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Abstract

The support of schema versioning has been considered in the literature on temporal databases only
at a limited extent. In particular, solutions for managing schema versions along transaction-time as
different interfaces on the same temporal data were proposed so far.

In this paper we investigate the distinct functionalities of new solutions for schema versioning along
valid- and transaction-time in a temporal relational environment. The support of schema versioning
implies operations both at intensional and extensional level. Two distinct design solutions (single- and
multi-pool) are presented for the management of extensional data in the presence of schema versioning.
Moroever, a further distinction is introduced to define synchronous and asynchronous versioning of data
and schemas.

The proposed solutions differ in the semantics and in the possible operations they support. The
mechanisms for the selection of data through a schema version is strictly related to the particular
schema versioning soultion, and has also influences on the data definition and manipulation language
at user-interface level. We also show how the temporal language TSQL2, originally designed to support
transaction-time schema versioning, can accordingly be extended.

1 Introduction

Two time dimensions are usually considered in temporal databases [So091, TSC*93]: transaction-time,
which tells when an event is recorded in a database, and valid-time, which tells when an event occurs,
occurred or is expected to occur in the real world [JCE*94]. According to the temporal dimensions they
support, temporal databases can be classified as monotemporal (transaction- or valid-time), bitemporal or
snapshot. Transaction-time DBs record all the versions of data inserted, deleted or updated in successive
transactions (current and non current versions). Valid-time DBs maintain the most recently inserted
versions of data, each relative to a distinct valid-time interval (current versions, forming the present
historical state). Bitemporal DBs support both transaction and valid-time and thus maintain all the
valid-time versions recorded in successive transactions (present and past historical states). Snapshot
DBs do not support time: they maintain only the most recently inserted (current) version. A DB in
which relations with more than one temporal format (e.g. snapshot, valid-time and bitemporal relations)
coexist can also be called multitemporal [DGS94al].

When a schema change is applied to a traditional database, the current schema is usually substituted
by a brand new version. The data corresponding to the past schema are lost or restarted according to the
new schema if the database supports schema evolution. In both cases, a portion of intensional information
may be no longer available together with the corresponding piece of extensional information. In order to
avoid information loss, the concept of schema versioning has been introduced [Rodd92b, JCE*94]. In cur-
rent literature [DT87, McS90, Rodd92a, RS94], several proposals have been made for the maintainance
of schema versions along transaction time whereas the necessity for the support of schema versioning
along valid time is still debated. We also studied transaction-time schema versioning in a multitemporal
environment in [DGS94b].

In [DGS94c, DGS95], we considered the notion of schema versioning along valid-time which will
be further emphasized in this paper. Whereas transaction-time schema versioning is sufficient for any
on-time schema change, that is schema changes effective when applied, or for applications for which
the exact time of application of a schema change is not crucial (this seems to be the case of most
CAD/CAM/CIM applications), valid-time schema versioning is made necessary by database appli-
cations requiring refro- or pro-active schema changes. It can be noticed that retroactive changes are quite
common in databases, both concerning extensional and intensional data. Like valid-time databases have



been introduced to accomodate retroactive changes of extensional data, valid-time schema versioning
is necessary to allow also retroactive changes of intensional data. For instance, retroactive changes of
intensional data can be enforced by changes in laws with retroactive effects (e.g. new encoding rules re-
quiring more digits can be stated for social security numbers today, but effective from 1/1/1996) or, even
more likely, they can be a consequence of deferred updates (e.g. the new encoding rules are stated and
effective now but the corresponding schema change will be applied to the database only next month).
Also proactive changes of intensional data are possible in consequence of particular design choices (i.e.
in what-if analysis during development or maintainance of database applications), and require valid-
time schema versioning to be supported. Advanced database application may also require bitemporal
schema versioning, when not only must retro- and pro-active schema changes be managed but it is also
necessary to keep track of them in the database (e.g. for auditing purposes). As it happens to extensional
updates in bitemporal databases, this is only possible by means of schema versioning along both time
dimensions.

Moreover, as far as the extensional aspects of schema versioning are concerned, we consider two
distinct solutions for the management of data and show how each solution works in reply to schema
changes, queries or updates. In the following, by the term data pool we denote a repository for exten-
sional data. The solutions for organization and management of data pools are presented and discussed
at logical level, without entering physical design details. The two solutions we consider are [DGS94c]:

e Single-Pool Solution The data corresponding to all schema versions are maintained into a single
data pool.

e Multi-Pool Solution Distinct data pools are maintained for distinct schema versions [SCD93,
DGS94b].

The single-pool solution is consistent with the solution adopted in [R594] in [TSQL2] for schema evolu-
tion and schema versioning along transaction-time.

Another degree of freedom in data management, which takes place when extensional and inten-
sional data are versioned along the same temporal dimension(s), gives rise to the following distinction
[DGS94c]:

e Synchronous Management Data are stored, retrieved and updated always through the corre-
sponding schema version, that is the schema version having the same validiy of data along the
common temporal dimension(s). Synchronous management implies synchronous versioning, where
the temporal pertinence of a schema version must include the temporal pertinence of the corre-
sponding data along the common temporal dimensions.

e Asynchronous Management Data can be retrieved and updated through any schema version,
whose validity is independent of the validity of data also along common temporal dimension(s).
Asynchronous management gives rise to asynchronous versioning, that is the temporal pertinence
of a schema version and the temporal pertinence of the corresponding data are completely inde-
pendent.

In all the schema versioning proposals published in literature, asynchronous versioning seems to be
adopted. As a matter of fact, the schema version to be used for data access can be specified indepen-
dently from the time pertinence of data and separate linguistic tools are provided to this purpose in
query language extensions. For instance, in the TSQL2 [TSQL2, RS94] query:

SELECT * FROM REL
WHERE VALI D( REL) OVERLAPS ' 1/ 1/ 80’
SCHEMA | *1/1/90° |

can be used to retrieve (extensional) data valid on 1/1/80 from the relation REL using the current schema
version as of 1/1/90. Since there is no correlation between the time pertinence of data and schemas,
we must be in the presence of “asynchronous” management in order to express (and answer) such a
query. In this case (e.g. if REL is a valid-time relation), the asynchronous management is guaranteed,
in a natural way, by the orthogonality of the time dimensions. As a matter of fact, we always have
asynchronous management between different time dimensions. But assume that REL is a transaction-
time relation, transaction-time schema versioning is still used, and consider the following query:



SELECT * FROM REL
WHERE TRANSACTI ON( REL) OVERLAPS * 1/ 1/ 80’
SCHEMA | * 1/1/ 90" |

Well, this is a legal query only in the case of synchronous management, because different transaction
times are to be used for the selection of data and schema (and it seems to be a correct TSQL2 query).
In our opinion, synchronous management for transaction-time repesent a very hybrid solution which
strains the semantics of transaction-time. It should be kept in mind that reference to transaction-time
in the past has the meaning of a rollback operation, bringing back the database to a past state of its life.
Therefore, the states in which the extensional and the intensional parts of the database can be brought
back should be consistent. This is the reason for which synchronous management for transaction-time
schema versioning is mandatory in our approach. If an application requires asynchronous management
of data and schemas, valid-time schema versioning should be employed. Since no special constraints
are enforced by the semantics of valid time, valid-time schema versioning can either be synchronous or
asynchronous.

The rest of the paper is organized as follows: in Section 2 we present the single- and the multi-pool
solutions, both in the synchronous and asynchronous case and show how they work in valid- and in
transaction-time schema versioning. The differences are discussed also on the basis of some examples.
Section 3 is devoted to the query language extensions and semantics in the considered environment.
The use of different schema versions to manipulate data is illustrated on the basis of the features of each
type of extensional management. Examples are provided in order to show how different results can be
obtained in the presence of different schema versioning solutions.

2 Schema Versioning

In this section we introduce valid-time, transaction-time and bitemporal schema versioning, and de-
scribe mechanisms for their support and management. The operations on schema versions and the
corresponding data are illustrated by means of figures and examples. More details can be found in
[DGS94c].

The data definition language must be extended in order to support all kinds of schema versioning.
We show how the TSQL2 temporal extension of SQL-92 [TSQL2, SAAT94] could be upgraded to this
purpose. TSQL2 is already designed to support schema transaction-time schema versioning [RS94]. Its
data definition language is provided with the CREATE and ALTER statements [SG94], for the creation
and modification of a table, respectively.

The statement:

CREATE TABLE < table name > < table elements >
< temporal de finition >

allows the definition of a new table named < table name >, where < table elements > defines the non
temporal attributes of the table and < temporal de finition > specifies the temporal format of the table
(type of data versioning). For instance, the statement:

CREATE TABLE REL(a;: :d1, a2 :d2, az:ds)
AS VALI D AND TRANSACTI ON

defines a bitemporal table with non temporal attributes a;, a2, as. The domains of such attributes are
dy, da, ds, respectively. For the sake of simplicity, domains will be omitted in the following. The TSQL2
statement ALTER TABLE allows a change to be effected on a relation schema.

In a multitemporal environment, schema changes should also include the change of the table tem-
poral format [SG94, DGS94b, DGS94c]. To this end, ADD or DROP clauses with VALI D or TRANSACTI ON
specification must be used. For instance, the statement:

ALTER TABLE REL
DROP TRANSACTI ON
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Figure 1: situation before (1a) and after (1b) the schema change “DROP a5” valid in [¢', ¢"]

changes the temporal format of table REL from bitemporal to valid-time.

In transaction-time schema versioning, a CREATE or ALTER statement always concerns the current
schema version, thus, no time for the new schema (version) can be specified: the implicit transaction-
time pertinence of the schema change is always [NOW, UC], and cannot be changed by the user. The
symbol UC has the meaning of “until changed” and is used to timestamp only current data (not
changed yet). On the contrary, in valid-time or bitemporal schema versioning, a new clause is intro-
duced to allow the user to specify the validity of the schema change. Therefore, in our extension, the
CREATE and ALTER statements are augmented with a VALI D clause [DGS94c]. For instance, the state-
ment:

ALTER TABLE REL
ADD COLUMN a6 : d6
VALI D [t',¢"]

requests the creation of a new schema version valid in [¢',¢"] for relation REL, where attribute ag is
added.

2.1 Valid-Time Schema Versioning

In all the prospected solutions, management of intensional data does not present new or peculiar diffi-
culties. In valid-time schema versioning, system catalogues are implemented by means of valid-time
relations, whose tuples correspond to schema versions. The tuple timestamps represent the validity of
each schema version. Therefore, the management of intensional data in response to a schema change in
valid-time schema verisoning reduces to the update of a valid-time relation. The only difference (and
complication) from transaction-time versioning is that more than one schema versions may be inter-
ested by a single change. As a matter of fact, whereas in transaction-time versioning only the current
schema version is affected by the change [DGS94b], in valid-time versioning all the schema versions
totally or even partially overlapped by the validity of the change are affected. An comprehensive exam-
pleis given in Fig. 1, which illustrates at intensional level the schema change “DROP COLUMN a5” with
validity [t',t"]. The situations before and after the change are shown in Figg. 1a and 1b, respectively.
Among all the schema versions, two are partially overlapped by [t',t"]. The version relative to [t1,¢2]
is unaffected, because it does not contain the attribute a5, and so it remains unchanged. The schema
version relative to [t4,¢5] is partially overlapped and actually affected by the change. This version is
thus split into two portions: the non-overlapped portion maintains all its old attributes al..a6, whereas
the overlapped portion loses the attribute a5 becoming (al .. a4, a6). The schema version relative to
[t3,t4] is also affected and totally overlapped, thus a5 is dropped from this version.



Furthermore, the only difference between single- and multi-pool versioning at intensional level is
that, in the latter case, pointers to the new data pool(s) must be stored in the catalogues (see [DGS94c]
for details).

As far as extensional data management is concerned, the different strategies qualify the single- versus
the multi-pool solution.

2.1.1 Single-Pool Solution:

The single-pool consists of a repository where all the extensional data are stored according to a global
schema (completed schema in [SAAT94]), which includes all the attributes introduced so far by successive
schema changes. If a schema change is destructive, such as the drop of an attribute or the restriction of
a domain, the change can only be recorded in the catalogues, since no data can be discarded from the
single-pool. On the contrary, if a change adds an attribute, a temporal dimension or extends a domain,
the whole data pool is converted to the new format. Note that if the change concerns a domain, the
attribute must be extended to the largest one defined so far. If the change of a domain produces a new
domain incompatible with the old one (e.g. when changing an attribute CODE from numeric to alpha-
betic), two attributes must be maintained, with the same name as seen by the user, but corresponding
to different domains and belonging to different schema versions as recorded in the catalogues. Since
the change of temporal format is also allowed, if a schema change adds new temporal dimensions the
whole data pool must be converted to the enlarged temporal format, using the temporal conversion
maps defined in [DGS94a], as shown in [DGS94b]. Data are thus maintained according to the largest
schema and in the largest temporal format so far defined and only the catalogues maintain the history
of the changes. This solution does not minimize the data space relative to each schema version.

For example, Tabb.1-3 respectively show the evolution of the single pool of the snapshot table
Employee(EMP_NAME,ADDRESS) before and after the schema changes of conversion to the valid-
time format and successive addition of the attribute PHONE. The first change is supposed to span
from 1985, some update activity concerning the Employee Jones occurs between the two changes and,
in 1995, the attribute PHONE is added.

| EMP_NAME | ADDRESS |
Brown London
Jones Edimborough
Rossi Rome
Matisse Paris

Table 1: Single-pool for Employee before the schema changes

[EMPNAME | ADDRESS | VALIDTIME |
Brown London {1985..FOREV ER}
Jones Edimborough | {1985.. FOREV ER}
Rossi Rome {1985..FOREV ER}
Matisse Paris {1985.. FOREVER}

Table 2: Single-pool for Employee after the addition of transaction-time

In the single-pool solution, two pieces of information are necessary: the current structure of the single
pool (all the attributes defined so far and the largest temporal format) and the structure and temporal
format of each schema version. The original structure and temporal format of data in each schema
version can thus be reconstructed using the catalogue information.

There are no differences between the synchronous and the asynchronous case as far as schema
changes are concerned.



[EMPNAME | ADDRESS [ PHONE | VALIDTIME |

Brown London NULL | {95..FOREV ER}
Jones Edimborough | NULL {80..87}
Jones New York 4040404 | {89..FOREV ER}
Rossi Rome NULL | {95..FOREV ER}

Matisse Paris NULL | {95.FOREVER}

Table 3: Single-pool for Employee after the addition of PHONE

2.1.2 Multi-Pool Solution:

The multi-pool solution requires the creation of as many data pools as the number of schema versions.

In valid-time schema versioning, data pools underlying unaffected and totally or partially over-
lapped schema versions are left untouched. For each affected and totally overlapped schema version a
new data pool substitutes the previous one; a new data pool is created for each partially overlapped and
affected schema version and a copy of the old pool remains connected to each of the non-overlapped
portions of the original schema.

One of the main differences between the single- and the multi-pool solution is the following: a
schema change applied to several schema versions produces different results on the different versions.
This does not cause substantial differences in the intensional management, but the extensional manage-
ment must be differentiated on each data pool.

2.1.3 Asynchronous Multi-pool solution for valid-time schema versioning

In this case, each data pool is formatted according to the corresponding schema version. Therefore,
when a new data pool is started the tuples are copied from the initial affected pool, according to the
change applied to the previous schema.

2.1.4 Synchronous Multi-pool solution for valid-time schema versioning

The synchronous management of the multi-pool solution is achieved by restricting the validity of data
(if any) in each new pool to its intersection with the schema version validity (due to synchronous ver-
sioning, the validity of all data in the pool must be contained in the validity of the pool itself). Note that
the above restriction might cause a loss of information on the original validity lifespan of extensional
data.

For instance, suppose the schema version of Employee in Tab.4 to be valid in the whole valid-time
universe {0 .. FOREV ER} and a schema change to occur, which adds the attribute PHONE in the
interval [t',t"] = [90, FOREV ER]. The multi-pool synchronous management produces Tabb. 5-6. It
can be noticed that some tuples (e.g. (Jones, New York, {89..FOREV ER})) may be replicated in both
new versions with the valid-time interval split in two parts according to synchronous management.
Another example is shown in Fig. 2: the left portion of Fig. 2 illustrates the temporal pertinence and the
content of the multi-pool in the presence of valid-time schema versioning. Note that, in the presence of
a single schema version, the single- and the multi-pool coincide. According to a change which overlaps
SV1 on [t2, 3], a further schema version SV2, composed of the attributes al, a2, a3, is created. In the
multi-pool, the insertion of SV2 produces a new data pool and the original tuples are split according to
their validity and partitioned between the two pools. In the single-pool, no actual split is effected on the
content of the data pool. The right portion of Fig. 2 shows an example for the asynchronous case. If the
same schema change is applied in the asynchronous case, no split of data validity must be performed.
In this case, the single-pool coincides with the new data-pool and no data duplication is performed.

2.2 Transaction-Time Schema Versioning

If transaction-time schema versioning is supported, schema changes concern only the current schema
version and the versioning can only be synchronous, since transaction-time does not allow retroactive
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[EMPNAME | ADDRESS | VALIDTIME |

Brown London {95..FOREV ER}
Jones Edimborough {80..87}
Jones New York {89..FOREV ER}
Rossi Rome {95..FOREVER}

Matisse Paris {95..FOREVER}

Table 4: portion [0 .. FOREV ER] of the multi pool of Employee before the addition of PHONE

[EMPNAME | ADDRESS | VALID TIME |

Jones Edimborough {80..87}
Jones New York {89..90}

Table 5: portion [0 .. 90] of the multi pool of Employee after the addition of PHONE

or proactive changes. In this case, the catalogues are defined and managed as transaction-time tables as
shown in [DGS94b].

221 (Synchronous) Single-pool solution for transaction-time schema versioning

As far as the extensional level is concerned, all the tuples of the current data pool must be converted to
the enlarged format, as described for valid-time versioning.

2.2.2 (Synchronous) Multi-pool solution for transaction-time schema versioning

In this case, a separate data pool, even if archived, must be maintained for each transaction-time schema
version. The management of extensional information requires two distinct phases: the start of a new
data pool followed by the archiving of the previous one. The format of the new data pool consists of
all and only attributes contained in the new schema version. Again, such attributes may be temporal
(timestamps). The initialization of the new pool also requires the retrieval of data from the old one.
This solution requires only the current tuples of the old pool to be copied into the new one. This choice
is done according to the semantics of synchronous versioning, which does not allow modifications of
non-current tuples, even if, from a logical point of view, they could also be contained in the data pool of
the current schema version.

If the change does not alter the temporal format of data, the selection is effected as follows: if the
tuples of the old pool are snapshot or valid-time, they are all copied into the new data pool (all current
data). If they contain transaction-time, only the current tuples (whose transaction timestamp includes
the present time) are copied into the new data pool.

If the change concerns the temporal format of the table, a copy of the tuples in the old pool is first
converted to the desired temporal format; among the resulting tuples, all and only the current ones are
actually copied into the new data pool [DGS94c, DGS95].

After the initialization of the new pool, the old one is archived: if data in the source pool are snapshot
or valid-time, they remain unaltered, and they are implicitly archived by the archiving of their schema
version, i.e. the user knows that such data can be not anymore current since they belong to an archived
schema version. If data contain transaction-time, the current tuples are archived by setting the enpoint
of their timestamp to the present transaction-time, NOW, of the schema change.

For example, consider the transaction-time relation Dept — M gr in Tab.7 and suppose that the fol-
lowing schema change occurs: the attribute SALARY is dropped at NOW = 1994. The after situation
in the single pool is unaltered, since no data can be discarded from it. The drop of the attribute can only
be recorded in the catalogues. As far as the multi-pool is concerned, the archived pool and the new one
are shown in Tabb. 8-9. Note that the current tuples only are copied into the current pool.



[ EMP_NAME | ADDRESS | PHONE | VALIDTIME |

Brown London NULL | {95..FOREV ER}
Jones New York | NULL | {90.. FOREV ER}
Rossi Rome NULL | {95..FOREV ER}

Matisse Paris NULL | {95..FOREV ER}

Table 6: portion [90 .. FOREYV ER] of the multi pool of Employee after the addition of PHONE

[ MANAGER | DEPT | SALARY | TRANS. TIME |

Matisse Food 1000 {80.. 90}
Matisse Toys 1500 {91..92}
Matisse Clothing 2000 {93.. UC}
Jones Food 900 {73.. 83}
Jones Clothing 1800 {84.. UC}

Table 7: Transaction-time relation Dept — M gr

2.3 Bitemporal Schema Versioning

Bitemporal schema versioning allows the maintainance of all the valid-time schema versions as inserted
in successive schema changes. A schema change performed at transaction-time NOW with validity
[t',t"] can only concern the current and overlapped bitemporal schema versions. The management
of bitemporal schema versioning at intensional level is equal to the update of a bitemporal relation
[GST91]. Fig. 3 shows the bitemporal counterpart of the example in Fig. 1.

As far as operations on extensional data are concerned, the management of the single-pool solution is
substantially the same as discussed in synchronous or asynchronous valid-time schema versioning and
(synchronous) transaction-time schema versioning. In the single-pool, when a schema change is applied,
the whole data pool is converted to the “enlarged” format of the new schema version. In the multi-
pool, it is necessary to initialize as many data pools as the number of new schema versions obtained
by applying the change to the current ones. When a partially or totally overlapped schema version is
affected, a data pool is started for each affected portion determined by the valid-time interval of the
schema change. The current tuples are copied into the new pool, according to the rules of transaction-
time schema versioning. In the case of asynchronous versioning, the valid-time pertinence (if any) of
the tuples is not furtherly modified. In the case of synchronous versioning, it is restricted to that of the
corresponding schema version. All the data pools corresponding to affected schema versions must be
archived.

3 Data Manipulation

In this section we show which extensions are required to the query language in a system supporting one
of the proposed schema versioning solutions.

3.1 Data Retrieval

The TSQL2 data manipulation statements (the SELECT statement and the modification statements) are
provided with a SCHEMA clause in order to support schema version selection [R594]. Therefore, TSQL2 is
designed to work in a system supporting, in our terminology, asynchronous single-pool transaction-time
schema versioning. It can be noticed that this particular solution is not permitted in our approach when
the table is transaction-time or bitemporal, since transaction-time versioning cannot be asynchronous.
The TSQL2 SELECT statement has a SCHEMA clause devoted to transaction-time specification for schema
version selection. The same syntax of TSQL2, but with different semantics, can be used in our proposal
only for valid-time schema selection in asynchronous schema versioning. In (synchronous) transaction-
time schema versioning, no SCHEMA clause is allowed, since the same transaction-time specifications



[ MANAGER | DEPT | SALARY | TRANS. TIME |

Matisse Food 1000 {80.. 90}
Matisse Toys 1500 {91..92}
Matisse Clothing 2000 {93.. 94}
Jones Food 900 {73.. 83}
Jones Clothing 1800 {84.. 94}

Table 8: Archived pool of Dept — M gr after the change

| MANAGER | DEPT | TRANS. TIME |

Matisse Clothing {94.. UC}
Jones Clothing {94.. UC}

Table 9: Current pool of Dept — M gr after the change

used for data selection (contained in the WHERE clause) are also used for schema selection. Also in syn-
chronous valid-time schema versioning no SCHEMA clause is allowed, since the valid-time specifications
in the WHERE clause are used for both schema and data selection.

In valid-time schema versioning, synchronous and asynchronous management deeply differ as to
schema selection mechanisms. In the synchronous management, the temporal conditions on data valid-
time, if any, specified in a WHERE clause for extensional data are to be used also for schema selection,
whereas any possible schema can be specified in case of asynchronous management. For instance, con-
sider the following query and suppose that the bitemporal table REL is subject to asynchronous valid-
time schema versioning:

SELECT * FROM REL
VHERE VALI D( REL) OVERLAPS ' 1/1/80’
AND TRANSACTI ON( REL) FOLLOWS ' 1/ 1/ 90°
SCHEMA | [1/ 1/ 75, 1/ 1/ 85] |

The processing of this query uses all the schema versions of REL whose validity overlaps the interval
[1/1/75,1/1/85]. Among all the data corresponding to such schemas, the query retrieves the data whose
validity overlaps 1/1/80 and whose transaction-time interval follows 1/1/90. If more than one schema
version are valid in the interval [1/1/75,1/1/85], as many “copies” of data are retrieved as many schema
verions are found.

In case of multi-pool solution, a distinct data pool corresponds to each selected schema version and,
thus, data can directly be retrieved in the format they are stored in the pool. In case of single-pool, all
the data are stored in the same “enlarged” format and, thus, a filtering phase (including conversion of
temporal format) is required in order to adapt retrieved data to the different schema versions involved.
If also synchronous verisoning is adopted, the filtering phase must also restrict the time pertinence of
retrieved data, along the same temporal dimension(s) used for synchronous versioning, to be completely
contained within the temporal pertinence of the corresponding schema version.

Finally, it should be noticed that in the presence of synchronous management, data are always ac-
cessed through the schema versions by means of which they were last modified.

3.2 Data Modification

The same considerations made for the retrieval statements can be extended to update operations. In
transaction-time schema versioning, updates only concern current data and act through the current
schema version, thus a SCHEMA clause is not allowed. The same applies to synchronous valid-time
versioning. In asynchronous valid-time versioning, a SCHEMA clause can be used in | NSERT, DELETE,
UPDATE statements in order to specify the validity of the schema version(s) which must be used for data
modification.
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Figure 3: Bitemporal Schema versioning: situation before and after a schema change performed at NOW
and valid in the interval [¢', ¢"]

In case of synchronous versioning, the temporal pertinence of appended data is always restricted to
be contained, along the temporal dimension(s) of synchronous versioning, in the temporal pertinence
of the corresponding schema version.

We try now to evaluate by means of some examples how the single- and the multi-pool solutions
differently behave in case of valid-time and transaction-time schema versioning.

3.2.1 Updates in valid-time schema versioning

Consider Fig. 4a and Fig. 4c which show the multi- and the single-pool of a valid-time relation whose
schema is versioned along transaction-time. Suppose that the versioning is asynchronous and that the
following updates are applied:

e Update v2 to v10 using SV1.
e Update v2 to v20 using SV2.

The results are shown in Fig. 4b for the multi-pool and in Figg. 4d—4e for the single-pool. Note that
in the multi-pool the final result does not depend on the execution order of the updates, since the data
pools are actually separated (Fig. 4c). If the same operations are performed on the single-pool, the result
depends on the execution order of the updates (see Figg. 4d— 4e).

3.2.2 Updates in transaction-time schema versioning

Tabb.7 and 9 show respectively the single- and the current pool of Dept — Mgr. In both solutions,
the current schema version is Dept — Mgr(MANAGER, DEPT, TRANS — TIME). Suppose Jones
becomes manager in department Jewellery and this is recorded at NOW = 1995. The before and after
situations are shown in Tab.10 (single-pool) and Tab.11 (multi-pool). Note that in the single-pool, which
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multi-pool before update multi-pool after update

FROM TO al a2 FROM TO al a2
t0 t4 k1 | vl t0 t4 k1 |[wv1
t2 t6 k2 | v2 t2 t6 k2 | v10
a3 a3
t0 t4 k1 | vl |- t0 t4 k1 |vl |-
t2 t6 k2 [v2 |- t2 t6 k2 | v20 | -
Figure 4a Figure 4b

single-pool before update:

FROM TO al a2 a3

t0 t4 k1 vl |-

t2 t6 k2 [v2 |-

Figure 4c

single-pool after update:

v2 :=v20 (first)
v2 :=v10 (second)

v2:=wv10 (first)
v2 := 020 (second)

FROM TO al a2 a3 FROM TO al a2 a3
t0 [t4 [kl |vl |- t0 [t4 [kl |vl |-
2 | t6 |[k2 |[v10 |- 2 |t6 |[k2 [v20 |-
Figure 4d Figure 4e

Figure 4: valid-time asynchronous schema versioning: different results in the multi- and the single-pool
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still contains the dropped attribute SALARY’, the new tuple a NULL SALARY value. Thus, depending
on which solution is adopted, the same transaction produces two different results.

[ MANAGER | DEPT | SALARY | TRANS. TIME |
Matisse Food 1000 {80.. 90}
Matisse Toys 1500 {91..92}
Matisse Clothing 2000 {93.. UC}

Jones Food 900 {73.. 83}
Jones Clothing 1800 {84..95}
Jones Jewellery | NULL {95.. UC}

Table 10: single-pool of the transaction-time relation Dept-Mgr after update

| MANAGER | DEPT | TRANS. TIME |
Matisse Clothing {94.. UC}
Jones Clothing {94.. 95}
Jones Jewellery {95.. UC}

Table 11: current pool of Dept-Mgr after update

A snapshot table composed by the attributes (al,a2,a3) is shown in Fig. 5; suppose the following
operations are performed: drop of attribute a2, update of tuple (k4,x4) to (k4,x5) and re-add of attribute
a2. Fig. 5al,5a2,5a3 and 5b show the results of such updates in the multi-pool and in the single-pool
respectively. The successive re-add of the same attribute does not reconstruct the tuple values according
to the original copies, but to the most recent copy of the data pool. In the multi-pool the “new” added
attribute is filled up with nulls, whereas the single-pool simple still retrieves the values v1,v2,v3,v4 as
proper of the latest schema version, as they were before the drop of a2.

4 Conclusions

In this paper we provided a study of valid- and transaction-time schema versioning. Our goal was
to introduce different solutions for the management of schema versioning. We proposed two distinct
storage solutions: single- and multi-pool. A further distinction has been made between synchronous
and asynchronous versioning.

The different design solutions have been principally compared on the basis of their semantic prop-
erties, since a detailed analysis of storage, maintainance and query processing costs was beyond the
scope of this paper. In conclusion, the single-pool solution avoids data duplication, even if it requires an
enlargement of the data format required for storage. On the contrary, the multi-pool requires the dupli-
cation of the current portion of data in transaction-time schema versioning, and duplication of the whole
affected pool(s) in case of valid-time schema versioning. Anyway, the multi-pool solution allows several
independent evolutions of data, each one relative to a specific schema version, whereas a single copy is
maintained in the single-pool. Furthermore, the single-pool forces data to be converted according to the
desired schema version at query processing time.

Future work will be devoted to a more complete comparison of the proposed solutions in terms of
system performance, taking into account distinct application requirements and workloads.
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