows that reasoning on the
transitive closure of ®y, is indeed needed.

Example 5 Consider the CP-net in Figure 5 over attributes
X = {A, B,C}, along with the preference graph of ®g,,. Let

t= ((ll,b1702) andt' = (ag,bl,cl).

a; > a, a; by >b, by:cy>co
a,:b,>b; b,:c,>cy
(a,by,cy)

t=(ay,bs,c;)

(ay,b,.c,)

(az,0,,C5) (2.02:C4)

(a2,0,,¢1)

t'=(a,by.cy)
(a2,b5,C5)
Figure 5: The CP-net for Example 5

It is easy to see that (t,t') & Py, since t is better than t' on
A (a1 > az), whereas t' is better than t on C (b1 : c1 > c2).
However, t wp t' holds, since both (t,(a2,b2,c1)) and
((az,b2,c1),t") are in Dy O

Given that we have redefined both statements’ interpretation and
the preference composition rule, the following is indeed rather sur-
prising:

Theorem 2 For any complete acyclic CP-net N, >cpu = > wip.

PROOF. We prove that 1) &gy, C Py, and 2) Py CS>cpu. The
result then follows from monotonicity and idempotence of transi-
tive closure.

(Pépu € Putp) The arguments in the proof of Lemma 1 still apply
here.

(Putp Ccpu). Let (¢,t') € Dyyp. We prove that there is a path
from ¢ to ¢’ in the graph of ®¢&,. The proof is by double induction,
first on the number, m, of attributes on which ¢ is better than ¢/,
while assuming that on the other n — m attributes ¢ and ¢’ have the

"However, polynomial time algorithms exist for particular types of
CP-net graphs G [1].

same values. Second, on the number, g, of attributes on which ¢ and
t’ differ, yet ¢ is not better than ¢’ on such attributes. This covers all
possibilities.

(¢ = 0) The base case (m = 1), is when ¢ and ¢’ differ on a sin-
gle attribute A1, and ¢ is better than ' on A;. This is the case
in which (¢,¢') € @7, . For the inductive step, assume the re-
sult holds for m — 1 attributes Y = {A1,..., Am—1} and con-
sider that ¢ is better than ¢’ also on A,,, whose parents are P. Let
Z=X-Y—-{An},Zp =ZNP,andYp = Y N P. Since
g = 0itisist = (2,y,am) and t' = (2,9, a),). For t be-
ing better than ¢’ on A,,, CPT(A,,) must have two statements
©1 = Zp,Yp : Qm > G, and 2 = zp,Yp : Gm > a,, Where
zp = 2[Zp), yp = y[Yp], and yp = y'[Yp]. From @1 we derive
that &% o, includes the pair (¢, ¢’), where t = (2,9, a,) differs
from ¢ just in the (worse) value a;,,. By the inductive hypothesis we
have that ¢ >cpy ¢/, thus t >y t'.

(q > 0) The base case, ¢ = 0, has been just proved. Then, assume
the result holds for an arbitrary value of m and for ¢ — 1 attributes
W on which ¢ and ¢’ differ, yet ¢ is not better than ¢’ on them. We
show how the result extends to g. Now we have that ¢ and ¢’ can be
written, respectively, as ¢ = (z,y,w,bq) and t' = (z,y',w’, by),
where 2, y, and y' are as above, w = t{W], w’ = t'[W], by =
t[Bg), and by = t'[B,]. Since, by hypothesis, (t,t') & ®%_ i,
there are two statements matching ¢ and ¢’ parent values that order
differently bg and b),. Letting Wp = W N P, the statements are ei-
ther 1 = zp,yp, wp : by > by and 2 = zp,Yp, wp : by > by,
or o3 = zp,yp,wp : by > bgand ps = zp,yp,wp : by > b,
where wp = w[Wp| and wp = w'[Wp]. In the first case,
from @1 we derive that ®%_ o, includes the pair (2, t”), where

’

t = (z,y,w,by) differs from ¢ just in the value of B,. By the
inductive hypothesis we have that t’ >cpu t', thus t —cpu t'. Sim-
ilarly, in the second case we infer from (4 that the pair (tl” ') is

1"

in®%, o, where t" = (2,9, w',b,). By hypothesis it ¢ >cpu t
thus ¢ >‘ch t/. O

Having shown that the weak totalitarian semantics is equivalent
to ceteris paribus for complete CP-nets is an important result by
itself. Indeed, since the usual interpretation of preferences in the
DB field is totalitarian (see, e.g. [5, 10, 13]), our result shows that,
at least for the case of complete CP-nets, this makes no difference
at all, thus providing a contribution to bridge the gap between the
Al and the DB approaches.

4. DEALING WITH INCOMPLETE CP-
NETS

Let us now consider how the wtp semantics behaves on incom-
plete CP-nets. The following is immediate:

Lemma 2 For any, possibly incomplete, acyclic CP-net N it holds
that >‘ch g >-wtp.

PROOF. The arguments in the proof of Lemma 1 still apply here,
since they make no assumption on the completeness of the CP-
net. [

Inclusion in the other direction, i.e., >wtp € >cpu, does not hold
anymore. For instance, in the example at the beginning of this sec-
tion it is t1 = (it,in,low) =wp t3 = (it,out, high) even if
the statement it : in > out has not been specified. This follows
since (t1,t3) € ®p (t1 is better on price than ¢3) and no prefer-
ences over other attributes involve these two tuples. Thus, wtp, un-
like cpu, can indeed derive that ¢3 is apparently sub-optimal given

t1. Similarly, for the CP-net in Figure 3 the wip semantics bet-
ter matches user intuition, in particular returning hotel Rome for
the work context and hotels Continental, Jolly, and Holiday for the
leisure context.

The fact that the optimal tuples in a relation r obtained from a
CP-net N under the >wp semantics, denoted as Optwip (1; N), are
a subset of those of >cpuy, Optepu(r; V), is not a coincidence.

Corollary 1 For any acyclic CP-net N and any relation r it holds
that Optwip(r; N) C Optepu(r; N).

The result immediately follows from >cpu being a subset of >wp,
and can be refined in the case of complete relations, r = dom(X).

Theorem 3 For any acyclic CP-net N it holds that
Optuwp(dom(X); N) = Optepu(dom(X); N).

PROOF. Thanks to Corollary 1, we only have to show
that Optepu(dom(X); N) C Optwp(dom(X); N), ie., t' ¢
Optwip(dom(X); N) implies ¢’ & Optepu(dom(X); N).

If ¢ is not optimal with the wtp semantics, there exists at least
one tuple ¢ such that (¢,t") € ®pyp. This is also to say that there
exists an attribute A with parents P such that (¢,t') € ®% ., and
for no other attribute B it is (¢',t) € ®% . Lett' = (y,p,a’),
where p = t'[P] and @’ = t'[A]. By hypothesis, CPT(A) in-
cludes a statement ¢ = p : a > a’ (otherwise t' could not be
dominated on attribute A by any tuple). Since r is complete, the
tuple ¢t = (y,p,a) is in r. It follows that (¢,t") € ®} o, thus ¢’ is
not optimal according to the cpu semantics. [

Thus, when all alternatives are available, optimal results of >cpy
and >wip are the same, regardless of the amount of incompleteness
in the CP-net.

Although wtp appears to return qualitatively better results than
Cpu, in the general case it is not a strict partial order, as the follow-
ing example shows.

Example 6 Consider the CP-net in Figure 6 over attributes
RestaurantType (R), Table (T), and SmokingArea (S), dom(S) =
{yes,no}. As in Example 2, we have it : in > out and
chn : out > in, but now there is no preference on R (i.e.,
it and chn are not ordered). Preferences on S are conditional
on T': if sitting inside, I do not want to stay in a smoking area
(in : no > yes), but my preferences change should the table be
outside (out : yes > no). According to Definition 3, we derive the
following cycle of preferences (see also Figure 6):

1) (it,in,yes) =wp (i, out, yes)
2) (it,out,yes) wp (chn,out,no)
3) (chn,out,no) >wp (chn,in,no)
4) (chn,in,no) =wp (it,in,yes)

Notice that 1) and 3) are also in > cpy, whereas this is not the case
for2)and 4). O

A simple solution to avoid above problem would be to inhibit or-
dering tuples when they have unordered values in some attributes,
i.e., assuming incomparability. This is exactly what the cpu se-
mantics would do and, as argued at the beginning of Section 3, can
easily lead to counterintuitive results.

We envision two, possibly complementary, approaches to solve
the above problem. The first one is in the line of [3], in which an
extended (ceteris paribus) weak preference semantics for CP-nets
was proposed. This was motivated by the need of dealing with CP-
nets N = (G, C'PT') in which the G graph is cyclic, thus cycles in

O—0—©

it: in > out
chn: out > in

in: no > yes
out: yes > no

(it,in,no) (chn,out,yes)

: !

(it,in,yes) (chn,out,no)
1 3
by W

(it,out,yes) (chn,in,no)

(it,out,no) (chn,in,yes)

Figure 6: The CP-net for Example 6 and its >wip order

the ®¢p, graph might arise. Essentially, the idea is to replace strict
preferences, like t1 >cpu t2 (t1 is strictly better than ¢2), with weak
ones, i.e., t1 =cpu t2, whose interpretation is “¢1 is at least as good
as t2”. Then, it is t1 >cpu to iff t1 icpu to but not o icpu t1.
Essentially, with this weak semantics all tuples such that neither is
strictly preferred to the others (i.e., they form a cycle in the ®¢y,
graph) are considered to be equivalent, and the optimal results are
those tuples t for which either no tuple ¢’ is at least as good as ¢
(strong optimals, not involved in any cycle) or no tuple ¢’ is strictly
better than ¢ (weak optimals).

Applying this approach to the case of Wip is conceptually
straightforward. ~ For instance, the CP-net in Figure 6 would
have two strong optimal tuples ((it, in, no) and (chn, out, yes)).
Should these not be in the database, the weak optimal results would
be the four tuples involved in the cycle. We plan to carefully in-
vestigate this approach in the prosecution of our work. Here we
just want to stress that, even when working with weak (rather than
strict) preferences, the cpu and wtp semantics will not be equiv-
alent on incomplete CP-nets. This can be immediately seen from
Figure 6, in which cpu cannot order tuples with different restaurant
types.

A second possibility for solving the problem is to extend the wtp
semantics by: a) slightly revising the notion of what “being better
on an attribute” means, and b) limiting the type of incompleteness
in the CPT’s. In the following we sketch the basic ideas of this
alternative approach.

Consider first issue a). Referring to preference 2) in Example 6
(similar arguments hold for 4)), we see that the two tuples can be
ordered only on S. However, looking at attribute 7" we might ar-
gue that, since the parent values are unordered, one should bet-
ter consider comparing (it, out) and (chn, out) as a whole. Un-
der this perspective, we could argue that (chn, out) is berter than
(it, out), since the latter does not respect the corresponding state-
ment ¢t : in > out. In other terms, when being unable to order
parents’ values, and only in this case, one should look at how good
is the attribute value under consideration (out) within the two dif-
ferent contexts (¢t and chn).

Let us now turn to issue b), i.e., the type of incompleteness in
the C'PT"s, and, for the sake of definiteness, consider first a CP-
net in which all attributes have no parents (thus, all preferences
are unconditional). In the most “liberal” case, the statements in
CPT(A) might induce a generic strict partial order on dom(A).
However, it is well known [5] that the Pareto composition of strict

partial orders is not a strict partial order anymore.® As a simple
example, if we have attributes A and B, and statements a1 > as,
a3 > aa, by > b3, and by > by, these would lead to the cycle
(ahbl) > wtp (a2,b2) >wtp (as,bs) >~ wip (a4,b4) > wtp (a1,b1).

This immediately rules out the possibility of having an uncon-
trolled amount of incompleteness. On the positive side, if the
C'PT(A;)’s induce weak orders, their Pareto composition is a strict
partial order. We remind that a weak order is a strict partial order
that is also negatively transitive, i.e., for each triple of values a, b, c,
ifa ¥ band b ¥ ¢, then a ¥ c. Clearly, a total order is also a weak
order, but the converse is not necessarily true. More intuitively, a
weak order can be viewed as a “linear order with ties”. This is also
to say that if a1 and a2 are not ordered, and a1 > as, then it should
be a2 > as as well. When attribute A has parents P, this restric-
tion applies to each value in dom(P). Clearly, if p,p’ € dom(P)
then the two weak orders they induce on dom(A) need not to be
the same. Finally, note that if no statement matching p is present
in CPT(A), then this induces a weak order in which all values are
unordered.

For the CP-net in Example 6 (Figure 6), Figure 7 shows the (tran-
sitively reduced) preference graph that one would obtain from the,
above informally defined, extended wtp semantics, which we might
conveniently call wtp; (the I subscript stays there to remind that
this semantics is for incomplete CP-nets). It can be observed that
tuples with unordered values can still be compared and that opti-
mal tuples for the two R contexts also dominate sub-optimal tuples
in the other context (e.g., (chn,out,yes) =wp, (it,out,yes)).
Further, now we have (it, out, yes) %wp, (chn,out,no) (this is
preference 2) in Example 6), since the first tuple is (still) better on
S, yet the second is now better on 7°, being it and chn unordered
and out better in the chn context than in the it one.

(it,in,no) (chn,out,yes)

, ,

(it,in,yes) (chn,out,no)
(it,out,yes) (chn,in,no)
(it,out,no) (chn,in,yes)

Figure 7: The >~wtp, order induced by the CP-net in Figure 6

We have not worked out yet how the notion of “relative good-
ness”, to be applied if parents’ values are unordered, should be de-
fined in the general case. At present, it is also not clear if this notion
alone is sufficient to always guarantee acyclicity (we guess it is not)
or if some further hypothesis (possibly on the CP-net topology) is
needed. Nonetheless, combining relative goodness with a relaxed
notion of preferences, in the line of [3], appears to be really promis-
ing for effectively dealing with incomplete CP-nets.

5. RELATED WORKS

In the DB field two major approaches have been proposed for
the specification of qualitative (i.e., non-numeric) preferences. The

8W. KieBling defines Pareto composition in a more restrictive way,
which guarantees that strict partial orders properties are preserved.
However, his definition has the same problems of Cpu semantics
in being unable to order tuples when some attributes’ values are
unordered.

logic-based approach by J. Chomicki [5] views preferences as ex-
pressed by a first-order binary formula P, where ¢t; >p to iff
P(t1,t2) is true. In [6] it is conjectured that CP-nets can be rep-
resented in this formalism by making explicit their ceteris paribus
semantics. However, no specific results for CP-nets or, more in
general, for conditional preferences, are given.

A second approach, pioneered by W. KieBling [10], is based on
an algebraic formalism through which a preference P is obtained
by composing simpler preferences. Recently, Endres and KieBling
have shown how the ceteris paribus semantics of CP-nets, and TCP-
nets as well,” can be captured in this algebraic framework by means
of a specific operator [8]. In the light of our result on the equiva-
lence of totalitarian and ceteris paribus semantics, it would be in-
teresting to see if the approach in [8] could possibly be simplified,
with the aim of having a more compact algebraic CP-net represen-
tation.

The work by Pini et al. [11] considers (although not in a CP-net
context) incompleteness and incomparability in the preferences of
multiple agents that are to be aggregated, and focuses on the com-
putation of possible and necessary winners (i.e., best alternatives).
Our aim is somewhat different, since we have a single agent (user)
and we work with conditional preferences. Further, [11] does not
consider constraints, i.e., all alternatives are available (a complete
DB, using our terminology).

The idea of “relative goodness”, that we have informally intro-
duced in Section 4, is somehow inspired to the work of Rossi et
al. [12] on partial CP-nets, i.e., CP-nets in which some attributes
are not ordered at all. However, [12] does not enter into details
of partial CP-nets, nor it considers the general case in which an
attribute is partially ordered (and possibly only for some parents’
values), the focus being again on aggregation of multiple agents’
preferences.

6. CONCLUSIONS

In this paper we have considered CP-nets as a viable tool to ex-
press user preferences in database queries, and have shown that
their strength in compactly representing conditional preferences
can be decoupled from the ceteris paribus (Cpu) semantics. Our
results show that one can use an alternative, totalitarian, semantics
that is equivalent to cpu for complete CP-nets and that overcomes
some limitation of cpu when preferences are only partially speci-
fied.

This being the first work that investigates the use of (incomplete)
CP-nets for querying databases, many issues need to be addressed.
In particular, a complete proof procedure for dominance testing un-
der our semantics is needed, since this is at the basis of all algo-
rithms for computing the optimal tuples in a relation [5, 10, 7]. We
would also like to better understand the implications of having an
explicit distinction between DB and context attributes, the intuition
being that the latter are, for any given query, set to constant values
(or to a set of constants). Finally, although we have provided evi-
dence by means of specific examples that the totalitarian semantics
is able to remedy some counterintuitive effects of cpu, a detailed
analysis is still missing. This would provide us with a precise char-
acterization of which kind of additional preferences are derived and
how they can modify the result of a query with respect to the cpu
semantics. Theorem 3, which shows that no modification will arise
if the DB is complete, is a preliminary yet important step along this
direction.

9TCP-nets, or tradeoffs-enhanced CP-nets [4], are an extension of
CP-nets in which it is possible to have relative importance state-
ments among attributes.

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and
D. Poole. CP-nets: A Tool for Representing and Reasoning
with Conditional Ceteris Paribus Preference Statements.
Journal of Artificial Intelligence Research (JAIR),
21:135-191, 2004.

C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole.
Reasoning With Conditional Ceteris Paribus Preference
Statements. In Proceedings of the 15th Conference on
Uncertainty in Artificial Intelligence (UAI *99), pages 71-80,
Stockholm, Sweden, July 1999.

R. I. Brafman and Y. Dimopoulos. Extended Semantics and
Optimization Algorithms for CP-networks. Computational
Intelligence, 20(2):218-245, 2004.

R. I. Brafman and C. Domshlak. Introducing Variable
Importance Tradeoffs into CP-Nets. In Proceedings of the
18th Conference on Uncertainty in Artificial Intelligence
(UAI °02), pages 69-76, Edmonton, Alberta, Canada, Aug.
2002.

J. Chomicki. Querying with Intrinsic Preferences. In
Proceedings of the 8th International Conference on
Extending Database Technology (EDBT 2002), pages 34-51,
Prague, Czech Republic, Mar. 2002.

J. Chomicki and J. Song. Monotonic and Nonmonotonic
Preference Revisions, Mar. 2005. arXiv:cs.DB/0503092v1.
P. Ciaccia. Processing Preference Queries in Standard
Database Systems. In Proceedings of 4th International
Conference on Advances in Information Systems (ADVIS
2006), pages 1-12, Izmir, Turkey, Oct. 2006. Invited paper.
M. Endres and W. KieBling. Transformation of TCP-Net
Queries into Preference Database Queries. In Proceedings of
the ECAI 2006 Multidisciplinary Workshop on Advances in
Preference Handling, pages 23-30, Riva del Garda, Italy,
Aug. 2006.

J. Goldsmith, J. Lang, M. Truszczynski, and N. Wilson. The
Computational Complexity of Dominance and Consistency
in CP-nets. In Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI-05), pages
144-149, Edinburgh, Scotland, UK, July 2005.

W. KieBling. Foundations of Preferences in Database
Systems. In Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB 2002), pages
311-322, Hong Kong, China, Aug. 2002.

M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh.
Incompleteness and Incomparability in Preference
Aggregation. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI 2007), pages
1464-1469, Hyderabad, India, Jan. 2007.

F. Rossi, K. B. Venable, and T. Walsh. mCP Nets:
Representing and Reasoning with Preferences of Multiple
Agents. In Proceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI 2004), pages
729-734, San Jose, CA, July 2004.

R. Torlone and P. Ciaccia. Which Are My Preferred Items?
In AH2002 Workshop on Recommendation and
Personalization in eCommerce (RPeC 2002), pages 1-9,
Malaga, Spain, May 2002.

N. Wilson. Extending CP-Nets with Stronger Conditional
Preference Statements. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence (AAAI 2004),
pages 735-741, San Jose, CA, USA, July 2004.

