THE WINDSURF LIBRARY FOR THE EFFICIENT
RETRIEVAL OF MULTIMEDIA HIERARCHICAL DATA*

Keywords:

Abstract:

Ilaria Bartolini, Marco Patella, and Guido Stromei
DEIS, Universita di Bologna, Italy
{i.bartolini, marco.patella, guido.stromei} Qunibo.it

Multimedia Databases, Indexing, Efficient Retrieval.

Several modern multimedia applications require the management of complex data, that can be
defined as hierarchical objects consisting of several component elements. In such scenarios, the
concept of similarity between complex objects clearly recursively depends on the similarity be-
tween component data, making difficult the resolution of several common tasks, like processing
of queries and understanding the impact of different alternatives available for the definition of
similarity between objects. To overcome such limitations, in this paper we present the WINDSURF
library for management of multimedia hierarchical data. The goal of the library is to provide a
general framework for assessing the performance of alternative query processing techniques for ef-
ficient retrieval of complex data that arise in several multimedia applications, such as image/video
retrieval and the comparison of collection of documents. We designed the library so as to include
characteristics of generality, flexibility, and extensibility: these are provided by way of a number of
different templates that can be appropriately instantiated in order to realize the particular retrieval

model needed by the user.

1 INTRODUCTION

Multimedia (MM) information, despite their
ubiquitous and prominent role in nowadays life,
still present a variety of challenges for their ef-
fective and efficient retrieval: among these, the
content extraction and subsequent indexing rep-
resent two of the most analyzed areas of research.
However, the inherently complex nature of some
multimedia data (like videos, images, web pages,
and so on) makes it hard to exploit out-of-the-
box solutions that were devised for simpler sce-
narios (e.g., textual documents). Indeed, in many
MM cases the classical information retrieval (IR)
models cannot be applied without either oversim-
plifying the type of queries that can be issued by
an user or completely giving up efficiency or effec-
tiveness. An example, that arises in several MM
scenarios, is that of MM documents that are com-
posed of several component elements. Requesting
documents that are relevant to a given query doc-
ument () entails retrieving elements that are rele-
vant to Q elements, and then somewhat combin-
ing the results at the document level. This hier-
archical structure of documents is general enough
to be able to model different MM IR applications,

*This work was partially supported by the CoOP-
ERARE MIUR Project.

but poses some peculiar challenges due to its very
nature: for example, how are document elements
compared to query elements? how the relevance
of elements is aggregated in order to assess the rel-
evance of whole documents? is indexing of whole
documents a possible choice? in case, is it a better
choice than indexing elements? Above questions
recur whenever the hierarchical model is applied
for the retrieval of MM documents; however, an-
swers cannot be given independently from the ap-
plication at hand, since each particular scenario
presents its peculiarities. When enhancing dif-
ferences among applications, we should however
note that several affinities are still present and
that solutions proposed for a particular scenario
could be applied to other similar scenarios as well,
provided that the underlying model is the same.

In this paper, we present the WINDSURF li-
brary for management of MM hierarchical data,
with the goal of providing a general, flexible, and
extensible software framework for analyzing the
impact on performance of the different aspects
included in its retrieval model. In particular, the
library presents an emphasis on query process-
ing techniques, offering different index-based al-
gorithms for the efficient resolution of similarity
retrieval queries, where documents are requested
whose content is (in some sense) similar to that
of the query. Indeed, it turns out that algo-

rithms included in the WINDSURF library have
a wide range of applicability and can therefore
be helpful for a variety of scenarios. We expect
the library to be particularly useful to those re-
searchers that have to analyze how different al-
ternatives in the representation/comparison of el-
ements/documents interact in providing different
effectiveness/efficiency performances, without the
burden of defining ex-novo algorithms for retriev-
ing query results. We also note that processing of
similarity queries may not be the main goal of the
application at hand, rather it could be just a com-
ponent of a more complex system: as an example,
TRECVID 2011 (http://trecvid.nist.gov/)
includes several tasks calling for efficient retrieval
of similar video shots. For instance, the semantic
indexing (SIN) task involves the automatic tag-
ging of video segments in order to perform fil-
tering, categorization, browsing, and search (this
is commonly performed by associating the same
tags to shots sharing similar visual/audio con-
tent (Bartolini, Patella, and Romani 2010)); the
content-based copy detection (CCD) task, on the
other hand, aims to automatically detect copies
of video segments, which clearly can be based on
the retrieval of similar video content.

We first precisely define the hierarchical re-
trieval model of WINDSURF (Sect. 2), by also pre-
senting real-world examples of its use, and pro-
vide a general view of the library (Sect. 3), in-
cluding its query processing algorithms (Sect. 4).
Then (Sect. 5), we show how the library can be
customized so as to behave according to the re-
quirements of the particular application at hand
and we provide examples of use of the library in
the Region-Based Image Retrieval (RBIR) sce-
nario (Sect. 6): this was the original applica-
tion scenario of the library and also justifies
its name (WINDSURF standing for Wavelet-based
INDexing of imageS Using Region Fragmenta-
tion (Ardizzoni, Bartolini, and Patella, 1999)).
Finally, we draw our conclusions, by also high-
lighting future directions of research (Sect. 7).

2 THE WINDSURF RETRIEVAL
MODEL

The retrieval model of WINDSURF is as follows:
we have a database D of N documents, D =
{D',..., DN}, where each document D is com-
posed of np elements, D = {R1,...,R,,}. Each
element R is described by way of features that
represent, in an appropriate way, the content of

R. Given a query document @ = {Q1,...,Qn}
composed of n elements, and an element distance
function 9, that measures the dissimilarity of a
given pair of elements (using their features), we
want to determine the set of best documents in D
with respect to Q.

The above formulation of the problem is suf-
ficiently general to encompass different retrieval
paradigms, each having a different way of specify-
ing which documents are to be considered “best”
for the query at hand: this can be demonstrated
by applying the WINDSURF retrieval model to
some real world examples.

Example 1 Our first example deals with the
comparisons of web sites. In this case, each
element R is a web page contained in a web
site D and we want to discover whether a new
web site Q is similar to some existing web sites
in our database D. Comparison between web
pages is performed by taking into account con-
tained keywords, e.g., by using the vector space
model (Salton, 1989), so that features extracted
from each page include keywords using tf x idf
values after stopping & stemming (see Fig. 1).

pagedistanced

DB website

ky Ki
k3

query website query page DB page

Figure 1: Comparing web sites.

Example 2 In RBIR, the D database consists in
still images that are segmented into regions, where
pizels included in a single region R share the same
visual content (e.g., color € texture). Image re-
gions are compared according to their visual fea-
tures and we want to retrieve images that are sim-
ilar in content to a user-specified query image @)

(see Fig. 2).

region distanced

DB imageregions

- =

query image

query regions

DB image

Figure 2: Comparing segmented images in Region-
Based Image Retrieval.

Example 3 As a third example, we consider the
comparison of videos based on similarity, where
each video D is first segmented into shots, i.e.,
sequences of video frames that are coherent in
their visual content. Then, each shot R is rep-
resented by a single key frame (this can be either

the first frame of the shot, or the middle one, or
the medoid of shot frames), so that shots can be
compared by means of a simple image similarity
function. Finally, we can compare whole videos
by aggregating the similarities between shots (see
Fig. 3). Note that different applications (like
duplicate video detection) might impose different
constraints on the “matching” of video shots, e.g.,
requesting that only shots of similar length can be
coupled or that shots that are shown in very dif-
ferent moments cannot be matched; clearly, this
has an impact on the computation of similarity
between videos, thus a researcher might be inter-
ested in investigating the effect of such constraints
on the result of a query requesting for, say, the 5
videos most similar to a given query video Q.

cut cut
shot Al] shot A2] shot A3

videoB

shot B1 : shotB2 ! shotB3 ! shot B4
cut cut cut

Figure 3: Comparison of videos based on video shots.

For the rest of the paper, we will assume as
given the way documents are divided into ele-
ments (e.g., the image segmentation algorithm in
Example 2, or the shot segmentation of videos in
Example 3), the features used to represent such
elements, and the (element) distance function ¢,
being understood that similar elements will have
a low § value: our focus here is to demonstrate
how different retrieval models can be enclosed by
the WINDSURF model, thus proving its generality.

Another important factor to be considered is
the definition of the query result, i.e., how the
best documents wrt @) are specified. Indeed, dif-
ferent applications typically have different ways of
assessing the similarity between documents, given
the similarities between component elements. In
WINDSURF, two different retrieval modalities are
supported: quantitative (k-NN) and qualitative
(Skyline).

e In the k Nearest Neighbor (k-NN) quanti-
tative model (Ilyas, Beskales, and Soliman,
2008), similarity between documents is nu-
merically assessed by way of a document dis-
tance function d that combines together the
single element distances into an overall value.
Consequently, document D is considered bet-
ter than D’ for the query Q iff d(Q,D*) <

d (Q, Db) holds and the query result consists
of the k¥ DB documents closest to the query.

e As an alternative to the quantitative model,
the qualitative (Skyline) model does not rely
on the specification of a numerical value, ac-
cording to which DB documents can be sorted
for decreasing values of similarity wrt to the
query, rather document D® is considered bet-
ter than D® for the query Q iff D* does no
worse than D? on all query elements and there
exists at least one query element on which D¢
is strictly better than D?. This necessarily in-
cludes those documents that would be the best
alternative according to some specific docu-
ment distance function (Fishburn, 1999).

Regarding k-NN queries, it has to be noted that,
usually, the computation of the document dis-
tance d is obtained by combining three basic in-
gredients: (1) the element distance 0, (2) the set
of constraints that specify how the component el-
ements of the query @ have to be matched to the
component elements of another (database) doc-
ument D, and (3) the aggregation function that
combines distance values between matched ele-
ments into an overall document distance value
(e.g., a simple average of distance values between
matched elements). Often, the overall document
distance is computed by aggregating scores of the
best possible matching, i.e., the one that mini-
mizes the overall document distance; in this case,
the computation of d also includes the resolution
of an optimization problem in the space of pos-
sible matchings between elements of @) and el-
ements of D. We finally note that the result of
any query depends on the combination of all three
ingredients, so that changing one of them might
lead to completely different results. As we will
show later, the characteristics of the overall doc-
ument distance also determine which algorithms
can be used to efficiently solve the k-NN query.
As to the Skyline retrieval model, our defini-
tion of domination among documents follows the
one described in (Bartolini, Ciaccia, and Patella,
2010) for the case of segmented images. Intu-
itively, the concept of domination is defined for
tuples, while here we are considering sets of el-
ements; thus, the dominance criterion needs to
be properly extended to deal with this additional
complexity in the structure of objects to be com-
pared. For this purpose, each document can be
defined as the set of possible matchings of its el-
ements with query elements, each matching be-
ing a tuple of distance values between a query
element); and its matched element of D, R;.

The domination between matchings can be then
straightforwardly defined. Finally, domination
between documents is built on top of the concept
of domination between matchings, stating that a
document D® dominates another document D°
wrt the query Q iff for each matching of D’ there
exists a matching of D that dominates it.

Alternative Retrieval Models

Albeit the WINDSURF retrieval model is suffi-
ciently general to encompass the characteristics
of several multimedia scenarios, see (Grauman,
2010) for a recent example, it is interesting to
note its analogies with other different models.
For example, the Bag of Words (BoW) model for
computer vision (Fei-Fei, Fergus, and Torralba,
2007) represents images as sets of patches (these
are similar to elements in WINDSURF). Then, all
patches included in any DB image are converted
into codewords, where each codeword is represen-
tative of several patches. This produces a code-
book and each image can be described as the set
of codewords representing its patches. In this
way, the retrieval models used for textual doc-
uments (Salton, 1989) can be directly applied for
images, since the codebook is equivalent to a dic-
tionary. The difficult part here is the generation
of the codebook (how many codewords? how to
compare patches?).

We also note that our k-NN retrieval model
also include those cases where the image distance
d also considers global characteristics; for exam-
ple, this is the case when the particular d to be
used for a given query is learned by exploiting side
information (Wu et al., 2009; Grauman, 2010).

3 OVERVIEW OF THE
WINDSURF LIBRARY

The WINDSURF library is written in
Java and is released wunder the “QPL”
license, being freely available at URI
http://www-db.deis.unibo.it/Windsurf/

for education and research purposes only. It
consists of five main packages, each focusing on
a section of the main architecture.

Document: the Document package includes the
definition of classes modelling documents, ele-
ments, and features. It also contains the spec-
ification of the element distance § and (possi-
bly) of the document distance d.

FeatureExtractor: the FeatureExtractor is
the component in charge of extracting the fea-
tures from a given document. This is per-
formed in two steps: first the document is de-
composed into elements (segmentation), then
features are computed for each element (ex-
traction).

QueryProcessor: the QueryProcessor (QP) is
the component that solves queries over docu-
ment features. It contains algorithms for the
efficient resolution of both k-NN and Skyline
queries, by exploiting the presence of indices
built on document features. In case indices are
not available, the package also incorporates
sequential algorithms for solving queries.

FeatureManager: the FeatureManager
(FM) is the component in charge of stor-
ing/retrieving the document features from
the DB, providing an abstraction from the
underlying used DBMS. In order to achieve
an efficient management of features, these
can be saved into a relational DBMS (in
particular, the WINDSURF library includes
code for using the MySQL? RDBMS).

IndexManager: the IndexManager (IM) pack-
age contains classes managing the feature in-
dices. These can be exploited by the QP
for the efficient resolution of queries over the
features (see Sect. 4). WINDSURF supports
indices built on top of both elements and
documents: as we will see in the following,
this allows the definition of alternative query
processing algorithms. In particular, an im-
plementation of the M-tree index (Ciaccia,
Patella, and Zezula, 1997) is included.?

Fig. 4 provides an abstract view of how packages
of the library cooperate during the insertion and
the retrieval phase. When a new document is to
be added to the document database (Fig. 4 (a)),
it is first processed by the FeatureExtractor
package which breaks it into component elements
and extracts elements’ features. These are then
forwarded to the FM and IM components that
store the features in the features DB and the fea-
tures index, respectively. On the other hand, at
query time (Fig. 4 (b)) features extracted by the
FeatureExtractor are fed into the QP compo-
nent, whose algorithms exploit the Feature and
Index managers in order to pick query results out.

’http://www.mysql.com/.
3For efficiency reasons, the implementation of
M-tree is written in C++.

Document Elements

- Feat ur eExt ract or
Feat ureNhnagerJ ‘ | ndexManager J

(a)

Query Query
document elements

Feat ur eExtractor

Query results

Figure 4: Data flow in the WINDSURF library: (a) insertion phase, (b) retrieval phase.

4 QUERY PROCESSING
ALGORITHMS

Our main goal in designing the WINDSURF library
was the performance comparison of different al-
gorithms for the retrieval of complex documents,
in terms of both efficiency and effectiveness. In
this view, the core of the library consists of the
QP component, that presents alternative algo-
rithms for the resolution of queries. Regarding
efficiency, QP algorithms might exploit indices
built on features in order to avoid a full sequential
evaluation, a non viable solution for large doc-
ument DBs. Our arguments will be developed
independently of the specific index; rather, we
will refer to a generic distance-based index, i.e.,
any index that relies on the computation of dis-
tances to return back objects. Distance-based in-
dices include both multi-dimensional (Gaede and
Gunther, 1998) and metric (Chévez et al., 2001)
indices, relevant examples of which are the R-
tree (Guttman, 1984) and the M-tree (Ciaccia,
Patella, and Zezula, 1997), respectively. To be
useful for our purposes, distance-based indices
should also provide a sorted access interface, i.e.,
to output data in increasing order of distance
with respect to the object with which the index
is queried: this is quite common, thanks also to
the existence of algorithms of general applicabil-
ity (Hjaltason and Samet, 1999; Hjaltason and
Samet, 2003). Depending on the used algorithm,
indices in the WINDSURF library might be built
on either elements (for which the element distance
d is used for indexing purposes) or whole docu-
ments (where indexing is based on the document
distance d).

In order to evaluate the efficiency of each
query processing algorithm, all classes provide

statistics about relevant operations, including:

Document distances: the number of distance
evaluations among documents (only relevant
for k-NN queries); this is considered a costly
operation, since it typically involves compar-
ing several component elements and combin-
ing them in order to produce the overall score
(as said, the latter might also require solving
an optimization problem).

Element distances: the number of distance
evaluations among elements; depending on
the number of features and on the element
distance function 4, this too might be a costly
operation.

Sorted accesses: the number of accesses to the
underlying element index; as we will show,
some algorithms exploit an index built on doc-
ument elements, that is used to sort DB ele-
ments in order of increasing distance values
with respect to query elements. A sorted ac-
cess returns a single DB element and requires
the index to perform some computations.

Document dominations: the number of com-
parisons among documents in order to see
whether a document dominates another one
(Skyline queries only); again, this is a costly
operation since it might require comparing
several matchings.

Time: the overall time needed to solve a single
query; this can be also detailed by consid-
ering the time needed for retrieving features
from the DB, accessing the underlying indices,
computing document distances, or comparing
documents for domination.

The QP includes efficient algorithms for the
efficient resolution of both k-NN and Skyline
queries (Bartolini, Ciaccia, and Patella, 2010).

Each algorithm will be described here in general
terms, by specifying under which hypotheses it is
able to correctly solve a query.

SEQ

This sequential k-NN algorithm
(QueryProcessor.SF.QuerySFSequential

class) retrieves all documents in D and compares
them with @, by using the document distance d.
Only the k best documents, i.e., the ones having
the lowest d values, are kept and returned as the
query result. No specific requirement on d or ¢
is needed, since the algorithm simply follows the
definition of k-NN query.

k-NN-set

This index-based k-NN algorithm
(QueryProcessor.SF.kNNset.kNNset class)
exploits an element index Tr to reduce the
number of document and element distances to be
computed (Bartolini, Ciaccia, and Patella, 2010).
The k-NN-set algorithm iteratively alternates
sorted accesses to the index Tg to retrieve DB
elements with random accesses that compute a
document distance d(Q, D) between the query
and the document whose element has been
retrieved by the last sorted access. In this case,
document distances are computed only during
the random access phase, while element distances
can be computed within the index and during
each random access (since distances between all
elements of both @) and of D might be required
to compute d (Q, D)).

The algorithm applies to any document dis-
tance function d that can be bounded from below,
i.e., for those d such that if, for document D =
{R1,..., Ry} and query Q = {Q1,...,Qn}, it
is 6(Q1i,Rj) > 0;,Vi,j, then a function T ex-
ists such that d(Q,D) > T(6;). This is re-
quired to guarantee correctness of the provided
result: it means that, for a document D® whose
all elements are “closer” to query elements than
all those of another document DP°, it is also
d(Q,D*) < d(Q,D"). Indeed, since the under-
lying index Tr provides DB elements in order of
increasing distance to query elements (sorted ac-
cess), the algorithm cannot terminate until it is
guaranteed that no document yet to be seen in a
sorted access is closer to) than the best k& docu-
ments seen so far.

k-NN-imgldx

This k-NN algorithm
(QueryProcessor.SF.IngIdx.QuerySFIndex
class) exploits a document index Tp. Since,
for hypothesis, Tp supports sorted accesses, the
k-NN-imgldx algorithm simply performs k of such
accesses to return the query result. We note here
that multi-dimensional access methods cannot
be used to index whole documents, because a
document is a set (and not a vector) of elements,
thus metric indices are needed for this purpose.
It then follows that the distance d used to
compare documents should be a metric.

Sky-set

This is the only index-based Skyline algo-
rithm included in the WINDSURF library
(QueryProcessor.Skyline.Skyset.Skyset
class) and uses an element index Tr (Bartolini,
Ciaccia, and Patella, 2010) (the Skyline retrieval
model cannot be supported by document indices,
because a document distance function is not
defined in this case). Similar to the k-NN-set
algorithm, Sky-set resorts to sorted and random
accesses; the main difference with k-NN-set is
that, after each sorted access, no document
distance is computed, rather the newly accessed
document D is compared for domination with
documents in the current solution, possibly
leading to drop some current results or D itself.
The correctness of Sky-set follows from the very
definition of domination among documents and
the use of a threshold tuple 8. In fact, unseen
documents will only contain elements whose
distance values are higher than those included
in @: it follows that any document D which is
not dominated by # cannot be dominated by
any unseen document, thus it can be output as
a Skyline result. We finally note that, although
our definition of the result of a Skyline query
only include undominated documents, Sky-set is
able to iteratively return results in layers (Bar-
tolini et al., 2007): according to this definition,
documents in a layer are not dominated by any
document, except by documents in previous
layers (for each document D in layer ¢ and for all
J < i, it exists at least a document D’ in layer j
that dominates D).

5 CUSTOMIZING THE
LIBRARY

The WINDSURF library includes abstract and
general classes able to represent any application
following the retrieval model described in Sect. 2.
As stated in the introduction, one of the basic
features of the library is its generality and ability
of being customized to cover a broad range of ap-
plication scenarios. In this section we first detail
how a user of the WINDSURF library can instanti-
ate classes so as to implement her specific needs,
then describe some possible customizations.

In order to correctly exploit the library, a user
has to follow five basic steps:

1. Extending the Document and Element classes
within the Document package. For this, the
user has to specify the format of features
that represents documents and document el-
ements. In particular, the element distance ¢
is modelled by the distance method in the
Element class, while the document distance
d is (possibly) implemented by the distance
method in the Document class.

2. Implementing classes in the
FeatureExtractor package for analyz-
ing documents, in order to break them into
their component elements and extract their
features.

3. Writing classes in the FeatureManager and
IndexManager packages for storing/retrieving
document/element features to/from the un-
derlying DBMS and indices.

4. Building the DB and the indices containing
documents and elements. This is performed
by way of the insert method within the
FeatureManager and IndexManager classes,
that save features of a single Document within
the DB/index, according to the insertion logic
depicted in Fig. 4 (a).

5. Querying the DB (possibly exploiting indices)
by creating an instance of the Query class
within the QueryProcessor package. Such
object (which is built using a single Document)
could be used in conjunction with any of the
algorithms listed in Sect. 4, see Fig. 4 (b).

Although the previously listed steps are the only
ones required for the basic use of the library, ad-
vanced users may require additional, more sophis-
ticated, customizations. Most commonly, these
will affect classes in the following packages.

FeatureManager and IndexManager packages:
The library already includes generic code for us-
ing the MySQL DBMS and the M-tree (Ciac-
cia, Patella, and Zezula, 1997) index (a template-
based C++ library itself), but other implemen-
tations of the generic abstract classes for fea-
tures management are possible. It is worth
noting that, as stated in Sect. 4, separate in-
dex structures should be provided for the man-
agement of documents and elements, and that
such indices should support the sorted access in-
terface: this is required by the k-NN-set and
the Sky-set algorithms, but also allows the re-
trieval of documents/elements using k-NN or
range queries (Zezula et al., 2006).

QueryProcessor package: This package con-
tains the implementations of algorithms described
in Sect. 4, but also allows the specification of
other aspects of document retrieval using either
the k-NN or the Skyline model. Particularly im-
portant is the QueryProcessor.SF sub-package,
containing the implementation of several alterna-
tives for the computation of the document dis-
tance d via the use of scoring functions. The li-
brary already implements four of such functions,
that will be detailed in the following.

Earth’s Mover Distance (EMD): using the
EMD scoring function (Rubner and Tomasi,
2000), elements of the documents to be com-
pared are matched in a many-to-many modal-
ity. The “amount” of matching of any element
is limited to the “size” of such element (for ex-
ample, in the case of image regions, this equals
the fraction of image pixels included in the
region at hand); the average of best-matched
elements is used as the aggregation function,
thus defining an optimization problem that
corresponds to the well-known transportation
problem, which can be solved in O(n3logn)
time. It is easily proved that a document dis-
tance d defined in this way is a metric and
can be bounded from below, thus it could be
exploited by algorithms described in Sect. 4.

IRM: the IRM scoring function used by the
SIMPLIcity RBIR system (Wang, Li, and
Wiederhold, 2001) is based on a greedy al-
gorithm (with complexity O(n?logn)) that
obeys the same constraints and uses the same
aggregation function (i.e., the average) as
EMD. Consequently, the document distance
computed by IRM is never lower than the one
of EMD: this also implies that IRM can be
also bounded from below (although with a

looser bound wrt the one for EMD) but it does
not satisfy the metric postulates.

1 —1 Assignment: in this case, which is the one
originally exploited by the WINDSURF RBIR
system (Ardizzoni, Bartolini, and Patella,
1999), each element of a document can be only
matched to at most one element of the other
document, and vice versa. Then a “biased”
average is used to aggregate distance values
of matched elements, so as to appropriately
penalize documents that do not match all the
query elements. This defines an assignment
problem, which can be solved using the Hun-
garian Algorithm in O(n?) time (Kuhn, 1955).
Again, it is easy to see that this document dis-
tance can be bounded from below but is not
a metric.

Greedy 1 — 1: this last scoring function is com-
puted by way of a greedy algorithm (whose
complexity is O(n?)) for the assignment prob-
lem. The corresponding document distance is
thus never lower than the one computed using
the previous function, is also bounded from
below, but is not a metric.

In case the number of document elements, n, is
high, above algorithms would be limited by their
super-linear complexity. In such cases, it is likely
that the user would specify alternative (approxi-
mate) algorithms, e.g., the pyramid match algo-
rithm detailed in (Grauman, 2010).

6 USE CASES

In this section, we demonstrate how the use of the
WINDSURF library classes can be helpful in per-
forming complex tasks over documents that com-
ply with the WINDSURF model. The case study
we consider here is that of a researcher investigat-
ing the impact of the different alternatives offered
by the WINDSURF RBIR system (see Example 2).
In particular, she is interested in the efficiency
and the effectiveness of the query models avail-
able in the library as applied to the WINDSURF
image features, which are detailed in (Ardizzoni,
Bartolini, and Patella, 1999). Following the five
steps enumerated in Sect. 5, the user has to first
implement classes in the following packages (note
that the library already includes such code):

Document package: features for each image re-
gion (element) include color/texture charac-
teristics that are represented by way of a
36-dimensional vector; the region distance

0 implements the Bhattacharyya metric dis-
tance (Kailath, 1967), while the image dis-
tance d implements all the alternatives in-
cluded in Sect. 5, see (Bartolini, Ciaccia, and
Patella, 2010).

FeatureExtractor package: a Haar-Wavelet
filter is applied to each image (document)
and pixels of the filtered image are then clus-
tered together using a K-means algorithm;
so-obtained clusters correspond to image
region, whose features are extracted from
visual characteristics of included pixels.

FeatureManager and IndexManager packages:
classes are included for storing/retrieving
image/region features to/from the MySQL
DBMS and the M-tree index.

We include here the results of some experiments
performed on a real image dataset consisting
of about 15,000 color images (corresponding to
about 63,000 regions) extracted from the IMSI
collection (http://www.imsisoft.com).

As a first demonstration of use of the li-
brary, we compare the effectiveness of the Bhat-
tacharyya region distance with respect to a sim-
pler Euclidean (Ls) distance for establishing the
similarity between region features: this is easily
done by simply redefining the ¢ distance within
the Document package. Fig. 5 shows that the
use of the Bhattacharyya distance is justified by
its far superior accuracy with respect to the Eu-
clidean distance, in spite of its higher cost (almost
doubling the time needed to compute the Lo met-
ric). Although we only present here results for k-
NN queries, experiments for Skyline queries (not
included here for the sake of brevity) confirm the
trend exhibited by Fig. 5. Again, we note that
this result can be obtained by simply redefining
the distance method of the Element class within
the Document package.

As another proof of usability of the library,
we compared the effectiveness of the document
distances described in Sect. 5. To this end, the
k-NN-set algorithm was repeatedly executed with
the different d distances. We obtained the results
shown in Fig. 6. It can be seen that all image dis-
tances behave almost the same, with the remark-
able exception of the Greedy 1 — 1 alternative,
whose accuracy is very low for the first retrieved
results. This result, which has been obtained with
no cost, since all alternatives are already available
within the library, may suggest that a choice be-
tween the first three alternatives should be based
on efficiency considerations only.

0.9 1 Bhattacharyya

0.8 1 —&—Euclidean
0.7 1

0.6 1

04 4
0.3 4
0.2 4
0.1 4

20 30

Figure 5: Effectiveness of different element distance
functions for the RBIR case: Precision (P) as a func-
tion of the number of retrieved documents (k).

Finally, we show a result of the performance
comparison for the three index-based algorithms
described in Sect. 4: Fig. 7 compares the ef-
ficiency of k-NN-set (using both the EMD and
the 1 — 1 document distance), k-NN-imgldx (us-
ing EMD), and Sky-set according to 4 different
performance metrics, as described in Sect. 4. It
is worth noting that A-NN-imgldx performs the
worst among considered algorithms: this might
sound strange at first, since only k sorted accesses
to the document index are needed and no com-
putation is done outside of the index itself, but
this is not enough to compensate for the very high
number of document distances that are computed
within the index.* Again, the library classes
already contain the code for obtaining this im-
portant result, demonstrating that, when dealing
with complex documents, a simplistic approach is
not always the best one, and several alternatives
should be taken into account to find out the best
combination of efficiency and effectiveness.

7 CONCLUSIONS

We have presented the WINDSURF library for the
management of complex (hierarchical) multime-
dia data, with the goal of providing tools for
their efficient retrieval. The library was designed

4We note here that k-NN-set computes document
distances outside of the index, only for those docu-
ments that are retrieved under sorted access. On the
other hand, Sky-set does not compute any document
distance, but has nonetheless to compare documents
for domination: in Fig. 7 each of such comparisons is
computed as a document distance, in order to com-
pare algorithms on a fair basis.

0.9
EMD

0.8 1 —&IRM
0.7 1 11
—o—Greedy 1-1
0.6 4 Vi
& 05
0.4 1
0.3
0.2 1
0.1 1
0
0 5 10 15 20 25 30
k
(a)
1
EMD
0.9 = IRM
0.8 1 1-1
0.7 4 \\ —e—Greedy 1-1
o 06 1
051
0.4 1
0.3 1
0.2 1
0.1 1
0 T
0 5 10 15 20 25 30
krel

Figure 6: Effectiveness of different document distance
functions for the RBIR case: Precision (P) as a func-
tion of the number of (a) retrieved documents (k) and
(b) relevant retrieved documents (kre;).

with the aim of generality and extensibility, so
as to be applicable to a wide range of multime-
dia scenarios that fit its similarity-based retrieval
model. Due to the inherent complexity of multi-
media data, we designed the WINDSURF retrieval
model to include all the different facets intro-
duced by the hierarchical nature of the data (for
example, how documents are characterized, how
they are split into component elements, how el-
ements are to be compared, how similarities at
the element level are to be aggregated, and so
on). Such facets can be instantiated in several
alternative ways (each choice possibly giving dif-
ferent results) and an user may want to compare
the performance of such alternatives in the sce-
nario at her hand: we believe that the use of the
WINDSURF library could help in abstracting away
the details of generic query processing algorithms,
since the above-mentioned facets can be realized
by simply implementing abstract classes of the li-
brary. We are currently working in extending the
library with new query processing algorithms and

120%

Ok-NN-set (1-1) Bk-NN-set (EMD) Ok-NN-imgldx O Sky-set

100% [-
80% [
60% [
40% |
20%
0% T T T

doc. distances elem. distances sorted time
accesses

Figure 7: Efficiency of the query processing index-
based algorithms: k-NN-set using the EMD and the
1 — 1 document distances, k-NN-imgldx using EMD
and Sky-set (graphs are normalized to the maximum
values so as to emphasize relative performance).

to incorporate other scenarios (e.g., videos (Bar-
tolini, Patella, and Romani 2010)) as instances of
the library available for downloading. Moreover,
a current limitation of the WINDSURF retrieval
model is that elements of a document are all of
a same type: we plan to extend the model to
consider elements of different types, so that only
elements of the same type can be compared. For
example, if we consider a multimedia document
composed of textual sections and images, it makes
sense to only compare text with text and images
with images. Another important application of
this concept is the use of cross-domain informa-
tion to improve the retrieval of a given type of
content, for example, exploiting surrounding text
and/or links existing to other documents (& la
PageRank) to boost image/video retrieval.

REFERENCES

Ardizzoni, S., Bartolini, I., Patella, M. Windsurf:
Region-based image retrieval using wavelets. In:
IWOSS’99. pp. 167-173. Florence, Italy (Sep
1999).

Bartolini, I., Ciaccia, P., Oria, V., Ozsu, T. Flexible
integration of multimedia sub-queries with qual-
itative preferences. Multimedia Tools and Appli-
cations, 33(3), 275-300 (June 2007).

Bartolini, I., Ciaccia, P., Patella, M. Query processing
issues in region-based image databases. Knowl-
edge and Information Systems, 25(2), 389-420
(Nov 2010).

Bartolini, I., Patella, M., and Romani, C. SHI-
ATSU: Semantic-Based Hierarchical Automatic
Tagging of Videos by Segmentation using Cuts.
In ATEMPro 2010. Florence, Italy, (Sep 2010).

Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin,
J.L. Proximity searching in metric spaces. ACM
Computing Surveys, 33(3), 273-321 (Sep 2001).

Ciaccia, P., Patella, M., Zezula, P. M-tree: An effi-
cient access method for similarity search in met-
ric spaces. In: VLDB’97. pp. 426—435. Athens,
Greece (Aug 1997).

Fei-Fei, L., Fergus, R., and Torralba, A. Recognizing
and learning object categories. CVPR 2007 short
course. Minneapolis, MN (June 2007).

Fishburn, P. Preference structures and their numer-
ical representations. Theoretical Computer Sci-
ence, 217(2), 359-383 (Apr 1999).

Gaede, V., Giinther, O. Multidimensional access
methods. ACM Computing Surveys, 30(2), 170
231 (June 1998).

Grauman, K. Efficiently searching for similar im-
ages. Communications of the ACM, 53(6), 84-94
(June 2010).

Guttman, A. R-trees: A dynamic index structure for
spatial searching. In: SIGMOD’84. pp. 47-57.
Boston, MA (June 1984).

Hjaltason, G.R., Samet, H. Distance browsing in
spatial databases. ACM TODS, 24(2), 265-318
(June 1999).

Hjaltason, G.R., Samet, H. Index-driven similarity
search in metric spaces. ACM TODS, 28(4), 517—
580 (Dec 2003).

Ilyas, I.F., Beskales, G., Soliman, M.A. A survey
of top-k query processing techniques in rela-
tional database systems. ACM Computing Sur-
veys, 40(4) (Oct 2008).

Kailath, T. The divergence and Bhattacharyya dis-
tance measures in signal selection. IEEE Trans-

actions on Communication Technology, 15(1),
52-60 (Feb 1967).

Kuhn, H-W. The hungarian method for the assign-
ment problem. Naval Research Logistic Quar-
terly, 2, 83-97 (1955).

Rubner, Y., Tomasi, C. Perceptual Metrics for Image
Database Navigation. Kluwer, Boston, MA (Dec
2000).

Salton, G. Automatic Text Processing: The Transfor-
mation, Analysis, and Retrieval of Information
by Computer. Addison-Wesley, Reading, MA
(1989).

Wu, L., Hoi, S. C. H., Jin, R., Zhu, J., Yu., N.
Distance metric learning from uncertain side in-
formation with application to automated photo
tagging. In: ACM MM’09. pp. 135-144. Vancou-
ver, Canada (Oct 2009).

Wang, J.Z., Li, J., Wiederhold, G. SIMPLIcity:
Semantics-sensitive Integrated Matching for Pic-
ture Llbraries. IEEE TPAMI, 23(9), 947-963
(Sep 2001).

Zezula, P.;, Amato, G., Dohnal, V., Batko, M. Simi-
larity Search - The Metric Space Approach, Ad-
vances in Database Systems, vol. 32. Springer
(2006).

