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Abstract

Dozens of temporal extension of the relational data
model and of the query language SQL have ap-
peared in recent years. Recently, a committee
formed by researchers from the academic and the in-
dustrial worlds designed a consensual extension of
the SQL-92 standard to include time, epitomized as
TSQL2.

According to the fundamental concepts of tempo-
ral grouping and temporal completeness elaborated by
Clifford, Croker and Tuzhilin, TSQL2 and the data
model on which it relies (like most of their predeces-
sors) can be shown to be ungrouped and, thus, tempo-
rally incomplete. This means that it has been shown
that there may exist temporal data models and query
languages formally more expressive than TSQL2, and
also more easy to use as they would embody a more
natural view of objects evolving in time. According
to a terminology in use, these temporal languages
can also be called history-oriented.

The definition of a history-oriented temporal SQL
extension is the contribution of this paper. We
present the lines on which a such an extension
should be developed and provide examples of its
use. The core of the extension is the addition of
special range variables: history variables, and version
or temporal variables are the syntactic and semantic
tools which enable the support of historical group-
ing at user-interface level.

1 Introduction

Temporal databases have become a consolidated re-
search field for the last decade. In this period, nu-
merous extensions of the relational model to in-
corporate time and more than a dozen temporal
query languages have been proposed. Important

events to ratify the scientific maturity of the field
can be considered the issue of the first book on tem-
poral databases [15] and the ARPA/NSF interna-
tional workshop on an infrastructure for temporal
databases held in Arlington (Texas), 1993 [8, 11].

Following the workshop efforts, a language de-
sign committee, gathering people from industry and
academia, has been formed to develop a specifica-
tion for a consensus extension of the SQL-92 stan-
dard. The result of this effort, the TSQL2 language
specification [12, 16], was released in September
1994 (a first draft circulated in December 1993).

In parallel to those initiatives, important insights
and new features of temporal languages came into
light. In particular, the notion of a grouped versus
ungrouped temporal data model and query language
was introduced in [1]. In such a model, all the infor-
mation concerning the same real world entity is to be
considered as “grouped” together. In other words,
grouped models enforce the concept of history —
considered as a whole train of events concerning a
database object — as a first-class object of discourse.
Clifford, Croker and Tuzhilin showed that grouped
models and languages are formally more expressive
than ungrouped ones. Such property had formally
been defined as temporal completeness in [1].

In the consenus glossary resulting from an-
other joint effort following the workshop, the
“groupedness” of a DBMS (termed “with tempo-
ral value integrity” in [1]) merged into the “history-
orientedness” concept, originally introduced in [4].
According to the final glossary definition [6], a tem-
poral DBMS is said to be history-oriented if:

1. It supports history unique identification (e.g.
via time-invariant keys, surrogates or OIDs);

2. The integrity of histories as first-class objects is
inherent in the model, in the sense that history-
related integrity constraints might be expressed
and enforced, and the data manipulation lan-
guage provides a mechanism (e.g., history vari-



ables and quantification) for direct reference to
object-histories.

On the other hand, we showed in [5] how a tem-
poral query language provided with two kinds of
range variables, namely version variables (named “tu-
ple variables” in [5]) and history variables, may im-
prove clarity and readability of temporal queries.
The two kinds of variables were originally intro-
duced for the Quel extension HoTQuel [3, 4] but [11]
shows how they can be used to extend SQL. While
history variables are used to denote whole histories,
version variables are used to denote homogeneous
and time-determined object versions within a given
history. These two kinds of variables may improve
the language expressiveness, in the sense that they
facilitate the user in writing queries.

Furthermore, they can be used to provide the ap-
propriate syntactic and semantic tools needed by a
history-oriented DBMS at query language level. If
such a language is used within a DBMS based on
a logical data model supporting history integrity
(e.g. a 1NF relational model with history iden-
tity enforced through internal identifiers, like

�����
in [1]), history-orientedness and temporal complete-
ness can be guaranteed. Another possibility is to
use temporal varaibles instead of version ones, as pro-
posed for the language SQL ��� [1]. Temporal vari-
ables bind to a time-point within the lifespan of the
history over which they are declared and can be
used to denote a determined version of that history.
Although a formal completeness proof for the pro-
posed SQL extension is far beyond the scope of this
work, examples will be given in order to show lan-
guage expressiveness and to show equivalence be-
tween the use of version and temporal variables.
However, in [1] it has been defined a grouped rela-
tional algebra ( ��	 ) on which a history-oriented SQL
extension can be based. A sketch of the temporal
completeness proof for �
	 can also be found in [1].

On the other hand, also ungrouped models and
languages, extended to incorporate the grouping
semantics, can be used to simulate grouping and
history-orientedness. This is the case, for instance,
of TSQL2, as it is provided with a surrogate data type
[7] which can be used at a certain extent to support
history identity and generalized range variables [14]
which can also play the role of version and history
variables. The price to pay is that this sort of group-
ing — not inherent to the language and to the un-
derlying data model — is not transparent to the user.
Indeed, it is user’s responsibility to make it into use.
This may reveal itself to be a quite hard and haz-
ardous task, in particular as to update operations.

A history-oriented temporal SQL extension, even if

it came out as a less general approach than TSQL2,
must support grouping in a transparent way. Ease
of use of the language, in accordance with the natu-
ral intuition of objects’ evolution over time, will be
a direct consequence of such a transparence. Tem-
poral next generation databases should conform to
history-oriented data models and provide history-
oriented query languages at user-interface level. The
SQL extension presented in this work (HoT-SQL),
and for which a prototype implementation is un-
der development at the University of Bologna, is de-
signed to meet these requirements. Moreover, it will
be enriched by some useful features and construsts
developed for TSQL2, from the use of temporal ele-
ments as timestamps to time manipulation functions
and predicates, though a strong compatibility with
TSQL2 is not an issue of this work.

1.1 A History-oriented Temporal Rela-
tional Data Model

The data model considered in this work is a rela-
tional model with tuple time-stamping, conforming
to the Bitemporal Conceptual Data Model (BCDM)
[9], although only valid time [6] will be consid-
ered here for simplicity. In this model, all the time-
varying relations are extended with a temporal at-
tribute whose values are temporal elements, that is
unions of maximal disjoint intervals. Since a tem-
poral element may contain any number of intervals,
variable-length records must be supported by the
system in order not to violate first normal form.

History identity is assumed to be maintained by
means of hidden and system-managed identifiers,
implemented as surrogates, whose value is the same
in all the tuples being versions of the same object.
Thus, the set of all the tuples with a common history
identifier make up the history of an object (entity or
relationship instance).

Primary keys can be defined as in the standard
relational model for each snapshot of a given rela-
tion, that is for the temporal relation restricted to
a given time-point. For the sake of generality, key
changes are allowed along time, since identity is
maintained along (snapshot) versions with possibly
different key values by means of history identifiers.
Histories can also have time-invariant (constant) at-
tributes. Special history attributes, which have a
unique value per history, can be defined by means
of aggregate functions working on the versions com-
posing the history.

The temporal integrity constraints which follow
are assumed to hold in any legal database instance.



History integrity: In a given history, different ver-
sions cannot be valid at the same time (his-
tory uniqueness). Although key changes are al-
lowed, no object version can be (even partially)
assigned a ‘Null’ key value or be assigned the
key value of another object valid at a different
time.

History referential integrity: If
�

is the primary
key of a base relation � matching foreign keys���������������
	

in base relations � ����������� � 	 , when a
key update changes the

�
value in � from �
�

to �
� � valid in period � , also the
� � value in ���

must be changed from �
� to �
� � valid in period� (for all ����� ����������� ) within the same transac-
tion. The only change that may involve

� � in
isolation is the assignment of a ‘Null’ value.

In other words, the external identification supported
by foreign keys must be maintained throughout any
key change.

2 A Relational Language with
History, Version and Temporal
Variables

Version variables are used in HoT-SQL to denote
flat tuples representing time-determined object ver-
sions, while history variables properly denote sets of
flat tuples composed of all the temporal versions of
the same object. Temporal variables are used to de-
note time-points contained in the lifespan of a his-
tory. Each value assumed by such a variable will
single out a version in that history. All kinds of vari-
ables can be declared in the FROM clause of HoT-SQL
statements according to the following syntax:
� from clause � ::=
FROM

� var declaration ��� , � var declaration ���
� var declaration � ::=� rel name � [ [ � h-var name � ] :� tv-var name ��� � tv-var name ��� ]

If the � tv-var name � starts by “t,” it is assumed to
be a temporal variable name, else a version variable
name. Default rules for optional parts are added
for upward compatibility of non-temporal SQL-92,
in order to provide a temporal semantics to legacy
SQL applications in which histories replace object
snapshots (tuples).

In its complete form, the variable declaration in
the FROM clause has the following format:

FROM Rel H-Var:TV-Var-1. . .TV-Var-n

in which H-Var is a history variable declared over
relation Rel and TV-Var-1,. . . ,TV-Var-n are ver-
sion or temporal variables all declared over history
variable H-Var. In the body of the query which the
FROM clause belongs to, H-Var denotes the history
of an entity of the class the relation Rel represents,
whereas TV-Var-1,. . . ,TV-Var-ndenote (possibly)
different versions of such entity or different time-
points in its lifespan.

If the history variable name is omitted, a history
variable with the same name of the relation is as-
sumed (allowed only once):

FROM Rel:TV-Var-1. . .TV-Var-n

is equivalent to:

FROM Rel Rel:TV-Var-1. . .TV-Var-n

If only the relation name appears in the variable
declaration part, a history variable and one version
variable with the same name of the relation are im-
plicitly assumed:

FROM Rel

is equivalent to (also allowed only once):

FROM Rel Rel:Rel

Only history variables may appear in the target
list of a SELECT statement, because always histo-
ries (or history portions) are retrieved by a HoT-SQL
query.

If Attr is an attribute name in the schema of the
relation on which version variable V-Var has been
declared, then the notation V-Var.Attr denotes
the Attr value in the tuple binding to variable V-
Var. This is the usual way to reference attribute
values within time-determined versions. The ex-
pression V-Var.V-Time represents the timestamp
of the object version denoted by V-Var.

If t-Var is a temporal variable declared over
the history variable H-Var, then the notation H-
Var.Attr represents the whole history of the at-
tribute Attr, while the notation H-Var(t-Var)
represents the version, valid at the time-point bind-
ing to t-Var, of the history binding to H-Var. The
equivalent expressions H-Var(t-Var).Attr and
H-Var.Attr(t-Var) denote the value of attribute
Attr in such a version.

Furthermore, also global history attribute may
be defined, and referenced in the HoT-SQL WHERE



clause. For instance, if H-Var is a history variable
then H-Var.V-Time represents the lifespan of the
object denoted by H-Var. Aggregate functions can
also be used to derive history global properties as
follows:

H-Var.MAX(Salary)

H-Var.AVG(Hours)

H-Var.FIRST(Job)

where the function FIRST (LAST) yields the value
found in the first (last) version of the history denoted
by H-Var.

In the rest of the paper we will show how history,
version and temporal variables can conveniently be
used to express queries and updates. For the sake of
simplicity we consider two relations with schemas:

Employee(Name,Job,Salary|V-Time)

EmpPro(Employee,Project,Hours|V-
Time)

A hidden attribute HID, representing the history
identifier, belong to every relation and is completely
managed by the system.

2.1 Retrieval statements

The query:

SELECT *
FROM Employee Emp:Job1 Job2
VALID IN [1990-1992]
WHERE Job1.Job<>Job2.Job

AND Job1.Salary=Job2.Salary
AND Emp.FIRST(Salary)>850

retrieves the 1990–1992 history of the employees
who changed job whitout a salary change and whose
first salary was higher than 850. If we want to con-
sider only consecutive changes, a temporal condi-
tion Job1.V-Time MEETS Job2.V-Timemust be
added to the WHERE clause to check if Job1 and
Job2 bind to consecutive employee’s versions. If
temporal variables are to be used, the same query
can be rewritten as:

SELECT *
FROM Employee Emp:t1 t2
VALID IN [1990-1992]
WHERE Emp.Job(t1)<>Emp.Job(t2)

AND Emp.Salary(t1) =
Emp.Salary(t2)

AND Emp.Salary(first)>850

The special literal “first” (last) is used as
a system defined temporal variable which always
binds to the first (last) time-point of the lifespan of
the history which it refers to (the history denoted by
Emp in this case). If we want to consider only con-
secutive changes, the temporal condition t1 MEETS
t2 must simply be added.

The query:

SELECT Emp1.Name,Emp1.Job
FROM Employee Emp1:IsClerk,

Employee Emp2:IsMgr
VALID IN IsMgr.V-Time
WHERE IsClerk.Job=’Clerk’

AND IsMgr.Name=’Smith’
AND IsMgr.Job=’Manager’

retrieves the name and the job of any employee who
ever was a clerk, during the period(s) in which Smith
was a manager. With temporal variables it becomes:

SELECT Emp1.Name,Emp1.Job
FROM Employee Emp1:tClerk,

Employee Emp2:tMgr
VALID IN tMgr
WHERE Emp1.Job(tClerk)=’Clerk’

AND Emp2.Name(tMgr)=’Smith’
AND Emp2.Job(tMgr)=’Manager’

The query:

SELECT Employee,AVG(Hours)
FROM EmpPro EP:DBMS,
VALID IN [1994]
WHERE DBMS.Project=’DBMS’

AND DBMS.V-Time OVERLAPS [1993]

For all the employees who worked to the DBMS
project in 1993, the query retrieves their names and
the average hours they worked to the DBMS project
in 1994 (the EmpPro relation contains histories of the
relationship Employee-Project). By using a temporal
variable, the query becomes: The query:

SELECT Employee,AVG(Hours)
FROM EmpPro EP:tDBMS,
VALID IN [1994]
WHERE EmpPro.Project(tDBMS)=’DBMS’

AND tDBMS IN [1993]

It can finally be noticed that, owing to the default
declaration rules, the queries:

SELECT *
FROM Employee



SELECT *
FROM Employee E, EmpPro EP
WHERE E.Name=EP.Employee

which are also correct SQL queries, are HoT-SQL le-
gal queries, and retrieve complete histories (includ-
ing valid time). If we consider TSQL2 [16], since
surrogates are used to support history identity and
must be managed by the user, the join query must be
expressed as:

SELECT E.*,EP.*
FROM Employee(HID) AS HE,

EmpPro(HID) AS HEP,
HE(*) AS E, HEP(*) AS EP

WHERE E.Name=EP.Employee

which is a bit less readable than HoT-SQL and also
incompatible with plain SQL. Range variables HE
and HEP are only used here to support history iden-
tity, while E and EP are used as tuple variables rang-
ing within histories with a common surrogate value
(in order to test the join condition and to build the
result).

In HoT-SQL, the mechanism for “grouping” all
the tuples with a common HID value to form a his-
tory is inherent to the language semantics, whereas,
in TSQL2, it must be explicitly managed by means of
the first variable declarations: Employee(HID) AS
HE, EmpPro(HID) AS HEP.

2.2 Update statements

In snapshot databases, an atomic fact to be stored in
a relation can be represented as a tuple (transaction
tuple). Such a tuple can simply be appended to the
relation in case of insertion or it substitutes at most
another tuple (target tuple) previously stored in the
relation in case of update: a new object version re-
places the old one. In temporal databases, while an
atomic fact to be stored can still be represented as
a transaction tuple (with its own timenstamp repre-
senting the validity of the fact), we usually have more
than one target tuples in case of update. As a matter
of fact, all the tuples concerning the same object to be
modified, whose validity overlaps the validity of the
transaction tuple, are target tuples and must be af-
fected by the update. The loss of unicity of the target
tuple raises problems of data consistency which can
be solved by means of a history-oriented approach
as outlined in [4].

In the insertion statement:

INSERT INTO Employee

VALUES(’Ford’,’Engineer’,1200)
VALID FROM Now

the clause VALID FROM Now is optional, since it
corresponds to the default update validity (on-time
transaction). Since NAME is the key, if another em-
ployee whose name is Ford (valid in [Now..UC],
where UC means until changed) is found in the
relation Employee, then the insertion is rejected
and the transaction aborts, else a new history
(with a newly generated HID) is created. The
tuple (Ford,Engineer,1200|[Now..UC]) be-
comes the first version of the new history.

The statement:

UPDATE Employee Emp:Current YearAgo
SET Salary=Current.Salary +

0.2*YearAgo.Salary
VALID FROM ’Dec/1/1994’
WHERE Emp.Name=’Johnson’

AND Current.V-Time
OVERLAPS Now

AND YearAgo.V-Time
OVERLAPS Now-%1 Year%

involves a retroactive salary increase for the em-
ployee named Johnson. The increase equals 20% of
the salary he earned one year ago.

The statement:

DELETE Employee Emp1
WHERE Emp1.LAST(Salary)+50 >

( SELECT AVG(Salary)
FROM Employee Emp2:SameJob
VALID IN SameJob.V-Time
WHERE SameJob.Job =

Emp1.LAST(Job) )

can be used to fire all the employees who earn 50
more than the average salary of any employee with
the same job. It can be noticed that the last ver-
sion of the deleted employees may correspond to
their present status or to a future status if proactive
changes have been recorded.

Moreover, a new instruction, the RECORD state-
ment originary proposed for HoTQuel [3, 4], is
added to HoT-SQL for user-friendly manipulation
of historical data. This instruction combines the
history-oriented approach for updates with a uni-
fied modification semantics resulting in a general-
ized modification statement able to deal with inser-
tions, updates and deletions in a transparent way
and respecting all the integrity constraints required
by a history-oriented manipulation language.

For instance, the RECORD statement below:



RECORD INTO Employee
VALUES(’Jones’,’Cashier’,950)

automatically behaves like the insertion statement:

INSERT INTO Employee
VALUES(’Jones’,’Cashier’,950)

if no employee with name ’Jones’ is already
present in the Employee relation, else like the state-
ment:

UPDATE Employee
SET Job=’Cashier’, Salary=950
WHERE Name=’Jones’

In any case, the transaction never aborts and the
storage of the temporal information contained in the
VALUES clause of the RECORD statement is guar-
anteed. This mechanism avoids the knowledge of
the database content otherwise requested from the
user for the choice of the standard INSERT/UPDATE
statements.

3 Conclusions

In this paper we have presented a history-oriented
temporal SQL extension, provided with history, ver-
sion and temporal variables.

A protoype implementation of a subset of the lan-
guage is under development at the University of
Bologna. The system is based on the MULTICAL
temporal database system of the University of Ari-
zona [10], on top of which a HoT-SQL preprocessor
has been built by means of standard Unix tools (Lexx
and Yacc) and C programming. The prototype suf-
fer from several limitations inherited from the MUL-
TICAL host system (e.g. the number of joinable ta-
bles limits the number of HoT-SQL declarable vari-
ables). The preprocessor implements, in a transpar-
ent way, the simulation of grouping via surrogates
by translating HoT-SQL queries involving history
and version variables into MULTICAL queries with
plain range variables and supplemental conditions
involving hidden history identifiers. A more robust
and complete implementation of the language was
beyond the horizon of the present work. A dedi-
cated system, based on an optimized support of the
temporally grouped algebra �
	 , would probably be
the best solution to implement a full HoT-SQL pro-
totype.

Future work will include implementation but also
an effort to make HoT-SQL ideas into a concrete

proposal of temporal extension (TSQL3) of SQL3,
the next-generation standard of database query lan-
guages. This would also mean to make HoT-SQL
the more compatible as possible with the TSQL2
proposal, provided that a future TSQL3 should also
guarantee upward compatibility with TSQL2.
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