
A Generalized Modeling Framework for Schema Versioning Support

Fabio Grandi, Federica Mandreoli and Maria Rita Scalas
C.S.I.TE.-C.N.R. - D.E.I.S, University of Bologna, Italy

Viale Risorgimento, 2 - I-40136 Bologna, Italy
e-mail:

�
fgrandi, fmandreoli, mrscalas � @deis.unibo.it

Abstract

Advanced object-oriented applications require the man-
agement of schema versions, in order to cope with changes
in the structure of the stored data. Two types of version-
ing have been separately considered so far: branching and
temporal. The former arose in application domains like
CAD/CAM and software engineering, where different so-
lutions have been proposed to support design schema ver-
sions (consolidated versions). The latter concerns temporal
databases, where some works considered temporal schema
versioning to fulfil advanced needs of other typical object-
oriented applications like GIS and the multimedia ones.

In this work, we propose a general model which inte-
grates the two approaches by supporting both design and
temporal schema versions. The model is provided with a
complete set of schema change primitives for full-fledged
version manipulation whose semantics is described in the
paper.

Keywords: Schema versioning, Schema evolution,
OODBMS, Temporal databases

1 Introduction

In the literature, the need for maintaining data under a
schema definition which undergoes changes is not a new
issue [Rod96] and schema versioning offers a smart solu-
tion to the problem. Moreover, advanced application sys-
tems can also take benefit of schema versioning to en-
hance their functionalities. In the object-oriented field,
the strictly-related problem of schema evolution, concern-
ing the maintenance of extant data in response to schema
changes, was considered in several works (see, for instance,
[Odb96] for bibliographies and resource links). However,
also early requirements for schema versioning arose in ap-
plication domains like CAD/CAM and software engineer-
ing in order to support dynamic aspects of the engineering
design process (see [Kat90] for a brief review of different
approaches). In this context, schema versions can be or-

ganized as a DAG [KC88, Lau97], where version deriva-
tion lines can be branching, in order to represent alterna-
tives, and also, sometimes, merging. In the following, we
will refer to this approach as branching schema versioning.
Lately, schema versioning has also proved useful for other
typical object-oriented applications, like multimedia ones
[KB96] and GIS [BM98]. Such applications often have
temporal requirements, as the evolution of objects has to
be tracked and documented. In this context, the temporal
aspect of versioning has thus to be considered and tempo-
ral schema versioning is required in order to represent the
history of changes in the object structure. While tempo-
ral schema versioning has been extensively studied in the
context of relational databases [DGS97, Rod96], only a few
studies concerning object-oriented databases have taken it
into account [GSÖP98, CJK91, GMS98]. Anyway, in all
these proposals the time lines involved, valid time and/or
transaction time, are represented as a single time line and
they do not support alternative sequences of events.

The main attempt of this work is to integrate the branch-
ing approach in the temporal schema versioning framework.
To this purpose, we present a generalized schema version-
ing framework which provides support for both schema ver-
sioning modalities. The availability of both modalities in a
single system is aimed at improving its expressive power
and application potentialities. For instance, in GIS, the
chief versioning modality is presumably temporal version-
ing, where it is used to represent the history of the struc-
tural changes in the modeled reality. Parallel versions can
be used to support distinct scenarios as required, for ex-
ample, in planning activities. In this case, parallel ver-
sions can be introduced to foresee (and compare) differ-
ent land evolutions due to the construction of a bridge or
a submarine tunnel across a sea channel. From a technical
point of view, this means supporting the bifurcation of the
valid-time line necessary to explore hypothetical courses
of events (in the past as well as in the future), but impos-
sible with temporal schema versioning only, where a sin-
gle time line is adopted, unless branching time is consid-
ered [SR99]. On the other hand, in the engineering and

design field [DL88, Kat90, KL84, Lan86], the chief ver-
sioning modality is the use of consolidated versions and the
management of their derivation lines. Here the addition of
temporal versioning can be used to model the history of all
the intermediate schema changes applied to a consolidated
version before a new one is released. As already pointed
out in [GSÖP98], this adds great flexibility by enabling a
full traceability of the design process.

The rest of the paper is organized as follows. Section 2
introduces a new database notion to support the schema de-
velopment and maintenance process. In Sec. 3 we present
our schema versioning approach, with emphasis on the be-
haviour of the proposed schema change primitives in Sec. 4.
An example on how schema changes can be applied can be
found in Sec. 5. Finally, Section 6 outlines conclusion re-
marks and future directions of work.

2 A generalized database model for version
management

1TV

vt

TV1

3

2TV

1TV

tt

2CV CV

CV4

tt

vt

tt

vt
CV1

tt

vt

1

2

TV

TV

Figure 1. An example of a database

In the proposed model, we revisit the notion of database
usually considered in a snapshot system [AHV95] to sup-
port the schema development and maintenance process by
allowing both temporal and consolidated versions. To this
end, we model a scenario where different consolidated ver-
sions are stored, with the possibility of deriving a new
consolidated version from already existing ones. There-
fore, a database is represented by a DAG, composed of a
set of nodes and edges corresponding to consolidated ver-
sions and inheritance relationships, respectively. It is rooted
by the first consolidated version supplied by users. For
each consolidated version, our model enables users to keep
track of all local schema changes by providing a bitemporal
schema versioning support similar to our previous proposal
[GMS98]. Bitemporal schema versioning [DGS97], based
on the valid and transaction time dimensions, enables retro-
and pro-active schema changes (keeping track of them in
the system) to produce past, present and future schema ver-
sions.

In our model, the versioning granularity is the tempo-
ral version, that is

���������	��
���
����
, where

�	�
is a

schema version (which could be the whole schema of a
snapshot database) and

��
��
is the corresponding exten-

sional component (stored data version) containing the data
instances. Each temporal version has a temporal pertinence
which is a subset of the Cartesian product of transaction
time and valid time domains. Time values vary over a dis-
crete set

���	����������
���
������
"!$#�%�
������$
'&)(
of chronons

[JCG * 98]. Since the meaning of the domain
���	���

is dif-
ferent in the two time dimensions considered [ÖS95], we
distinguish

���	���,+
from

���	���,-
, where . means trans-

action and / means valid.
In order to identify consolidated versions, we adopt a

user-defined naming method which allows users to asso-
ciate symbolic labels to consolidated versions. A combina-
tion of this method with the bitemporal timestamping mech-
anism represents the way in which temporal versions are
univocally referenced within the database.

The complete definition of a database can be given as
follows:

Definition 1 (Database) Let
����0

be the set of all possi-
ble Temporal Versions

���
and 1 a set of labels for con-

solidated versions. A Database graph is a DAG named
�2�34�5� 1
"�6
�
�2�� where
�87 1:9;1 is a set of edges

and

�2

is a function
�2=<>� 1?9 �@�	���$+ 9 ���	���A-���BC����0EDF��GH(
which associates each tuple made up of a label I and a
bitemporal chronon

� .J.
 /K. � to a temporal version, if it ex-
ists, that is:
�2L� I
 .J.
 /K. ���NM �O�

if P �O� , in I , valid in
� .J.
 /K. �G

otherwise

where IRQS1 , .J.	Q ���	���$+
, /K.	Q ���	���A-

.

Adopting the database definition above, facilities to reach
a specific consolidated version are also provided. In fact,
by applying the

�2
function to a label I , all the temporal

versions contained in the consolidated version with name I
can be obtained. This result represents the full history of the
changes applied to the first schema defined with the creation
of the consolidated version.

We also define the Current Database functionT
�2�� I
 /K. �U�V
�2�� I
"!$#�%�
 /K. � as a view on current
versions only. Such a function will be used to slightly
simplify the formalization of the schema changes, which
can act on current temporal versions only.

Figure 1 shows a database made up of four consolidated
versions (

T �XW
) represented with bubbles. Each consoli-

dated version history is maintained by means of temporal
versions (

����W
) placed along the “private” valid/transaction

time lines of the bubbles.

2

Schema changes on node

AddProperty Add a new property ChangeMethCode Change a method code
DeleteProperty Delete an existing property AddClass Add a new isolated class
ChangePropName Change a property name DeleteClass Delete an isolated class
ChangePropType Change a property type ChangeClassName Change a class name
AddMethod Add a new method AddSuperclass Add a superclass to a class
DeleteMethod Delete an existing method DeleteSuperclass Delete a superclass from a class
ChangeMethName Change a method name

Merge-type schema changes

PickProperty Pick an existing property PickMethod Pick an existing operation
PickClass Pick an existing class MergeVersion Merge versions

Schema changes on DAG

NewNode Introduce a new isolated node NewEdge Introduce an edge

Table 1. List of primitive schema changes

3 Schema Version Management

According to the meaning associated with versions, there
are different reasons which lead to the introduction of new
versions. For instance, in the engineering context, new con-
solidated versions are introduced to represent stable design
stages, whereas temporal versions can be used to represent
intermediate design phases. On the other hand, in plan-
ning activities, temporal versions are adopted to maintain
the history of structural changes, whereas consolidated ver-
sions can be used to model different scenarios involving al-
ternative courses of events. Our model provides facilities
for introducing and organizing both kinds of versions for all
the above purposes by means of a set of primitive schema
changes, which allows users to:

1. update a consolidated version by means of schema
changes, maintaining the history of all its past or fu-
ture versions;

2. generate a new consolidated version;

3. integrate in a consolidated version characteristics of
other consolidated versions;

4. add a semantical derivation relationship between con-
solidated versions.

The supported primitive schema changes are listed in Table
1, where they have been partitioned into three categories:
“Schema changes on node”, “Merge-type schema changes”
and “Schema changes on DAG”. The “Schema changes on
node” collection is a complete set of schema updates ap-
plicable to an object-oriented schema to support tempo-
ral schema versioning. It corresponds to the primitives

usually considered in schema change papers [BKKK87]
for addition, deletion and modification of all the elements
of a generic object-oriented data model (namely proper-
ties, methods and classes) [AHV95]. Their exact expres-
sion (syntax and required parameters) depends on the par-
ticular choice of the underlying object model. For in-
stance, [GMS98] explicits this collection for a temporal
schema versioning model based on the ODMG 2.0 model
[CBB * 97]. They are necessary when an update to a con-
solidated version has to be applied and no new consol-
idated version is thus introduced by them. When one
of these primitives is applied, a new temporal version is
created in the consolidated version. New temporal ver-
sions are associated with a valid-time pertinence speci-
fied by the user, whereas they are automatically assigned
a
� !$#�%�
'&�� +

transaction timestamp by the system. Hence,
stored data can be accessed by means of past, present or
future temporal schema versions, which can be selected by
means of their temporal pertinence. All the other mecha-
nisms for the version management (see enumeration below)
are included in the “Merge-type schema changes” and the
“Schema changes on DAG” collections. They are necessary
for a user-driven control of consolidated versions and their
derivation relationships:

� the “Merge-type schema changes” allow users to in-
tegrate in a consolidated version an element or a
complete temporal version taken from another con-
solidated version. The main difference between the
pick-type schema changes and the corresponding add-
type in the “Schema changes on node” collection (e.g.
PickProperty vs. AddProperty) is that the first ones
consider populated elements whose values associated

3

with objects are inherited by the receiver version,
while the second ones only add elements with a default
value.

� the “Schema changes on DAG” allow users either to
introduce a consolidated version (NewNode) or to in-
troduce a derivation in the hierarchy (NewEdge);

4 Semantics for schema changes

In this Section we introduce the semantics of the schema
changes listed in Table 1. Since our model provides a bitem-
poral schema versioning support, the schema change prim-
itives do not operate in an “update-in-place” fashion but al-
ways manipulate and produce temporal versions. Although
this is the usual approach adopted in the temporal context,
it is a novel issue in the branching one. In fact, the consol-
idated versions usually managed in the branching context
are snapshot and no history of changes is maintained. In our
model, the finer granularity temporal versioning actually al-
lows the full history of schema changes to be maintained in
the context of each consolidated version.

l 1
TV 1(u)(TVU)

TV 2

TV 2’

TV 1

TV
1

TV
2
’)

l 1

ss 1

)Pick(u)(

ss 2

l 2

TV 3

TV 2

’TV 1

’Merge(,

sc

Figure 2. The

�2 �

behaviour for the schema
changes on edge

The way the primitive schema changes are managed in
our model is depicted in Fig. 2. Each schema change in-
volves, in general, two consolidated versions (nodes labeledI�� and I��). Both can work as sources of the change process,
whereas the first one always acts as destination, as it re-
ceives the output of the process.

The execution of a schema change can be summarized in
the following steps:

1. The set of nodes is updated as follows: 1�� � 1 D� I�� (. This is necessary when I�� was not present yet
(execution of a NewNode), otherwise it has no effect.

2. The set of edges is updated as follows:

� � � M � DF��� I��
 I�� �"(if I��	��=!�
 I I�
otherwise

The update is necessary when a new edge has to
be added (execution of Merge-type changes or a
NewEdge primitive).

3. For each source version, one of its current temporal
versions is selected. To this end, two valid-time param-
eters, called schema selection validities (�
��� and �
���),
are specified by users. The selected temporal versions
are

��� � � T
�2�� I��
 �
��� � and
��� � � T
�2�� I��
 �
��� � .

4. A Temporal Version Update function (
��� �

) is ap-
plied to the first selected temporal version in order
to execute the required schema change

:
��� � � ���� � ��
 �'� �O� � � .

5. A ������� function is applied to the second selected
temporal version in order to isolate part of it ac-
cording to the required schema change

:
��� �� �

������� ��
 �'� ��� � � .
6. A ��������� function is used to merge the results of the

first two functions in a new temporal version
�O� �

:���!� � ��������� � ��� � �
 ��� �� � .
7. The destination version is updated by placing the new

temporal version in it. This is done by updating the
�2
function, where the new temporal version is as-

signed the validity specified by the user through the
schema change validity ��� (which is a valid-time ele-
ment [JCG * 98]) and a transaction-time pertinence de-
fined by the system as

� !$#�%�
'&���+
:

�2 � � I
 .J.
 /K. � �
"##$ ##%
���!�

if I � I�� ,.J.'& !$#�%
,/K. Q(���
�2L� I
 .J.
 /K. � otherwise

Notice that, after the creation of the new temporal version���!�
, invariants concerning its consistency should be en-

forced:

� the correctness of its schema version has to be checked
[BKKK87]. To this end, the axiomatic approach pro-
posed in [PÖ97], which is independent on the underly-
ing object model, could be adopted;

� the consistency of its stored data version, with respect
to their corresponding type version in the schema ver-
sion, has also to be guaranteed. To this end, a propaga-
tion mechanism on data is included in the

��� �
, �������

and ��������� functions.

The whole schema change procedure described above is
formalized in our model via the Database Update function
�2 �

.

4

Definition 2 (Database Update function) Let
� T

be the
set of all possible schema changes,

�2�3,0
the set of all

possible database graphs

�2�3

, then:
�2 � <�� T B��
�2�3R0 9S1 9 ���	���,- 9S1?9 �@�	���A- 9 ���������
	B
�2�3R0��
where, if

�2�3
is a database graph,

a schema change,I�� , I�� labels, �
��� and �
��� schema selection validities, ���

the schema change validity (�
� W Q ���	���A-
, for � ����
 �

,��� 7)���	���,-
), then
�2�3 � � � 1 �
"� �
�
�2 � ��
�2 � ��
 � ��
�2�3�
 I��
 �
���
 I��
 �
���
 ��� �

where the definition of 1 � , � � and

�2 � has been given

above.

The general schema described so far, when applied for the
execution of a particular primitive in Tab. 1, has a special-
ized behaviour which will be detailed in the following Sub-
sections.

4.1 Schema changes on node

When a schema change on node is applied, the

�2 �

function operates on a single temporal version belong-
ing to a single existing consolidated version labeled byI�� (

!�
 I I �� I�� Q 1 , I�� � !�
 I I and, thus,
��� � �G

). In this case, with the positions ������� ��
 �'� G �:� G
,��������� � � �
 G �	� ��������� � GK
 � ��� � �O�

, we have
�O� � ���� � � � ��� � ��
 �'� ��� � � .

Hence, the
��� �

function generates a new temporal ver-
sion

��� � � by applying the schema change

to the current
temporal version

��� � satisfying the schema selection va-
lidity condition. The outcome

��� �
with its own pertinence� !$#�%�
'&�� + 9 ��� is placed by the

�2 �
function in the same

consolidated version with label I � . The database DAG re-
mains unchanged.

An example of detailed
��� �

function behaviour for the
set of schema changes defined on the basis of the ODMG
model can be found in [GMS98].

4.2 Merge-type schema changes

When a merge-type change is applied, two existing con-
solidated versions are always involved (

!�
 I I!�� I �OQL1 and!�
 I I��� I�� Q 1). As far as the ������� function behaviour is
concerned, we distinguish three cases:

PickClass The aim is to integrate a class belonging to the
temporal version

��� � in the temporal version
�O� � .

When the PickClass primitive is applied,
�O� �� has a

schema version which only contains the selected class
and a stored data version which is made up of all the
objects which are instances of that class.

PickProperty or PickMethod The aim of these primitives
is to integrate part of a class (i.e. a property or a
method) belonging to

�O� � in a class with the same
name (if it exists) contained in

��� � . In this case,��� �� has a schema version which corresponds to the
selected class containing the only selected model el-
ement with its type. If the PickProperty is applied,
the corresponding stored data version is not empty but
contains all the objects which are instances of the se-
lected class, whose values only contain the value asso-
ciated with the specified property.

MergeVersion The aim is to integrate the entire tem-
poral version

��� � in
��� � . When the MergeVer-

sion is applied, the ������� function (with the position������� � MergeVersion
�'� �O���	� ���

) just makes a copy
of the temporal version

��� � .
In all these cases, a new edge is automatically generated
(from I�� to I��) to indicate the effected semantic derivation,
whereas the set of nodes remains unchanged. Moreover,
the

�O� �
function has no effect (formally

��� � ��
 �'� �O��������
for each

in the set Merge-type schema changes) and,

thus,
���!� � ��������� � ��� �
 ��� �� � .

The basic idea behind the ��������� function is to integrate
two temporal versions. The general schema integration
problem considers two or more arbitrary schemas which
have been developed completely independent of each other
[Bre90]. In contrast, when integrating schema versions of
the same DAG, the schemas involved usually model the
same real world entities or different portions of the same
reality of interest, where the same terminology has prob-
ably been adopted. For this reason, the system can in-
fer some semantic relationships between the schemas. In
our model, semantic equivalences are reduced to syntactic
equivalences. We assume that identical names represent the
same semantics; we also introduce a user interaction by al-
lowing users to express further syntactic equivalences. For
the sake of brevity and simplicity, we do not formally de-
fine the ��������� function here but we explain its behaviour.
Given two temporal versions

��� � � ���	� �
���
�� � � and��� � �N� �	� �
���
�� � � and some syntactic equivalences (in
the form

!���

which means that each term

is substi-

tuted with the term
!

) then the

 ������� function:

1. for each syntactic equivalence
!���

, replaces each
occurrence of

with

!
in
��� � � ���	� �
���
�� � � ;

2. merges the schema versions
�	� � and

�	� � . If two
classes with the same name occur, it just makes the
union of their types. Furthermore, if they contain

5

two properties with the same name, it chooses the
most specific type (for more details, with reference to
ODMG types, see [GMS98]);

3. recalculates the new hierarchical lattice. This step
is necessary because, after the previous step, some
classes can be associated with new types. It can be
computed by means of a normalization process [TS93]
or an intelligent tool [BN94];

4. integrates the stored data version
��
�� � and

��
�� � .
In the fourth step, a problem arises when two object ver-
sions with the same OID occur in the two stored data ver-
sions to be merged, since their outcome has to be a single
object version with the same OID (assuming object equality
by identity). However, they can only descend from a com-
mon ancestor of the stored data versions involved. Hence,
if they are instances of classes with the same name, they
actually represent different versions of the same real world
entity and, thus, during step two, a merge of their types has
been effected and a merge of the object values is possible.
In this case, we obtain a new object version with the com-
mon OID and a new value which represents a new version
of the same real world entity. Otherwise, if the two object
versions with the same OID belong to different classes, the
user has to choose one of them. Moreover, in this case, a
merge of their values is not possible because they belong to
classes with different names for which a merge has not been
effected during step two.

Notice that, if
��� � � G

(as it happens when �
� � �!�
 I I), with the position
�O� � ��
 �'� G �	��G

, the ��������� func-
tion simply makes

����� �N��� �� . Therefore, a copy of the
elements “picked” from I�� is put by the

�2 �
function intoI�� .

4.3 Schema changes on DAG

The schema changes on DAG can be used for explicit
management of DAG elements. Thanks to the proposed se-
mantics of the

��� �
, ������� and ��������� functions (includ-

ing the positions done), such operations can easily be ef-
fected as particular cases of the operations seen before. The
NewNode, which creates a new empty and isolated consoli-
dated version, can be considered as a special case of Schema
changes on node application, where the first node did not
exist before (i.e. I�� �Q 1 and, thus,

�O� � � G
) and the sec-

ond one is not specified (I�� �4!�
 I I and, thus,
��� � � G

).
Therefore, also

����� � G
and the NewNode action can sim-

ply be expressed as:
�2�3 � �)
�2 � �
NewNode

�'��
�2�3	
 I��
"!�
 I I
"!�
 I I
"!�
 I I
"!�
 I I �
On the other hand, the NewEdge, which creates a deriva-

tion relationship between two nodes, can be considered as

a special case of Merge-type schema changes application,
where the two labels I�� and I�� reference already existing
nodes but nothing to integrate is selected in the second node
(
��� � � G

). Therefore, it can be expressed as:
�2�3 � �=
�2 � �
NewEdge

�'��
�2�3�
 I��
"!�
 I I
 I��
"!�
 I I
"!�
 I I �
5 An infrastructure planning example

An elective aim of a generalized versioning model is the
development of effective decision support systems based
on the analysis of complex spatio-temporal data. For in-
stance, GIS applications are often used in planning activ-
ities (e.g. concerning transport, infrastructures, facilities,
utilities). In this case, the comparison between different
solutions, also concerning alternative geoinformation evo-
lutions, is frequently required and simulations effected on
alternative scenarios can be very helpful.

Let us consider an infrastructure planning example
which concerns sea straits (e.g. the Straits of Messina, be-
tween Sicily and peninsular Italy) with the related road and
train traffic problems. Up to now, the straits can only be
crossed by ferry-boats. Many plans have been studied so
far, involving the construction of a bridge or a submarine
tunnel. We may start with a GIS application describing the
current Straits of Messina data, modelled through a single
schema which does not provide support for bridges or sub-
marine tunnels. If our system allows generalized schema
versioning, the geographic and travel impact of the real-
ization of both plans can be evaluated and compared by
analysing two scenarios based on alternative consolidated
versions, the former including bridges and the latter sub-
marine tunnels. Afterwards, each new schema version may
evolve independently from the other, as a consequence of
the application of changes acting on the schema version fea-
tures, so that independent simulations can be effected on the
two solutions (e.g. to analyse traffic evolutions). In the end,
a plan will be realized and all previous solutions will con-
verge into a single consolidated version, representing the
final outcome of the planning process.

In this case, the course of the structural changes un-
dergoes a bifurcation in order to support the comparison
between different solutions. A “root” scenario (called��. ��� �J. �) maintains all the temporal versions, with their cor-
responding temporal pertinences, describing the Straits of
Messina data available up to now. The bifurcation is im-
plemented by the NewNode primitive which creates new
scenarios. For example,
�2 � �

NewNode
���
�2�3�
�� �
��� ���
"!�
 I I
"!�
 I I
"!�
 I I
"!
 I I �

creates a new scenario called
� �
��� ��� , which can be initially

6

populated with a temporal version copied from ��. ��� �J. � (se-
lected as the current present temporal version) as follows:
�2 � �

MergeVersion
���
�2�3�
�� �
��� ���
"!�
 I I
 ��. ��� �J. �
"!$#�%�
 � !$#�%�
'&�� �

Its validity is set to
� !$#�%�
'&��

. In the same way, another sce-
nario, called .
>! ! ��I , can also be introduced. Afterwards,
each new scenario may evolve independently. For example,
�2 � �

AddClass ��� W ���������
�2�3�
�� �
��� ���
"!$#�%�
"!�
 I I
"!�
 I I
 � � � ����
'&�� �
adds a new temporal version with validity

� � � ����
'&��
in the� �
��� ��� scenario by adding the class

� �
��� ��� to the tempo-
ral version which is current and valid

!$#�%
. In the end, the

final scenario can be created and then populated by mak-
ing a copy of one temporal version of the selected

� �
��� ���
alternative:
�2 � �

MergeVersion
���
�2�3�
�	 � ! �KI
"!$#�%�
�� �
��� ���
"!$#�%�
 � � � ����
'&�� �

Some characteristics of temporal versions of the other alter-
native scenario can be inherited by means of the pick-type
schema changes. For instance, we may want to integrate
into the final scenario an optic-fiber cable telecommunica-
tion connection intially included in the tunnel scenario only.
This can be done via the following operation:
�2 � �

PickClass
��
��� �����
�2�3�
�	 � ! �KI
"!$#�%�
 .
>! ! ��I
 � � � ��
 � � � ���K
'&�� �
which integrates, into the current temporal version valid!$#�%

and belonging to the
	 � ! �KI scenario, the populated

class � �
� I�� belonging to the current temporal version in

the .
>! ! ��I scenario valid in
� � � �

. The outcome is a new
temporal version included in the

	 � ! �KI scenario valid in the
interval

� � � ����
'&��
. Moreover, a derivation edge from node.
>! ! ��I to node

	 � ! �KI is automatically added to the database
DAG.

6 Conclusions and Future work

We have proposed a generalized schema versioning
model which integrates the temporal schema versioning
with the branching versioning approach. A complete set
of schema changes for the manipulation of versions is also
defined. In this way, our model provides effective facilities
for introducing and organizing versions for all the applica-
tion requirements indicated in the literature and for the de-
velopment of new advanced applications, by improving the
versioning support of an object-oriented database.

In our future work, we will further investigate the prop-
erties of our model, also taking into account semantic and
implementation issues. We also plan to extend it by consid-
ering other versioning dimensions (e.g. spatial coordinates
[RGMS99]).

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Founda-
tions of Databases. Addison-Wesley, Reading,
MA, 1995.

[BKKK87] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Ko-
rth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. In
Proc. of the ACM-SIGMOD Annual Confer-
ence, pages 311–322, San Francisco, CA, May
1987.

[BM98] P. A. Burrough and R. A. McDonnell. Princi-
ples of Geographical Information Systems. Ox-
ford University Press, New York, NY, 1998.

[BN94] S. Bergamaschi and B. Nebel. Automatic
Building and Validation of Multiple Inheri-
tance Complex Object Database Schemata. In-
ternational Journal of Applied Intelligence,
4(2):185–204, 1994.

[Bre90] Y. Breitbart. Multidatabase Interoperability.
ACM SIGMOD Record, 19(3):53–60, 1990.

[CBB * 97] R. G. G. Cattell, D. Barry, D. Bartels,
M. Berler, J. Eastman, S. Gamerman, D. Jor-
dan, A. Springer, H. Strickland, and D. Ware,
editors. The Object Database Standard:
ODMG 2.0. Morgan Kaufmann, San Fran-
cisco, CA, 1997.

[CJK91] W. Cellary, G. Jomier, and T. Koszlajda. For-
mal Model of an Object-Oriented Database
with Versioned Objects and Schema. In Proc.
of the 2nd Int’l Conf. on Database and Expert
Systems Applications (DEXA), pages 239–244,
Berlin, Germany, 1991.

[DGS97] C. De Castro, F. Grandi, and M. R. Scalas.
Schema Versioning for Multitemporal Re-
lational Databases. Information Systems,
22(5):249–290, 1997.

[DL88] K. R. Dittrich and R. A. Lorie. Version
Support for Engineering Database Systems.
IEEE Transactions on Software Engineering,
14(4):429–436, 1988.

7

[GMS98] F. Grandi, F. Mandreoli, and M. R. Scalas.
A Formal Model for Temporal Schema
Versioning in Object-Oriented Databases.
Technical Report CSITE-014-98, CSITE
- CNR, November 1998. Available on
ftp://csite60.deis.unibo.it/pub/report.

[GSÖP98] I. A. Goralwalla, D. Szafron, M. T. Özsu, and
R. J. Peters. A Temporal Approach to Man-
aging Schema Evolution in Object Database
Systems. Data & Knowledge Engineering,
28(1):73–105, 1998.

[JCG * 98] C. S. Jensen, J. Clifford, S. K. Gadia, P. Hayes,
and S. Jajodia et al. The Consensus Glossary of
Temporal Database Concepts - February 1998
Version. In O. Etzion, S. Jajodia, and S. Sri-
pada, editors, Temporal Databases - Research
and Practice, pages 367–405. Springer-Verlag,
1998. LNCS No. 1399.

[Kat90] R. H. Katz. Toward a Unified Frame-
work for Version Modeling in Engineer-
ing Databases. ACM Computing Surveys,
22(4):375–408, 1990.

[KB96] S. Khoshafian and A. B. Baker. MultiMedia
and Imaging Databases. Morgan Kaufmann,
San Francisco, CA, 1996.

[KC88] W. Kim and H.-T. Chou. Versions of Schema
for Object-Oriented Databases. In Proc. of
the 14th Int’l Conf. on Very Large Databases
(VLDB), pages 148–159, Los Angeles, CA,
August 1988.

[KL84] R. H. Katz and T. J. Lehman. Database Sup-
port for Versions and Alternative of Large De-
sign Files. IEEE Transactions on Software En-
gineering, 10(2):191–200, 1984.

[Lan86] G. S. Landis. Design Evolution and History
in an Object-Oriented CAD/CAM Database.
In Proc. of 31st COMPCON Conference, San
Francisco, CA, March 1986.

[Lau97] S.-E. Lautemann. Schema Versioning in
Object-Oriented Database Systems. In Proc. of
the 5th International Conference on Database
Systems for Advanced Applications (DASFAA),
pages 323–332, Melbourne, Australia, April
1997.

[Odb96] E. Odberg. Database Schema Evolution.
World Wide Web Page, URL: http://
home.sol.no/

�

eodberg/smm.html,
1996.

[ÖS95] G. Özsoyoğlu and R. T. Snodgrass. Tempo-
ral and Real Time Databases: A Survey. IEEE
Transactions on Knowledge and Data Engi-
neering, 7(4):513–532, 1995.

[PÖ97] R. J. Peters and M. T. Özsu. An Ax-
iomatic Model of Dynamic Schema Evolution
in Objectbase Systems. ACM Transaction on
Database Systems, 22(1):75–114, 1997.

[RGMS99] J. F. Roddick, F. Grandi, F. Mandreoli, and
M. R. Scalas. Towards a Model for Spatio-
Temporal Schema Selection. In Proc. of the
DEXA’99 STDML Workshop, Florence, Italy,
August 1999.

[Rod96] J. F. Roddick. A Survey of Schema Versioning
Issues for Database Systems. Information and
Software Technology, 37(7):383–393, 1996.

[SR99] N. L. Sarda and P. V. Siva Prasada Reddy. Han-
dling of Alternatives and Events in Temporal
Databases. Knowledge and Information Sys-
tems, 1(3):193–227, 1999.

[TS93] C. Thieme and A. Siebes. Schema Integration
in Object-Oriented Databases. In Proc. of the
8th International Conference on Advanced In-
formation Systems Engineering (CAiSE), pages
54–70, Paris, France, June 1993.

8

