
1

W-Grid: a Cross-Layer Infrastructure for
Multi-Dimensional Indexing, Querying and Routing

in Wireless Ad-Hoc and Sensor Networks
Gianluca Moro and Gabriele Monti

Abstract—Large scale wireless ad-hoc networks of com-
puters, sensors, PDAs etc. (i.e. nodes) are revolu-
tionizing connectivity and leading to a paradigm shift
from centralized systems to highly distributed and dy-
namic environments. A plethora of routing algorithms
have been proposed for the network path discovery ranging
from broadcasting/flooding-based approaches to those us-
ing global positioning systems (GPS). In this paper we pro-
pose a novel decentralized infrastructure that self-organizes
wireless devices in an ad-hoc network, where each node has
one or more virtual coordinates through which both mes-
sage routing and data management occur without reliance
on either flooding/broadcasting operations or GPS. The re-
sulting ad-hoc network does not suffer from the dead-end
problem, which happens in geographic-based routing when
a node is unable to locate a neighbor closer to the destina-
tion than itself. The multi-dimensional data management
capability will be described showing, as an example, how
the location service reduces to a simple query, like for any
other data type. Extensive performance analysis and ex-
periments have been conducted and the results compared
to GPSR, which is considered the most efficient routing so-
lution not using broadcast operations. Our approach shows
significant performance gains.

I. Introduction

Recent advances in information communication technol-
ogy have led to the rapid development of small, powerful,
multi-function devices with multi standard radio interfaces
including Bluetooth, Wi-Fi and Wi-Max. For example, ad-
hoc networks are being designed where devices/nodes can
directly communicate within a limited space both indoor,
such as a building, and outdoor, such as a metropolitan
area, without the need of a fixed pre-configured infrastruc-
ture and rigid data/communication protocols. Connectiv-
ity in this environment is supported by multi-hop trans-
mission, where intermediate nodes act as signal repeaters
according to a given routing strategy. The goal is to en-
able self-organizing ad-hoc networks, composed of wireless
devices including sensors, which are virtually free from con-
figuration and administration costs, and to support loca-
tion and time sensitive applications in variety of domains.
These include vehicle traffic, parking, public transport,
commercial, security and emergency, and social networks.

A wide number of routing algorithms for ad-hoc net-
works have been proposed, ranging from those that adopt
message broadcast/flooding to those using global position
systems (GPS) to discover the routing path towards the
destination. Broadcast algorithms, while simple to im-
plement, are not scalable due to the enormous overhead

Gianluca Moro and Gabriele Monti are with the Dept. of Elec-
tronic, Computer Science and Systems, University of Bologna
Viale Venezia, 52 47023 Cesena, Italy
email: gmoro,gmonti@deis.unibo.it

caused by congestion in large networks. On the other
hand, solutions based on GPS, which rely on exact geo-
graphic position for each node, does not work in indoor
environments and does not function correctly in extremely
dense networks or in adverse climatic conditions. Techni-
cal and economic feasibility constraints also prevent from
attaching a GPS receiver to each node in very large net-
works (i.e. made of thousand of devices). For these reasons
our solution does not rely on GPS or any other position-
ing system. The routing problem has also been addressed
in cases of both total absence and partial availability of
geographic location information by generating virtual co-
ordinates to approximate real ones. Our solution may be
classified within this set of approaches in that it also uses
virtual coordinates, but it is distinctive in that it does not
aim to approximate real coordinates.

Basically W-Grid [9] is a binary tree index cross-layering
both routing and data management features, in that (1) by
implicitly generating a total order relation among nodes it
allows efficient message routing and, at the same time, (2)
the order relation determines a data indexing space parti-
tion for the management of multi-dimensional data. Each
node has one or more virtual coordinates on which the
order relation is defined and through which the routing
occurs, and each virtual coordinate represents a portion of
the data indexing space for which a device is assigned the
management responsibility. Differently from algorithms
based on geographic routing (see section II), W-Grid rout-
ing is not affected by dead-ends. To proof the routing and
multi-dimensional data management features we will give
a short description of a location service in which finding
the location of a specific device reduces to a query over a
distributed database.

Moreover W-Grid can also simply act as the routing net-
work layer upon which existing indexing structures can
be applied. For instance we think about the ones that
were developed in the past for centralized environments
(e.g. [4] and [13], see [3] for an extensive survey) and which
have been extended in the last years to work in distrib-
uted environments, especially in wired overlay peer-to-peer
networks [18] [20] [19] on top of TCP/IP layer of well-
organized physical networks.

In this work we consider W-Grid to be used in wireless
ad-hoc and sensor networks where, though nodes are not
inherently mobile, each device can also disconnect from the
network (e.g. failures). The paper is organized as follows.
Section II discusses related works. In Section III, we de-
scribe the rules for generating the virtual coordinates and
the routing algorithm, while data management issues are

2

addressed in Section IV. Section V illustrates experimen-
tal results compared with GPSR algorithm [6], which is
the most efficient solution not using broadcast operations.
Section VI concludes the paper with open issues and per-
spective works.

II. Related Works

Routing protocols for ad-hoc networks are typically sub-
divided into three main categories: Table-driven (also
known as proactive), On-Demand (or Reactive) and ge-
ographic routing protocols.

Table-driven routing protocols [15] [2] [11] recall the
Internet distance-vector and link-state protocols. Nodes
maintain tables that store routing information and any
change in network topology triggers propagating updates
in order to maintain a consistent view. This can cause
heavy overhead affecting bandwidth utilization, through-
put and power usage. The advantage of these protocols is
that routes to any destination are always available without
the latency of a route discovery, but on the other side, they
do not perform properly when the number of participating
nodes is high. The main differences in protocols belonging
to this category are on the number of tables that nodes
store and how they are updated.

On-demand routing protocols [16] [5] [14] are character-
ized by a path discovery mechanism that is initiated when
a source needs to communicate with a destination that it
does not know how to reach. Usually route discovery re-
quires a form of query flood and for this reason on-demand
routing incurs in a delay whenever a new path is needed.
The differences between the several on-demand protocols
are in the implementation of the path discovery mecha-
nism.

A completely different approach is used by geographic
routing protocols such as [6] [7]. The idea in geographical
routing is to use a node’s location as its address, and to for-
ward packets with the goal of reducing as much as possible
the physical distance to the destination. Geographic rout-
ing achieves good scalability since each node only needs
to be aware of neighbors’ position and because it does not
rely on flooding to explore network topology. However it
suffers of dead end problems, especially under low density
environment or scenarios with obstacles or holes. Problems
are caused by the inherent greedy nature of the algorithm
that can lead to situations in which a packet gets stuck
at a local optimal node that appears closer to the desti-
nation than any of its known neighbors. In order to solve
this flaw, correction methods such as perimeter routing,
that tries to exploit the well-known right hand rule, have
been implemented. However, some packet losses still re-
main and furthermore using perimeter routing causes loss
of efficiency both in terms of average path length and of en-
ergy consumption. Another limitation of geographic rout-
ing is that it needs nodes to know their physical position.
Usually authors assume that they embed GPS but it must
be said that GPS receivers are expensive and energy inef-
ficient compared to the devices that could participate in
ad-hoc networks. Besides, GPS reception might be easily

obstructed by climatic conditions or obstacles and doesn’t
work indoor.

Recently, virtual coordinates were proposed to exploit
the advantages of geographic routing in absence of loca-
tion information [17], [10], [1]. The motivation is that in
many applications it is not necessary to know the exact
coordinates but is often sufficient to have virtual coordi-
nates that approximate real ones. Unfortunately virtual
coordinate systems suffer the same dead end problem of
standard geographic routing. W-Grid employs virtual co-
ordinates like these last algorithms but it is based on a
different approach which does not approximate real coor-
dinates and eliminates the risk of dead-ends.

III. W-Grid: Indexing and Routing

We consider the case of nodes equipped with a wireless
device. Each one is, at the same time, client of the net-
work (e.g. sending messages), and responsible for manag-
ing others nodes communications (e.g. routing messages).
For this reason from now on we will refer to them as nodes
or peers indistinctly.

The main idea in W-Grid is to map nodes on an indexing
binary tree T in order to build a totally ordered set over
them. Each node of the tree is assigned a W-Grid virtual
coordinate (c) which is represented by a binary string and
has a value v(c):

∀ c ∈ T, v(c) ∈ C

where C is a totally ordered set since:

∀ c1, c2 ∈ T : c2 ∈ l(c1) → v(c2) < v(c1)

∀ c1, c2 ∈ T : c2 ∈ r(c1) → v(c2) > v(c1)

where r(c) and l(c) represents the right sub-tree and the
left sub-tree of a coordinate c ∈ T respectively. And:

∀ c1, c2 ∈ T : F (c1, c2) = 0 → v(c1) < v(c2)

∀ c1, c2 ∈ T : F (c1, c2) = 1 → v(c1) > v(c2)

where F (c1, c2) is a function that returns the bit of coordi-
nate c1 at position i+1 where i corresponds to the length
of the common prefix between c1 and c2. For instance given
two coordinates c1 = 110100 and c2 = 1110, F (c1, c2) = 01

therefore c1 < c2.

A. Virtual Coordinate Selection and Generation

When a node, let us say n turns on for the first time,
it starts a wireless channel scan (beaconing) searching for
any existing W-Grid network to join (namely any neighbor
device that already holds W-Grid virtual coordinates). If
none W-Grid network is discovered, n creates a brand new
space of virtual coordinates electing itself as root by get-
ting the coordinate ” ∗ ”2. On the contrary, if beaconing
returns one or more devices which already hold W-Grid

1 While F (c2, c1) = 1, therefore F (c1, c2) = F (c2, c1)
2 It is conventional to label ” ∗ ” the root node

Moro, Monti: W-GRID 3

n1

n2

n5

n4

n3

n7

n6

n5 *011

n2 *1

n1 *

n3 *00

n7 *101 n6 *111

n4 *11

a

b

n1 *0

n1 *01 n2 *10

n2 *100 n4 *110 n1 *010

Fig. 1. Physical (a) and logical (b) network. Empty circles represent
split coordinates, full black circles are coordinates that can still be
split.

coordinates, n will join the existing network by getting a
coordinate as well.

Coordinate Setup. Whenever a node needs a new W-
Grid coordinate, an existing one must be split. The term
”split” may seem misleading at the moment, but its mean-
ing will become straightforward clear in Section IV. A
new coordinate is given by an already participating node
ng through an existing coordinate split. We say that a co-
ordinate c is split by concatenating a 0 or a 1 to it. The
result of a split to c will be c′ = c+1 and c′′ = c+0. Then,
one of the new coordinates is assigned to the joining node,
while the other one is kept by the giving node. No more
splits can be performed on the original coordinate c since
this would generate duplicates. In order to guarantee co-
ordinates’ univocity even in case of simultaneous requests,
each asking node must be acknowledged by the giving one
ng. Thus, if two nodes ask for the same coordinate to split,
only one request will succeed, while the other one will be
canceled.

Coordinate Selection. At coordinate setup, if there
are more neighbors which already participate the W-Grid
network, the joining node must choose one of them from
which to take a coordinate. The selection strategy we
adopt is to choose the shortest coordinate3 in terms of
number of bits. If two or more strings have the same
length the node randomly chooses one of them. Experi-
ments have shown that this policy of coordinate selection
reduces as much as possible the average coordinates length
in the system.

In Figure 1 there is a small example of a W-Grid net-
work. In the tree structure, parent-child relationships can
be set only by nodes that are capable of bi-directional di-
rect communication. This property is called integrity of
coordinates and it is crucial for the network efficiency:

3 among the ones that still can be split, see Coordinate Setup

Definition 1: Let c be a coordinate at node n that has
been split into c′ and c′′. Then we say that c is integral
if either c′ or c′′ is held by a node n′ ∈ NEIGH(n), where
NEIGH(n) is the set of its neighbors.

If each coordinate satisfies this constraint, it will be pos-
sible to route any message, at least by following the paths
indicated by the tree structure, without dead-ends.

B. Effects of Assigning Multiple Coordinates to Peers

When the number of dimensions of a space is reduced,
some points of the space lose proximity. Since W-Grid vir-
tual coordinates space is one-dimensional, while nodes are
spread on a two-dimensional space (for simplicity we con-
sider nodes to be at the same height), it means that two
nodes physically close in the real space may be far away
in the virtual space (e.g. they have very different virtual
coordinates). As routing is performed through virtual co-
ordinates surely it will lose efficiency whenever these situ-
ations occur. We came to the conclusion that it is possible
to widely reduce inefficiencies be assigning more different
coordinates to each node. In fact, having more than one
coordinate means that a node is placed in different posi-
tions of the tree structure and this reduces the probability
that two nodes physically close are very distant according
to the order relation.

In Figure 2 each node is assigned a number of virtual
coordinates equal to the number of its neighbors. Sim-
ulations returned that this coordinates generation policy
ensures the best results in terms of combination between
network efficiency and quantity of information stored at
nodes. In fact there is a trade-off between these two mea-
sures since a higher number of coordinates per node trans-
lates into best routing performances but also implies larger
routing tables and needs more storage capability at nodes.

In order to improve readability of the figure, for each
node are shown only the coordinates that have not been
split. The only exceptions are the coordinates interested
by routing from node n17 to node n13. This in useful to
understand that split coordinates are stored at nodes and
are used for routing. For instance node n1, the root of
the coordinate space, holds also coordinates *, *0 and *00;
namely through multiple splits of root coordinate * we ob-
tained *001.

C. Routing Algorithm

As we stated in the previous subsection, the coordinate
creation algorithm of W-Grid generates an order among
the nodes and its structure is represented by a binary tree.
The main benefit of such organization is that messages
can always be delivered to any destination coordinate, in
the worst case by traveling across the network by follow-
ing parent-child relationship. The routing of a message is
based on the concept of distance among coordinates. The
distance between two coordinates c1 and c2 is measured in
logical hops and correspond to the sum of the number of
bits of c1 and c2 which are not part of their common prefix.
For instance:

d(*0011,*011) = 5

4

n1

*

*001

*110010

*0101

*0000

n2

*1100

*1100110 *101101

*11100 *11010

*1100010

*101110

n13

*1100011

*1100001

n12

*1100111

*101111

*1001101

*1100000 n11

*11110000

*100001

*1111010

*101010

n18

*1111011

*1000101

*01111010

*10001110

n20

*1111001

*1010110

*10001111

*0111010

n19

*01110110

*011110011

*01111011

*1010111

*011101111

n8

*01111110

*011110010

*011111000

n14

*011101110

*011111001

*01110010

n6

*01110011

*0100101

*01111111

*01111000

*01111101

n5

*11011 *0001

*01101

*0111000

n4

*01

*010011

*01100

*0100001

*0100100 n7

*01000

*01000000

*01000100

*01000110

n15

*010001

*01000101

*010001110

n16

*010000010

*010001111

*0100000111

n17

*0100000110

n10

*100000 *111110

*101001

*1000100

*1000110

n9

*100101

*11101

*11110001

*111111

*1001100

n3

*101100

*100100

*101000

*100111

Fig. 2. A (small) example of a network with W-Grid coordinates and routing of a message with W-Grid (from node n17 to node n13).

Obviously it may happen that physical hops distance is
less then the logical.

Given a message and a target binary string ct each node
ni forwards it to the neighbor that presents the shortest
distance to ct. It is important to notice that nodes need
neither global nor partial knowledge about network topol-
ogy to route messages, routing tables content is limited
to information about direct neighbors’ coordinates. This
means scalability with respect to network size.

W-Grid metric has a very interesting feature. Given a
virtual coordinate c and a distance d, there are several
ci ∈ C which are distant d from c. For instance, given
∗0011 and distance 3:

d(∗0011,∗0) = 3
d(∗0011,∗000) = 3

d(∗0011,∗00100) = 3
etc.

In general given a coordinate c of length l, the number
of coordinates whose distance from c is d is given by:

max(1,l−1)∑

α=max(1,l−d)

2∆−1 where ∆ = d − (l − α) (1)

From (1) we can say that for each coordinate and dis-

tance there exist a set of coordinates at that distance that
we call c(d) (distance set). Thus, at each hop during the
routing, a node n distant d from the destination has at
least one neighbor that improves by one the distance (in
logical hops) from the destination4. However, it is also
possible that other neighbors of n belong to c(d−1). This
means a certain robustness to nodes failures and also the
possibility of adopting specific and changeable policies for
routing (for instance by forwarding to the node with most
battery power left, in case of more nodes with the same
distance from the target).

D. Nodes Failure

In ad-hoc networks nodes usually have scarce resource
and they especially suffer of power constraints. This can
lead to nodes failures that could affect routing efficiency.
In W-Grid some robustness is guaranteed by multiple co-
ordinates at each peer and by the adopted routing metric,
that allow routing along several different paths. If a broken
path is discovered the packet can change path (e.g. next
hop), according to a different coordinate. However it may
happen that a path breaks due to a node failure and no
alternative way can be chosen.

4 This is a consequence of coordinates integrity

Moro, Monti: W-GRID 5

n1 *11111

n2 *11

n5 *1111

n6 *1100

n4 *11000

n7 *100000

n7 *0 n1 *001

n5 *1101111

n8 *11011

12

3

4

5

a)

b)

n1 *11111

n2 *11

n7 *100000

n5 *1111

n3 *111

n6 *1100

n4 *11000

n8 *11011

n5 *1101111

n1 *001 n7 *0

1

2

3

Fig. 3. Effects of node failure (n3) during routing of a packet from
node n1 to n2

In Figure 3 we present the case of a packet that must be
routed to coordinate ∗11. During the routing a dead-end
occurs, node n5 cannot find any neighbor that improves its
distance from the destination. This means that a link has
broken since W-Grid total order relation guarantees the
delivery in any case. When this happens the node deletes
the coordinate that caused the dead-end and performs a
”local broadcast” searching for the parent of the missing
coordinate (∗11 in our example). We use the term ”local
broadcast” since it is very likely that the searched coor-
dinate will be close to the broadcasting node since it is a
close relative of it. This means that the broadcast packet
time-to-live will be small and its effects on network traffic
will be limited. Once the coordinate has been found, the
holding node fixes the relationship with the affected node
by giving it a new coordinate, in our case through n4 and
n7. It is important to specify that every recovery opera-
tion is lazy and triggered only on routing failures, in order
to avoid any network efficiency loss.

IV. Data Management in W-Grid

W-Grid organizes peers in a tree structure and distrib-
utes data (tuple/records with any kind of information)
among them by hashing the values of the record attributes
into binary strings and storing them at peers whose W-
Grid coordinates match the strings. Coordinates are bi-
nary strings and we can see from Figure 4 that they cor-
respond to leaf nodes of a binary tree, therefore a W-Grid
network acts directly as a distributed database. Obviously
coordinates that have been split (the empty circles) cannot
contain any data. One of the most important features that

n5 *001

n4 *01

0 1

n3 *10 n2 *000

n5 *001

n4 *01 n1 *11

n1 *1

n2 *00

n1 *11 n3 *10

n2 *0

n2 *000

n1 *

Fig. 4. Correspondence between W-GRID virtual coordinates and
data space partitions.

a distributed database must satisfy is a balanced storage
load among the different nodes, even in case of not uni-
form distributions of data. In fact, if some nodes manage
higher quantity of information they will likely receive a
higher number of queries than the others causing bottle-
necks and loss of efficiency for the entire network.

Due to the coordinates integrity constraint, related co-
ordinates must belong to nodes that can directly contact
each other. This means that each coordinate can split
only a limited number of times (depending on the num-
ber of neighbors). Assuming uniform density of devices
it is easy to understand that nodes managing shorter co-
ordinates (likely the first nodes joining the network) will
split about the same times of others nodes. However, since
their initial regions were bigger, even after splits they will
remain bigger than the ones of other nodes. It is easy to
infer that this translates into a very unbalanced storage
load situation.

In order to improve the data distribution balance we im-
plemented the Storage Load Balancing (SLOB) Algorithm
that will be described in Subsection A. Then in Subsec-
tion B we will show its effects on a real problem, namely the
definition of a location service that provides information
about the position, yet in terms of W-Grid virtual coordi-
nates, of any participant. Basically, the location service is
a usual exact match query on distributed data where there
is a correspondence between data and nodes location.

A. Storage Load Balancing in W-Grid

To address the load balancing problem, existing in most
of distributed data structures, we incorporate the concept
of bucket size b namely the maximum number of data that
a region (i.e. a coordinate) can manage. The value for b
can be the same for each peer or, in environments where de-
vices have different characteristics, it can be proportional
for instance to the storage and/or communication band-
width capabilities.

Whenever a node receives a new data it checks wether
the space represented by the coordinate that must store the
data is full or not. In case it is full the coordinate is split,

6

but, differently from what it happens when a new node
joins the network, in this case both the resulting subspaces
are stored at the peer.

The bucket size guarantees that each coordinate con-
tains at most the same quantity of information. However,
this trick does not balance the storage load on its own. In
fact, peers holding spaces with a higher number of data
will split more frequently than the others. The result will
be that those peers will manage more coordinates if we do
not find a way for them to give away the ones in excess,
which is exactly the goal of Storage Load Balancing Algo-
rithm (SLOB). On periodic beaconing each peer evaluates

Algorithm 1 Storage LOad Balancing Algorithm

MyLoad ⇐ storage load at peer
scan neighbors and return avgNeighLoad,
neighLoadRMSE and mostLoadedNeighbor
if (avgNeighLoad−MyLoad) >
avgThreshold OR (avgNeighLoad > Load &
RMSE > RMSEThreshold) then

get one c from mostLoadedNeighbor
end if

the average storage load and the correspondent Root Mean
Square Error (avgNeighLoad and neighLoadRMSE in al-
gorithm 1) of its neighbors. The storage load of a node is
meant as the number of coordinates held excluding split
coordinates (not considered since there can be no data in
them).

The purpose of this evaluation is discovering local unbal-
anced situations and moving a small step towards better
balancing. In practice, a peer pi compares its own load
with the average, if the load is lower and the difference
between the two measures is higher than a certain thresh-
old (avgThreshold in algorithm 1) pi takes one coordinate
from the neighbor that has the highest storage load. A
coordinate is taken anyway if the load is the same as the
average but the RMSE is higher than a given threshold
(RMSEThreshold in algorithm 1). The algorithm is as
much simple as it is powerful since adding a local rule is
able to create a global behavior that makes converge the
network storage load toward a balanced situation.

B. Location service

Supposing that each peer ni that composes the network
is univocally identified by a public IDi (such as the e-mail
address, the MAC Address or any other unique ID) we can
think about inserting in the distributed database, implic-
itly defined by W-Grid, information about peers location
(W-Grid coordinates) using as key (both for insertion and
search) the peers IDs. In this way, a node (ns) that need
to communicate with another node (nr) simply searches
the network for the IDr and will discover where nr can be
found. After this, ns will be able to send a message to the
recipient simply using the W-Grid routing algorithm.

In order to show W-Grid capability of managing
multi-dimensional data we will define the node ID as
a pair (prefix,number) where Domprefix = [0, 9999] and

Domnumber = [0, 9999999]. We use a hashing function
(please refer to [8] and [12] for details) to translate IDs
into a binary string of arbitrary length.

For instance, if ns needs to contact the peer nr identified
by IDd = (7601,452789623) it can find5:

cd = ∗10011100

∗10011100 corresponds to the virtual coordinate holding
nd location information, however it is not guaranteed that
cd actually exists in the network. In fact, we estimated
a length of 8 bits but, since we work in a distributed en-
vironment, we are not able to know in advance the exact
depth of the tree structure. Thus the computed string may
need to be extended or it can happen that we must stop
at a parent coordinate when traveling towards cd. How-
ever, it is not really important which length l is chosen by
the sender of the message since at any time any crossed
peer can extend6 the destination string without affecting
the correctness of previous steps. Therefore we are sure
that every data inserted in the network can be retrieved
even with no global knowledge about the network (and im-
plicit W-Grid structure). This location service example is
just one of the possible data management applications im-
plementable in W-Grid. In fact, it is possible to manage
each kind of one-dimensional or multi-dimensional data by
translating them into binary string with the use of hashing
algorithms.

V. Experimental Results

To evaluate the performances of W-Grid algorithm we
implemented a Network Simulator in Java. We simulated
network deployment upon areas with different dimensions,
generated nodes in random positions but avoiding parti-
tions in the network. This means that no nodes were iso-
lated.

We particularly focused on virtual coordinates genera-
tion and generation of random messages and we also ap-
plied the described location service to the simulation in
order to evaluate:

• the Average Path Length (APL, measured in hops)
covered by messages sent from one node to another,
comparing the APL of W-Grid with the one achievable
using GPSR;

• the average storage load at each peer, supposing that
the information to be managed are virtual locations
of nodes, to evaluate the effects of the storage load
balancing algorithm.

To achieve that the simulator includes an event manager
that triggers periodic beaconing (performed every 300ms)
of nodes and generates messages at a parameterizable fre-
quency. The beaconing is asynchronous, namely each peer

5 By standardizing 7601 and 452789623 to their domains we get
0,76 and 0,45 respectively. We multiply both of them by 24 to get
a string of length 8. The binary conversion of the multiplications
are 1010 and 0110 respectively. Then, by crossing bit by bit the
two string we get the c where destination node location is stored
*10011100.

6 See [12] for details

Moro, Monti: W-GRID 7

TABLE I

Results for different area dimensions (50 simulations each; 50000 messages sent)

APL(in hops) RMSE Lost messages
Area(nodes number) W-Grid GPSR W-Grid GPSR W-Grid GPSR

800×800(120) 6,13 7,49 3,11 8,44 - 2,77%
1000×1000(200) 8,05 9,02 4,45 13,00 - 2,26%
1200×1200(290) 9,75 9,64 4,47 12,74 - 2,01%
1400×1400(400) 11,54 10,87 4,99 14,52 - 3,59%
1600×1600(520) 13,96 13,71 5,86 14,99 - 4,52%
1800×1800(660) 14,81 14,14 6,41 12,15 - 7,88%
2000×2000(820) 17,43 16,57 8,44 13,20 - 8,47%

is independent from the others, as it happens in real net-
works. For radio transmissions we suppose a range of 100
meters. The manager takes into account the synchroniza-
tion of tasks on critic resources such as radio device, thus
nodes cannot execute different task using the same device
at the same time (a node that is beaconing cannot route
packets, etc.). For each different task we set appropriate
and realistic durations. Coordinate creation is gradual, in
fact the simulation randomly choose one node that bea-
cons first and elects itself as root of a new virtual coordi-
nate space. Then, as described in Section III we let pe-
riodic beaconing building the W-Grid network. Beside co-
ordinate creation at nodes joining the simulator puts their
(randomly) assigned ID into the network as an example of
data management and to evaluate to effects of storage load
balancing algorithm.

A. Average path length comparison

Once that every node had got its c the simulator (50
simulations per each different area) started the genera-
tion of 50000 messages between randomly chosen couples
of sender/recipient nodes. Each message was routed ac-
cording to our algorithm, following the virtual coordinates,
and at the same time it was routed using GPSR algorithm
(exploiting [x,y] physical positions of nodes).

Even if the comparison appears prohibitive, since GPSR
can stay very close to the ideal routing algorithm also
because it uses physical position of nodes, W-Grid re-
turns amazing performances, especially considering that it
doesn’t require any kind of information about geographic
position of nodes. This means not only a vaster and het-
erogeneous space of application, not limited only by GPS
(or any other position estimation equipment) embedded
devices, but also an easier deployment in every condition
and everywhere. Table I shows that the number of hops
(APL) is almost the same in W-Grid and GPSR, but if
we consider the natural advantage of GPSR that knows
physical positions of the nodes we can say that the results
are very good since, in some configurations our algorithm
presents better performances, due to the perimeter issue of
GPSR that can cause longest paths. Besides, it is impor-
tant to say that W-Grid doesn’t fail any message delivery
and it performances are almost the same in the different

runs per area (see W-Grid MSE) showing that it is not
affected by network topology. On the other side GPSR
presents a notable percentage of routing failures and its
performances are variable and dependent from nodes posi-
tions.

B. Load Balancing evaluation

The second aspect we focused on was load balancing at
nodes in terms of data managed. Observing our implemen-
tation of location service we ran different simulation with
and without using our SLOB algorithm. From Figure 5 we
can see that its impact is really positive on storage load
distribution among peers. We used a bucket size b = 1
so that the system aims to achieve a perfect storage load
balance with each peer that hold exactly one data.

Figure 5 represents the storage distribution among peers
with and without the application of SLOB algorithm. We
can clearly see that in simulations where the algorithm is
not used the percentage of nodes that store at least one
data is less than 10%. Each node of this 10% manages
on average 15,04 data and the root mean square error is
24,44. The situation is really unbalanced and the most
loaded node can have up to 200 data in worst cases. On
the other side, by applying the algorithm we can take up
to 90% (about 500 nodes out of 560) the number of nodes
that store at least one data. In this case peers manage
about 1,14 data each and the root mean square error is
0,36.

VI. Conclusions and future work

In this paper we proposed a novel decentralized in-
frastructure that self-organizes wireless devices in an ad-
hoc network, where each node has one or more vir-
tual coordinates through which both message routing and
data management occur without reliance on either flood-
ing/broadcasting operations or GPS. The resulting ad-hoc
network does not suffer from the dead-end problem, which
happens in geographic-based routing when a node is un-
able to locate a neighbor closer to the destination than
itself. The multi-dimensional data management has been
described showing, as an example, how a location service
reduces to a simple query, like for any other data type. Per-
formance analysis and experiments conducted have showed

8

Fig. 5. Contour showing storage load at peers without and with
Storage Load Balancing Algorithm

significant performance when compared with GPSR.
Future works will concern the introduction of multiple

virtual spaces (namely multiple roots) among which nodes
can choose at routing time the next hop according to the
space which better reduces the distance to the destination.
We are also studying the possibility of introducing a path
learning capability at nodes in order to improve the W-
Grid APL.

References

[1] R. Bischoff and R. Wattenhofer. Analyzing connectivity-based
multi-hop ad-hoc positioning. In PERCOM ’04: Proceedings of
the Second IEEE International Conference on Pervasive Com-
puting and Communications (PerCom’04), page 165, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[2] W. L. C. Chiang, H. Wu and M. Gerla. Routing in clustered
multihop, mobile wireless networks. In Proc. IEEE SICON’97,
pages 197–211, April 1997.

[3] V. Gaede and O. Günther. Multidimensional access methods.
ACM Computing Surveys, 30(2):170–231, 1998.

[4] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD Conference, pages 47–57, 1984.

[5] D. Johnson, D. Maltz, and J. Broch. Dsr: the dynamic source
routing protocol for multihop wireless ad hoc networks. Ad hoc
networking, pages 139–172, 2001.

[6] B. Karp and H. Kung. GPRS: greedy perimeter stateless rout-
ing for wireless networks. In MobiCom ’00: Proceedings of the
6th annual international conference on Mobile computing and
networking, pages 243–254. ACM Press, 2000.

[7] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geo-
metric ad-hoc routing: of theory and practice. In PODC ’03:
Proceedings of the twenty-second annual symposium on Princi-
ples of distributed computing, pages 63–72. ACM Press, 2003.

[8] G. Moro, G. Monti, and A. Ouksel. Merging G-Grid P2P sys-
tems while preserving their autonomy. In P2PKM, 2004.

[9] G. Moro, G. Monti, and A. Ouksel. Routing and localization
services in self-organizing wireless ad-hoc and sensor networks
using virtual coordinates. In ICPS’06: IEEE International Con-
ference on Pervasive Services 2006, 2006.

[10] T. Moscibroda, R. O’Dell, M. Wattenhofer, and R. Wattenhofer.
Virtual coordinates for ad hoc and sensor networks. In DIALM-
POMC ’04: Proceedings of the 2004 joint workshop on Foun-
dations of mobile computing, pages 8–16, New York, NY, USA,
2004. ACM Press.

[11] S. Murthy and J. J. Garcia-Luna-Aceves. An efficient routing
protocol for wireless networks. Mob. Netw. Appl., 1(2):183–197,
1996.

[12] A. Ouksel and G. Moro. G-Grid: A class of scalable and self-
organizing data structures for multi-dimensional querying and
content routing in P2P networks. In in Proceedings of the Sec-
ond International Workshop on Agents and Peer-to-Peer Com-
puting, Melbourne, Australia, July 2003, volume 2872, pages
123–137. Springer, 2003.

[13] M. A. Ouksel and O. Mayer. A robust and efficient spatial data
structure: the nested interpolation-based grid file. Acta Inf.,
29(4):335–373, 1992.

[14] V. Park and M. S. Corson. A highly adaptive distributed rout-
ing algorithm for mobile wireless networks. In INFOCOM ’97:
Proceedings of the INFOCOM ’97. Sixteenth Annual Joint Con-
ference of the IEEE Computer and Communications Societies.
Driving the Information Revolution, page 1405, Washington,
DC, USA, 1997. IEEE Computer Society.

[15] C. Perkins and P. Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (dsdv) for mobile computers.
In SIGCOMM ’94: Proceedings of the conference on Communi-
cations architectures, protocols and applications, pages 234–244,
New York, NY, USA, 1994. ACM Press.

[16] C. Perkins and E. Royer. Ad-hoc on-demand distance vec-
tor routing. In WMCSA ’99: Proceedings of the Second
IEEE Workshop on Mobile Computer Systems and Applica-
tions, page 90. IEEE Computer Society, 1999.

[17] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic
routing without location information. In MobiCom ’03: Pro-
ceedings of the 9th annual international conference on Mobile
computing and networking, pages 96–108. ACM Press, 2003.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker.
A scalable content-addressable network. In SIGCOMM ’01:
Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communications,
pages 161–172. ACM Press, 2001.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
Lecture Notes in Computer Science, 2218:329–340, 2001.

[20] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scal-
able peer-to-peer lookup protocol for internet applications.
IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

