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Abstract

As several mature implementations of data warehousing systems are fully operational, a crucial role in preserving their
up-to-dateness is played by the ability to manage the changes that the data warehouse (DW) schema undergoes over time in
response to evolving business requirements. In this paper we propose an approach to schema versioning in DWs, where the
designer may decide to undertake some actions on old data aimed at increasing the flexibility in formulating cross-version
queries, i.e., queries spanning multiple schema versions. First, we introduce a representation of DW schemata as graphs of
simple functional dependencies, and discuss its properties. Then, after defining an algebra of schema graph modification
operations aimed at creating new schema versions, we discuss how augmented schemata can be introduced to increase flex-
ibility in cross-version querying. Next, we show how a history of versions for DW schemata is managed and discuss the
relationship between the temporal horizon spanned by a query and the schema on which it can consistently be formulated.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Data warehousing; Schema versioning; Cross-version querying; Schema augmentation

1. Introduction

Data Warehouses (DWs) are databases specialized for business intelligence applications and can be seen as
collections of multidimensional cubes centered on facts of interest for decisional processes. A cube models a set
of events, each identified by a set of dimensions and described by a set of numerical measures. Typically, for
each dimension a hierarchy of properties expresses interesting aggregation levels. A distinctive feature of
DWs is that of storing historical data; hence, a temporal dimension is always present.

Data warehousing systems have been rapidly spreading within the industrial world over the last decade, due
to their undeniable contribution to increasing the effectiveness and efficiency of decision making processes
within business and scientific domains. This wide diffusion was supported by remarkable research results
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aimed at increasing querying performance [17,33], at improving the quality of data [34], and at refining the
design process [14] on the one hand, as well as by the quick advancement of commercial tools on the other.

Today, as several mature implementations of data warehousing systems are fully operational within medium
to large contexts, the continuous evolution of the application domains is bringing to the forefront the dynamic
aspects related to describing how the information stored in the DW changes over time from two points of view:

o At the data level: Though historical values for measures are easily stored due to the presence of temporal
dimensions that timestamp the events, the multidimensional model implicitly assumes that the dimensions
and the related properties are entirely static. This assumption is clearly unrealistic in most cases; for
instance, a company may add new categories of products to its catalog while others can be dropped, or
the category of a product may change in response to the marketing policy.

o At the schema level: The DW schema may change in response to the evolving business requirements. New
properties and measures may become necessary (e.g., a subcategory property could be added to allow more
detailed analysis), while others may become obsolete. Even the set of dimensions characterizing a cube may
be required to change.

Note that, in comparison with operational databases, temporal issues are more pressing in DWs since que-
ries frequently span long periods of time; thus, it is very common that they are required to cross the bound-
aries of different versions of data and/or schema. Besides, the criticality of the problem is obviously higher for
DWs that have been established for a long time, since unhandled evolutions will determine a stronger gap
between the reality and its representation within the database, which will soon become obsolete and useless.

So far, research has mainly addressed changes at the data level, i.e., changes in instances of aggregation
hierarchies (the so-called slowly-changing dimensions [21]), and some commercial systems already allow to
track changes in data and to effectively query cubes based on different temporal scenarios. For instance,
SAP-BW [32] allows the user to choose which version of the hierarchies to use while querying (e.g., aggregate
the sales according to the categories that were true on 1/1/2000). On the other hand, schema versioning in DWs
has only partially been explored and no dedicated commercial tools or restructuring methods are available to
the designer. Thus, both an extension of tools and support for designers are urgently needed.

Indeed, according to the frequently cited definition of a DW by Inmon [18] one of the characteristic features
of a DW is its non-volatility, which means that data is integrated into the DW once and remains unchanged
afterwards. Importantly, this feature implies that the re-execution of a single query will always produce a sin-
gle consistent result. In other words, past analysis results can be verified and then inspected by means of more
detailed OLAP sessions at any point in time. While commercial solutions may support non-volatility in the
presence of changes at the data level (e.g., SAP-BW under the term “‘historical truth’), non-volatility in the
presence of changes at the schema level has not received much attention. In fact, it is easy to see that the ability
to re-execute previous queries in the presence of schema changes requires access to past schema versions.

In this paper we propose an approach to schema versioning in DWs, specifically oriented to support the
formulation of cross-version queries, i.e., queries spanning multiple schema versions. Our main contributions
are the following:

(1) Schema graphs are introduced in order to univocally represent DW schemata as graphs of simple func-
tional dependencies, and an algebra of graph operations to determine new versions of a DW schema is
defined. Importantly, our graph model captures the core of all multidimensional data models proposed
previously.

(2) The issues related to data migration, i.e., how to consistently move data between schema versions, are
discussed. In particular, a dichotomy in the treatment of fact instances and dimension instances is
established.

(3) Augmented schemata are introduced in order to increase flexibility in cross-version querying. The aug-
mented schema associated with a version is the most general schema describing the data that are actually
recorded for that version and thus are available for querying purposes.

(4) The sequencing of versions to form schema histories in presence of augmented schemata is discussed, and
the relationship between the temporal horizon spanned by a query and the schema on which it can



M. Golfarelli et al. | Data & Knowledge Engineering 59 (2006) 435-459 437

consistently be formulated is analyzed. Based on the notion of schema intersection, a novel approach
towards cross-version querying is defined.

The remainder of this paper is outlined as follows. We discuss related work in Section 1.1, and we give an over-
view of our approach and present a motivating example in Section 1.2. In Section 2 we propose a graph-based
representation of DW schemata. In Section 3 we describe the elementary changes a schema may undergo, while
in Section 4 we show how these changes create new versions. In Section 5 we discuss how versions are concat-
enated into histories. In Section 6 we focus on cross-version querying, and we draw the conclusions in Section 8.

1.1. Related work

1.1.1. Temporal databases

A large part of the literature on schema versioning in relational databases is surveyed in [31]. With reference
to terminology introduced in [19] our approach is framed as schema versioning since past schema definitions
are retained so that all data may be accessed both retrospectively and prospectively through user-definable
version interfaces; additionally, with reference to [31] we are dealing with partial schema versioning as no ret-
rospective update is allowed to final users. Note that, in contrast, schema evolution allows modifications of the
schema without loss of data but does not require the maintenance of a schema history.

As to querying in the presence of multiple schema versions, while TSQL2 [35] only allows users to punc-
tually specify the schema version according to which data are queried, queries spanning multiple schema ver-
sions are considered in [10,15].

1.1.2. Data warehouse evolution and versioning

In the DW field, a number of approaches for managing slowly-changing dimensions were devised (see for
instance [11,25,38]).

As to schema evolution/versioning, mainly five approaches can be found in the literature. First, in [29], the
impact of evolution on the quality of the warehousing process is discussed in general terms, and a supporting
meta-model is outlined. Second, in [37] a prototype supporting dimension updates at both the data and
schema levels is presented, and the impact of evolutions on materialized views is analyzed. Third, in [7,6],
an algebra of basic operators to support evolution of the conceptual schema of a DW is proposed, and the
effect of each operator on the instances is analyzed. In all these approaches, versioning is not supported
and the problem of querying multiple schema versions is not mentioned. Fourth, in [12], the COMET model
to support schema evolution is proposed. The paper is mainly focused on the constraints to be fulfilled in
order to ensure the integrity of the temporal model; though the problem of queries spanning multiple schema
versions is mentioned, the related issues are not explored, and the discussion of how to map instances from one
version to another is only outlined. Fifth and finally, [5] proposes an approach to versioning where, besides
“real” versions determined by changes in the application domain, also “alternative’ versions to be used for
what-if analysis are introduced. Even here, cross-version queries are only mentioned.

On the commercial side, the versioning problem has only marginally been addressed. For instance, SQL
Compare is a tool for comparing and synchronizing SQL Server database schemata, to be used when changes
made to the schema of a local database need to be pushed to a central database on a remote server [30]. On the
other hand, the Oracle Change Management Pack is aimed to report and track the evolving state of meta-data,
thus allowing to compare database schemata, and to generate and execute scripts to carry out the changes [1].
In both cases, the possibility of formulating a single query on multiple databases with different schemata is not
even mentioned. Recently, the need for improving the handling of dynamic aspects in DWs has been raised by
the KALIDO team. Their solution [2], based on an original data organization called generic data modeling,
offers a set of tools for handling data changes but does not address the versioning problem.

1.2. Overview of the approach and example

In this section we introduce our approach based on a working example. Consider a schema S, modeling the
shipments of parts to customers all over the world. A conceptual schema for the shipment fact is depicted in
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Fig. 1(a) using the Dimensional Fact Model (DFM) formalism [13]. Although we chose the DFM formalism
among the variety of graphical multidimensional data models to illustrate the sample scenario, the results
obtained in this paper are not restricted to that particular model.

The fact shown in Fig. 1(a) has two measures, namely QtyShipped and ShippingCosts, and five dimensions,
namely Date, Part, Customer, Deal, and ShipMode. A hierarchy of properties is attached to each dimension;
the meaning of each arc is that of a many-to-one association, i.e., a functional dependency.

Suppose now that, at 1; = 1/1/2003, S, undergoes a major revision aimed at better fulfilling some changing
business requirements. In particular, in the new version S;:

(1) The temporal granularity has changed from Date to Month.

(2) A classification into subcategories has been inserted into the part hierarchy.

(3) A new constraint has been modeled in the customer hierarchy, stating that sale districts belong to
nations, and that for each customer the nation of her sale district is the nation of her city.

(4) The incentive has become independent of the shipment terms.

Then, at t, = 1/1/2004, another version S, is created as follows:

(1) Two new measures ShippingCostsEU and ShippingCostsLIT are added.
(2) The ShipMode dimension is eliminated.

Category
Brand
Container Type
Part Size
Region Region
Month SHIPMENT | customer Month SHIPMENT | Gustomer Nation
Date  |QtyShipped City Nation QtyShipped
ShippingCostsDM ShippingCostsDM
Year SaleDistrict Year SaleDistrict
Ship Ship
Mode Deal Mode
SType Incentive SType Terms
Carrier Allowance Terms Carrier Allowance O Incentive
(@) (b)
Category
Brand Subcategory
Container

Type
Size
Region

Customer Nation

SHIPMENT

Month

QtyShipped

Year

Shipping CostsLIT
ShippingCostsEU
ShipppingCostsDM

Deal

ShipFrom

Terms

Allowance

(©)

Incentive

SaleDistrict

Fig. 1. Conceptual schemata for three versions of the shipment fact: S, (a), S; (b), and S, (c).
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(3) A ShipFrom dimension is added.
(4) A descriptive attribute PartDescr is added to Part.

The conceptual schemata for S; and S, are depicted in Fig. 1(b) and (c).

Within a system not supporting versioning, at the time of change all data would be migrated to the new
schema version. On the other hand, if the system supports versioning, all previous schema versions will still
be available for querying together with the data recorded during their validity time. In this case, the user could
be given the possibility of deciding which schema version is to be used to query data. For instance, the 2002
data could be queried under schema S}, introduced in 2003; in particular, one might ask for the distribution of
the shipping costs for 2002 according to subcategories, introduced in 2003.

In our approach, the schema modifications occurring in the course of DW operation lead to the creation of
a history of schema versions. All of these versions are available for querying purposes, and the relevant versions
for a particular analysis scenario may either be chosen explicitly by the user or implicitly by the query subsys-
tem. The key idea is to support flexible cross-version querying by allowing the designer to enrich previous ver-
sions using the knowledge of current schema modifications. For this purpose, when creating a new schema
version the designer may choose to create augmented schemata that extend previous schema versions to reflect
the current schema extension, both at the schema and the instance level.

To be more precise, let S be the current schema version and S’ be the new version. Given the differences
between S and S’, a set of possible augmentation actions on past data are proposed to the designer; these
actions may entail checking past data for additional constraints or inserting new data based on user
feedback. (Details are presented in Section 4.2.) The set of actions the designer decides to undertake
leads to defining and populating an augmented schema S*VC, associated with S, that will be used instead
of S, transparently to the final user, to answer queries spanning the validity interval of S. Importantly,
SAUi UI(S] always an extension of S, in the sense that the instance of S can be computed as a projection
of §7-+.

Consider, for instance, the schema modification operation that introduces attribute Subcategory, performed
at time 7; = 1/1/2003 to produce version S;. For all parts still shipped after ¢, (including both parts introduced
after ¢; and parts already existing before ¢1), a subcategory will clearly have to be defined as part of data migra-
tion, so that queries involving Subcategory can be answered for all shipments from #; on. However, if the user
is interested in achieving cross-version querying on years 2002 and 2003, i.e., if she asks to query even old data
(shipments of parts no longer existing at ¢;) on Subcategory, it is necessary to:

(1) define an augmented schema for S, denoted SOAUG, that contains the new attribute Subcategory;
(2) (either physically or virtually) move old data entries from S, to S5Y; and
(3) assign the appropriate values for Subcategory to old data entries in SOAUG.

This process will allow queries involving Subcategory to be answered on old data via the instance of SOAUG.
Note that, while the first two steps are entirely managed by the versioning system, the last one is the designer’s
responsibility.

As another example, consider adding the constraint between sale districts and nations. In this case, the
designer could ask the system to check if the functional dependency between SaleDistrict and Nation holds
on past data too (it might already have been true when S, was created, but might have been missed at
design time; or it could be enforced via data cleansing): if so, the augmented schema SOAUG will be enriched
with this dependency, which increases the potential for roll-up and drill-down operations during OLAP
sessions.

2. Formal representation of DW schemata

In this section we define notation and vocabulary, and we recall results on simple FDs that form the basis
for the graph-theoretic framework used throughout this paper.
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2.1. Simple functional dependencies

We assume the reader to be familiar with the basics of relational databases and FDs. Following standard
notation (see, e.g., [26]), capital letters from the beginning (respectively ending) of the alphabet denote single
(respectively sets of) attributes, “="" denotes equivalence of sets of FDs, and F is the closure of the FDs in F.

An FD X — Yis simple if | X| = | Y] = 1 (note that simple FDs have also been called unary [9]). Given a set F
of simple FDs over X we say that F is acyclic (respectively cyclic) if the directed graph (X, F) (i.e., the graph
that contains the attributes in X as nodes and that contains an arc (4, B) if A — B € F) is acyclic (respectively
cyclic).

Finally, we recall that a set F of FDs is canonical if [26]:!

e every FD X — Y € F satisfies | Y] =1,
o Fis left-reduced, i.e., for each FD X — A4 € F there is no Y; X such that Y — 4 € F", and
e Fis nonredundant, i.e., there is no F’ g F such that F' = F.

For every set F of FDs there is at least one canonical cover, i.e., a canonical set F° of FDs such that F = F° [26].
2.2. Schema graphs

In order to talk about schema versioning, we first have to fix a representation for DW schemata on top of
which operations for schema modifications can be defined. In this section, we introduce a graph-based repre-
sentation for schemata called schema graph, which captures the core of multidimensional models such as the
DFM. Intuitively, in line with [23], a DW schema is a directed graph, where the nodes are attributes (either
properties or measures), and arcs represent simple FDs of a canonical cover. The representation of DW sche-
mata in terms of graphs allows us to define schema modifications by means of four elementary graph manip-
ulations, namely adding and deleting of nodes and arcs, and to analyze the schema versioning problem in a
simple and intuitive setting. Besides, as shown in [22], it provides a considerable simplification over hyper-
graph based approaches that have previously been used to represent schemata involving general FDs (see,
e.g., [4).

Formally, we represent a DW schema in terms of one or more schema graphs.

Definition 1 (Schema Graph). A schema graph is a directed graph S = (U, F) with nodes U = {E} U U and
arcs F, where

(1) Eis called fact node and represents a placeholder for the fact itself (meaning that its values are the single
events that have occurred, i.e., the single tuples of the fact table);

(2) Uis a set of attributes (including properties and measures);

(3) Fis a set of simple FDs defined over {E£} U U in the DW schema;

(4) E has only outgoing arcs, and there is a path from E to every attribute in U.

S is called canonical schema graph if F is canonical.

Canonical schema graphs for the shipment facts in Fig. 1 are shown in Fig. 2.

Throughout this paper we assume that schema graphs satisfy the wuniversal relation schema assumption
(URSA) [26], which is a standard assumption in relational database design. URSA ties an attribute name
to its semantics, i.e., among the set of schema graphs describing the DW schema all occurrences of an attribute
name are assumed to have the same meaning. Thus, in our example, the two different concepts “type of part”
and ““type of ship mode™ are represented in terms of two attributes with distinct names (Type and SType); on
the other hand, the attributes occurring in the Part hierarchy are allowed to appear with the same names in
other schema graphs if those schema graphs deal with the same part concept (which will be the case for other
versions of shipment facts or, e.g., invoice or revenue related facts).

! Canonical sets are called minimal in [36], while the notion of minimality of [26] has a different meaning.
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(Container) (Category) (Nationj
!

Month Size Brand Type (SaleDistrict) (Allowance) Terms

Customer
[

Shipment

(atyshipped ) (ShippingCostsDM)

(a)
(Container ) (Subcategory)  (Nation )
(Brand)  (Type ‘@istrict) (Allowance )
Customer

[

Shipment

( QtyShipped ) (ShippingCoslsDNl)

(b)

(Container) (Subcategory) (Nationj

Incentive

PartDescr Customer

A

Shipment

ShippingCostsLIT
(QtyShippedj (ShippingCostsDM '« ShippingCostsEU
(c)

Fig. 2. Schema graphs S, (a), S; (b), and S, (c).

Finally, we note that, with reference to the multidimensional model, an FD f'€ F has an impact on the
semantics of attributes as follows:

(Df=E—4
* A may be a dimension. Since the values of E represent single events, in this case f expresses the fact

that each event is related to exactly one value for each dimension.
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* A may be a measure. In this case f represents the fact that each event is associated with exactly one

value for each measure.
2)f=B— 4

e B may be a dimension or a property, and 4 a property. In this case, B — A models a many-to-one
association within a hierarchy (for instance, B is City and A4 is Nation). From the implemen-
tation point of view, this means that the correspondence between each value of B and exactly
one value of A is explicitly stored in the database (for instance, within a dimension table of a star
schema).

e B may be a measure, and A4 a derived measure. In this case, B— A models the fact that 4 can be
derived from B (for instance, B is the daily fluctuation of a share and A is its absolute value). From
the implementation point of view, there are two choices: Either store A4 as a separate attribute, which
introduces redundant data in the DW but may be advantageous if the computation of A from B is
expensive; or store a function in the meta-data repository allowing 4 to be computed from B on-
the-fly.

In view of these observations it should be clear that the questions whether an attribute defines (1) a measure
or a dimension and (2) a derived measure or a property cannot be answered based on our graph representa-
tion. Thus, this additional information is recorded in the meta-data repository (see Section 2.5).

2.3. Reduced schema graphs

In comparison with general schema graphs, the class of canonical schema graphs has the important advan-
tage of providing a non-redundant, i.e., compact schema representation. On the other hand, in order to obtain
unique results for schema modification operations, we also need to make sure that we are dealing with a
uniquely determined representation. This section shows how any schema graph can be transformed into a
uniquely determined canonical form called reduced schema graph.

We begin by observing that, for acyclic sets of simple FDs, canonical covers are uniquely determined and
can be computed via transitive reduction.

Definition 2 (7Transitive Closure and Reduction). Let U be a set of attributes, and F be a set of simple FDs over
U. The transitive closure of F, denoted F", is inductively defined as follows:

(1) feF=feF
2)A—>BeF'ANB—-CeF" =A4—CecF".
A fransitive reduction of F is a minimal set F~ of simple FDs over U such that F* = (F7)".

To illustrate the differences between transitive closure F* and closure F of FDs F, we observe that by def-
inition F* contains only simple FDs. In contrast, if the FDs in F involve two or more attributes then F" con-
tains additional non-simple FDs (exponential in the number of attributes) that are implied by F".

Example 1. For F={A4 — B, B— C} we have
F*={4—B,B— C,A— C},
F*={4—B,B— C,A— C,A— A,AB — A,AC — A,ABC — A,

B — B,AB — B,AC — B,BC — B,ABC — B,C — C,AB — C,AC — C,BC — C,ABC — C}.

As shown in [3], in case of acyclic graphs the transitive reduction F is uniquely determined and F~ C F.
Besides, from [22] we recall that F~ is a canonical cover of F. Thus, if F'is acyclic, the reduced schema graph
for S = (U,F)isS™ = (U,F).
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On the other hand, in real-world scenarios acyclicity of FDs may not be given as cycles occur in at least the
following two cases:

e Descriptive properties. Though most associations between properties of DW schemata have many-to-one
multiplicity, in some cases they may have one-to-one multiplicity. Typically, this happens when a property
is associated with one or more univocal descriptions (e.g., the technical staff may refer to products by their
codes while sale agents may use product names).

e Derived measures. Two measures may be derivable from each other by applying some fixed formula (for
instance, Euros and Italian Liras can be transformed back and forth by applying constant conversion
factors).

The following example shows that canonical covers are no longer unique if FDs are cyclic.

Example 2. Consider measures 4, and 4, whose values are derivable from each other (such as item prices
listed in two currencies), i.e., we have cyclic FDs A; — 4, and 4, — A;, and a measure 43 that can be derived
from A, and also from A, (such as an item tax that is computed from the price). Hence, we have a set F of FDs
{Al — Az, Az — Al; A1 — A3, Az — A3}, and it is easily verified that {A1 — Az, Az — Al; A1 — A3} and
{4, — A,, A, — Ay, A, — A3} are both canonical covers of F.

In the remainder of this section we show how a uniquely determined reduced form for schema graphs can be
determined even in the presence of cyclic FDs [22]. Consider a schema graph S = (U, F), where F is neither
necessarily canonical nor acyclic. The relation =r on U defined by

A=rB iff A—-Be€F"AB—AcF"

ford,B € U is an equivalence relation; U /-, is used to denote the set of equivalence classes induced by =xon
U. Then we consider the acyclic directed graph where each node is one equivalence class X € U /-, and an arc
goes from X to Y, X # Y, if there are attributes 4 € X and B € Y such that 4 — B € F. The transitive reduc-
tion of this graph, called the equivalent acyclic schema graph for S and denoted by §“ = (ﬁ /-, F*), is acyclic
(by construction) and uniquely determined (as transitive reduction is unique for acyclic graphs). Now, let <g
be a total order on U (e.g., user-specified or system-generated based on some sorting criterion such as attribute
creation timestamp or attribute name).

Definition 3 (Implicit FDs). Let U be a set of attributes with total order <g, let F be a (possibly redundant
and/or cyclic) set of simple FDs over U, and let X = {d;,...,4,} € O/EF, n=l1. Let A <sAr<g---<gsAd,
be the ordering of attributes in X according to <s. The implicit FDs for X (w.r.t. <g) are given by
FX: {Al — Az, Az — A3,. . -aAnfl — AnoAn — Al}

Definition 4 (Reduced Schema Graph). Let S = (U,F) be a schema graph and §¢ = (U/ _.»F“) be the equiv-
alent acyclic schema graph for S. The reduced schema graph for S is the directed graph S~ = (U, F~), where

F-= |J {minX ->miny}u [J Fu.

X—YeF® ()
- XeU/EF

From [3,22] we know that the reduced schema graph S~ = (U, F~) for S is a uniquely determined transitive
reduction of S, and F~ is a canonical cover of F. In the remainder of this paper, given a set F of simple FDs, we
will use “—"" to denote the reduction operator that produces the uniquely determined canonical cover F~ of F
according to Definition 4.

Example 3. Consider the schema graph S, in Fig. 2(c), where Part has an equivalent property PartDescr and
shipping costs are expressed in EU, LIT, and DM. The reduced form for S,, based on the total order induced
by attribute names, is shown in Fig. 3.
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(Category) (Region)

(Container) (Subcategory)

Incentive

(SaleDistrict) (Allowance) Terms

Nation

Year

Customer
A

Shipment

ShippingCostsLIT
ShippingCostsEU

(Qtyshipped)  (ShippingCostsDM

Fig. 3. Reduced form for schema graph S,.

2.4. Projection on schema graphs

Given a set F of FDs over attributes U and given X C U, the projection of F to X is given by
nx(F):={A; — A, € F'|4;4, C X}. Based on the results of [23,22], in this section we show that the projection
operation 7 is closed on schema graphs. The importance of this result lies in the fact that it allows us to use
projection to define precisely the effect of the deletion of an attribute from a schema graph (cf. Definition 6
later on). Indeed, when deleting an attribute our aim is to retain “as much information concerning FDs as
possible”, which is suitably formalized via =. However, as projection is defined as subset of a closure, the fol-
lowing challenges (which are visible in Example 1 above) arise in applying = directly:

(1) In general the projection of a set of simple FDs involves non-simple FDs, which are outside our
framework.
(2) The result of the closure may grow exponentially in the number of involved attributes.

In our setting of simple FDs, however, the following results hold.

Lemma 1 [23]. Let U be a set of attributes, let F be a set of simple FDs over U, and let A € U and X C U such
that X # 0, A¢ X, and X — A € F'. Then there is a sequence of n > 2 attributes A,,...,A, € U such that
Al EX, An= A, andAi—>A,~+1 GF, 1 glgl’l— 1.

Lemma 2 [22]. Let U be a set of attributes, F be a set of simple FDs over U, and X C U. Let Fy= nx(F)° and
FﬁY = {Al —>A2 S F* |A1A2 QX}7

(1) Fy contains only simple FDs.
(2) Fx = F),.

In view of Lemma 2, from now on we assume that, for a set F of simple FDs, projection is defined as
nx(F) :={A4; — A, € F*|A14> C X}, which by definition is a simple set of FDs.

Theorem 1. Letr S = (lA],F) be a schema graph, and let X C U such that E€ X. Then (X, {A, — A, €
F'| 4,4, C X}7) is a reduced schema graph.

Proof. Let Fy, = ny(F) = {4) — 4, € F*|4,4, C X} and Fy, = Fy,. We have to verify that (X,Fy,) is a
schema graph, i.e., that (i) F, is a set of simple FDs, (ii) £ has only outgoing arcs in Fy,, and (iii) there is
a path in Fy, from E to every attribute in X,. Once we have established (i)—(iii), the remaining claims follow
as for any set F; of simple FDs the set F; is by construction a uniquely determined canonical cover. First, (i)
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follows from the fact that by definition Fy, contains only simple FDs. Hence, by construction Fy, = Fy, con-
tains only simple FDs as well. Now, concerning (ii) we note that E has only outgoing arcs in F and hence in F".
Moreover, by definition 7 only removes FDs from F*, which implies that E has only outgoing arcs in Fy,. As
Fy, is a canonical cover of Fy, the claim follows. Concerning (iii), let 4 € X. We have to show £ — 4 € Fy,
from which the claim follows by Lemma 1. As there is a path from E to 4 in F we have E — 4 € F*, and by
definition of projection we find £ — 4 € Fy,, which implies £ — 4 € F and ends the proof. [

2.5. Meta-data

The formalism of schema graphs captures just that core of multidimensional schemata which we need as
basis to define a powerful schema modification algebra in the next section. Nevertheless, we assume that
schema graphs are managed as part of a larger meta-data repository, which contains all kinds of schema infor-
mation, in particular, information that is not captured in our graph notation.

For example, for all versions of schema graphs defined over time the meta-data repository includes spec-
ifications of attribute domains, classifications of attributes into dimensions, measures, and properties, summar-
izability types or restriction levels of measures (cf. [24]), derivation specifications for derived measures, and
summarizability constraints (cf. [13,23]). In particular we assume that, in accordance with what several OLAP
tools do, each measure is associated with exactly one aggregation operator for each dimension. Thus, mea-
sures are not just attributes: they have some built-in semantics, coded in meta-data, that states how they will
be aggregated along each hierarchy.

3. Schema modification algebra

Our proposal towards schema versioning rests upon four simple schema modification operations, namely
Add,() to add a new attribute, Del1,() to delete an existing attribute, Addy() to add an arc involving existing
attributes (i.e., an FD), and Del1y() to remove an existing arc. For each of these operations we define its effect
on the schema. Note that, from now on, we will always consider schema graphs in their reduced form, and
thus use the terms schema and reduced schema graph interchangeably.

In addition to the four schema modification operations defined below, we assume that there are (1) an oper-
ation to create an initial schema S = ({ £}, ()) that contains only the fact node without attributes or arcs and (2)
an operation to delete an existing schema. We do not consider these operations any further.

In order to specify schema modification operations formally, let S = (U, F) be a schema. For each modi-
fication operation M(Z) (where M is Add, or Del, and Z is an attribute, or M is Addy or Dely and Z is an
FD), we define the new schema New(S, M(Z)) obtained when applying M on current schema S.

Definition 5. Let S = ((7 ,F) be a reduced schema graph, and let 4 be an attribute. Then we have
New(S, Add,(4)) := (U U{4},(FU{E — 4})").

We call attention to the fact that in Definition 5 we do not distinguish the cases whether 4 does already
occur in § = (U, F) or not. Indeed, on the one hand Definition 5 implies that S remains unchanged if 4 does
already occur in S. On the other, if 4 is a newly inserted attribute then it is directly connected by an arc to the
fact node E.> Besides, when adding an attribute, the designer will be required to specify whether it is a measure
or a property; this information will be recorded in meta-data.

~

Definition 6. Let S = (U, F) be a reduced schema graph, and let 4 € U be an attribute. Then we have
New(S, Del,(4)) = (U \ {4}, 7y (4 (F) 7).

2 The unrestricted usage of Add, might introduce homonym conflicts, i.e., the designer could try to add an attribute although another
attribute with the same name but a different meaning occurs somewhere else. To avoid such conflicts, in an implementation the meta-data
repository needs be checked whether some schema version contains an attribute with the same name.
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Thus, in view of Theorem 1 the deletion of attribute 4 is defined by removing 4 and retaining FDs not
involving A via projection.

Definition 7. Let S = (17 ,F) be a reduced schema graph, and let f = A4, — A, be an FD involving attributes in
U. Then we have

New(S, Adds(f)) := (U, (FU{f})").

We note that the insertion of a new FD may introduce redundancies, which are removed via reduction “—

Definition 8. Let S = (lA] ,F) be a reduced schema graph, and let f= 4; — A, be an existing FD in F, where
Al # E. Let

:F\{f}U{AO *>A2 | (E'A() € lA])AO HAl EF}U{Al HA3 | (3A3 € U)A2 HA3 GF}
Then we have
New(S,Dely(f)) := (U, (F)").

The intuition underlying Definition 8§ is as follows: First, the specified FD f= 4, — A, gets deleted via set
difference. Then, previous transitive dependencies are retained by adding (i) FDs to A, from all nodes A
determining A; (possibly Ay = E) and (ii) FDs from A; to all nodes A5 determined by A».

We note that the “appropriate” deletion of FDs is more intricate than it might seem at first sight. For
example, we cannot simplify the deletion of an FD f by defining the new set of FDs to be (F"\ {f})° (recall
that F° denotes the canonical cover of F). Indeed, given A; — A, € Fwe have 41X — A4, € F" for an arbitrary
set X. Although A4, X — A, is not left-reduced with respect to F, it may be left-reduced with respect to F* \ /1,
which implies that (F"\{f})° is not guaranteed to be a set of simple FDs. Consider for instance
F={E— A, E— A>, A» — A3} and Delg(4, — A3): here, we have 414> — Ay € F', and 414> — As is also
contained in (F"\ {4, — A5})°, which does not correspond to the users’ intuition. Moreover, we observe
that if we tried to define deletion of an FD via (F*\ {f})~ (to get rid of non-simple FDs), we were still facing
a severe problem: Users would be unable to delete a single FD from a cycle involving three or more attri-
butes, as the FD to be removed would be implied by the remaining FDs. Thus, users would be unable to pull
out attributes from cycles involving three or more attributes. With our definition, none of these problems
arises.

Example 4. The sequence of operations applied in order to arrive at S; starting from S is

Del,(Date),
Add,(Subcategory), Addy(Type — Subcategory), Addy(Subcategory — Category),
Addg(SaleDistrict — Nation),
Dely(Terms — Incentive)
In particular, the resulting reduced schema graphs for the part hierarchy after each operation in line 2 are

shown in Fig. 4. The sequence of operations applied in order to arrive at S, starting from S| is
Add,(PartDescr), Addy(Part — PartDescr), Addy(PartDescr — Part),
Add,(ShipFrom),

Del,(SType), Del,(Carrier),Del,(ShipMode),

Add, (ShippingCostsEU), Add, (ShippingCostsLIT),

Addy(ShippingCostsDM — ShippingCostsEU),

Addz(ShippingCostsEU — ShippingCostsDM),

Addy(ShippingCostsDM — ShippingCostsLIT),

Addy(ShippingCostsLIT — ShippingCostsDM).
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[ ]

(a (b) (©

Fig. 4. The schema graph for the shipment fact after (a) including new attribute Subcategory, (b) including new arc Type — Subcategory,
and (c) including new arc Subcategory — Category.

We are now in the position to show that Definitions 5-8 formalize the expected behavior of schema mod-
ifications, in particular that the modification operations are closed on schema graphs.

Theorem 2. Let S = (U,F) be a reduced schema graph.

(1) Let (U, F') = New(S, Add,(A)). Then A€ U .
(2) Let (U ,F') = New(S,Del,(4)). Then A ¢ U .
(3) Let (U, F') = New(S, Addz(f)). Then f€ F'™.
(4) Let (U ,F') = New(S,Dels(f)). Then f& F'™.

Additionally, in all of the above cases, (f] ,,F ") is a reduced schema graph.

Proof. Statements (1)—(3) follow immediately from Definitions 5-7, respectively. Statement (4) follows from
DAefinition 8, observing that F is canonical and hence in particular non-redundant. It remains to show that
(U ,F') is a reduced schema graph, i.e., thgt/ (a) F'is a set of simple FDs, (b) £ has only outgoing arcs and
there is a path from E to every attribute in U , and (c) (U , F’) is in reduced form. For Add,, Addg, and Dely,
(a) and (b) are immediate. For Del,, (a) and (b) follow from Theorem 1. For all four operations, (c) follows
immediately from the definition of the reduction operator “—. [

Intuitively, Theorem 2 states that our schema modification operations preserve valid schema graphs and are
guaranteed to produce non-redundant and uniquely determined results.

4. Versions

We call a version a schema that reflects the business requirements during a given time interval, called its
validity, that starts upon schema creation time and extends until the next version is created.’ The validity
of the current version, created at time ¢, is [z, +oo]. A version is populated with the events occurring during
its validity and can be queried by the user.

A new version is the result of a sequence of modification operations, which we call schema modification
transaction, or simply transaction. In analogy to the usual transaction concept, intermediate results obtained

3 In accordance with [27] we argue that there is no need to distinguish valid time from transaction time in the context of schema
versioning.



448 M. Golfarelli et al. | Data & Knowledge Engineering 59 (2006) 435-459

after applying single schema modifications are invisible for querying purposes. Moreover, intermediate sche-
mata are neither populated with events, nor are they associated with augmented schemata.

A transaction produces (1) a new version and (2) an augmented schema for each previous version, all of
which are (either physically or virtually) populated with data. In Section 4.1 we address (1), in particular
we discuss how the new version is populated. In Section 4.2 we address (2), i.e., we illustrate how augmented
schemata are created at the end of transactions in order to increase flexibility in cross-version querying.

4.1. Data migration

Given version S, let the sequence of operations M(Z,),..., M;(Z;) be the executed schema modification
transaction. Then, the new version S’ is defined by executing the modification operations one after another,
re., 8" =New(Sy,, My(Z;)), where S| =S and S; = New(S;_y, M; (Z;_y)) fori=2,...,h.

In order to populate S, it is necessary to carry out some migration actions to consistently move data from
the previous version to the new one. If S’ is created at time ¢, migration actions involve the data that are valid
at t, 1.e., data whose validity spans both S and S’. Importantly, in the DW context the validity may be defined
differently for two categories of data, namely events (in the star schema, tuples of fact tables) and instances of
hierarchies (tuples of dimension tables):

¢ Events occur at a particular moment in time. Consistently with [20], we assume that the validity of an event
that occurs at time ¢, is the zero-length interval [z, ¢.]; thus, an event naturally conforms to exactly one ver-
sion (the one valid at 7,). Consequently, when a new version S’ is created, while all future events will nec-
essarily conform to S’, no data migration will be required for past events. (Note that this is a consequence
of the fact that, in a versioning approach, all past versions are retained together with their data. Conversely,
in the approach to schema evolution in DWs described in [7], migration is carried out also for events: in
fact, in evolution past versions are not retained.)

¢ Instances of hierarchies are generally valid during time intervals (e.g., a part is valid from the time it is first
shipped to the time it is declared obsolete), so their validity may span different versions. Thus, if S’ is cre-
ated at time ¢, for each hierarchy instance that is valid at ¢ it may be necessary to migrate it from S to S’.

In order to determine the migration actions to be performed after a transaction, independently of the spe-
cific sequence of modification operations that implements the transaction, we define the net effect for attributes
and FDs with reference to the transaction. Let S’ = (U , F') be the new version obtained by applying the trans-
action to version § = (U, F). Then we define

Diff;(S,8):=U"\ U (set of added attributes)
Diff}(S,8):=F \ F* (set of added FDs)
Diff, (S,8):=U\ U’ (set of deleted attributes)

We note that it is not necessary to define Diff, (S,S’) (set of deleted FDs) since no action needs to be per-
formed for deleted FDs. In fact, if an FD gets deleted then a constraint on previous instances gets removed;
thus, there is no need for alignment of previous instances with the new schema version.

The migration actions associated with the elements in Diff}(S,S"), Diff,(S,S"), and Diff}(S,S') are

reported in Table 1 and defined in the following. All of these actions are supported and managed by the ver-
sioning system, under the designer’s guidance where required.

Table 1

Migration actions associated to added or deleted attributes/FDs

Element Condition Migration action
A €Diffi(s,s) (E— A) ¢ F' A is property Add values for 4
A €Diff;(S,S) (E— A) ¢ F' A is property delete 4

f €DIifff(s,s) - enforce f
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(1) Add values for A: A new property A has been added to a hierarchy. Each valid hierarchy instance is
migrated to S’ by providing values for 4. For instance, when property Subcategory is added, then all
currently valid subcategory values must be recorded under S’.

(2) Delete A: Property A has been deleted, so its values are simply dropped from all valid instances migrated
to S'.

(3) Enforce f: A new FD f'has been added. We distinguish two cases: (1) If the new FD involves two already
existing properties, it is necessary to check if f'holds for all valid instances and possibly to enforce it in S’
by modifying, under the user guidance, the values of one or both properties involved in f. (2) If the new
FD involves a new property 4 (i.e., one that has just been added), then the values for 4 must be provided
in such a way that this FD is satisfied. For instance, when Subcategory is added to the part hierarchy as
in Fig. 4(c), then each valid part type in S, must be associated with exactly one subcategory and all types
included in each subcategory must belong to the same category.

In all cases not covered by the table, no action needs to be performed. In fact, the impact of adding or delet-
ing a measure or a dimension is restricted to events, which are not involved in migration as explained above;
finally, deleting an FD requires no change on hierarchy instances.

Again, we emphasize that in a versioning approach all past versions must be retained. Thus, for each
migrated hierarchy instance, both versions of data will be available for querying: the one conforming to
schema S, used for accessing the events that occurred before time ¢, and the one conforming to S’, used for
accessing the events that occurred after z.

Example 5. In the shipment example, at time #; = 1/1/2003 the new version S| is created from version Sj,.
Among other things, this transaction entails adding Subcategory to the part hierarchy (consistently with the
FDs Type — Subcategory and Subcategory — Category) and adding an FD from SaleDistrict to Nation. Fig. 5
shows the data in the dimension tables for customers and parts just before #; and some months after #,. After ¢,
each dimension table has two copies, belonging to Sy and S; respectively. Fields from and to express the
validity of parts (for instance, they may have been introduced to manage parts as a slowly-changing
dimension), while customers are assumed to be always valid. At time #;, all the valid parts (those whose to
timestamp is open) are migrated to S; and their subcategory is added; then, in February, part £3 is dismissed

S0.DT_CUST | idCust | Customer| SaleDistrict | City Nation
(before and | 1 Bianchi MidEurope Milan Italy
aftert) | 2 Rossi SouthEurope | Rome Italy
3 Schmidt | MidEurope Lienz Austria
4 Bauer MidEurope Innsbruck | Austria
SO0.DT_PARTS | idPart | Part Type Category from to
(before t) | 1 VSX-D514 | Amplifier | Electronics | 1-2001 | 9-2002
2 VSX-D914 | Amplifier | Electronics | 6-2002 -
3 TZ-MC05 Speaker | Electronics | 3-2001 -
4 PDP-5045 | TV Electronics | 7-2002 -
5 PDP-4345 | TV Electronics | 2-2000 | 1-2001
S0.DT_PARTS | idPart | Part Type Category from to
(after t,) | _1 VSX-D514 | Amplifier | Electronics | 1-2001 9-2002
2 VSX-D914 | Amplifier | Electronics | 6-2002 | 12-2002
3 TZ-MCO05 | Speaker | Electronics | 3-2001 | 12-2002
4 PDP-5045 | TV Electronics | 7-2002 | 12-2002
5 PDP-4345 | TV Electronics | 2-2000 1-2001
S1.DT_PARTS | idPart | Part Type Subcat. | Category from to
(aftert) | 2 VSX-D914 | Amplifier HiFi Electronics | 1-2003 -
3 TZ-MC05 Speaker HiFi Electronics | 1-2003 | 2-2003
4 PDP-5045 | TV Video Electronics | 1-2003 -
6 DV-275 DVDPlayer | Video Electronics | 4-2003 -
S1.DT_CUST | idCust | Customer | SaleDistrict City Nation
(aftert)) | 1 Bianchi SouthEurope | Milan Italy
2 Rossi SouthEurope | Rome Italy
3 Schmidt | MidEurope Lienz Austria
4 Bauer MidEurope Innsbruck | Austria

Fig. 5. Dimension tables for customers and parts in the shipment example, before and after time ¢#,.
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and, in April, a new part (f6) is inserted. As to customers, all of them are migrated. Since the new FD
SaleDistrict — Nation does not hold for MidEurope, the sale district of customer #1 is modified in S;. Note that,
at ¢, the open timestamps of parts are closed: in fact, from a conceptual point of view, it is clear that instances
cannot survive their schema.

4.2. Augmentation

Let §' = (f/ ,,F ") be the new version obtained by applying, at time ¢, a transaction to version S = (lA/ JF).
Let S; be a previous version (possibly, S; coincides with S itself), and S?UG be its augmented schema. While
migration involves the data whose validity spans both S and §’, the augmentation of S—which determines
the new augmented schema for S—involves the data whose validity overlaps with the validity of S;. Thus,
while migration is only performed on hierarchy instances that are valid at time ¢, augmentation also concerns
the events that occurred before ¢ and the hierarchy instances that were no more valid at ¢.

As in migration, also here the possible actions do not depend on the specific sequence of modification oper-
ators applied, but on the net effect for attributes and FDs with reference to the transaction. More specifically:

e If attribute 4 has been added in the course of the transaction, i.e., if 4 € Diff,(S,S’), then the designer
may want to include 4 in the augmented schema for S; to enable cross-version queries involving A.

e If fis a new FD, ie., if f =4 — Be€ Diff}(S,S), then the designer may want to include f in the aug-
mented schema for S; to enable cross-version roll-up and drill-down operations involving 4 and B.

In this respect, we call attention to the fact that we only consider augmentations in response to operations
that add attributes or FDs: in fact, the utility of augmenting the current version with deleted attributes/FDs
seems highly questionable.* On the one hand, we do not see why a designer should first delete an attribute only
to state that data associated with this attribute should be maintained in an augmented schema. On the other,
we assume that deletions of FDs are triggered by real-world events that invalidate these FDs (the deletion of
valid FDs reduces the information of a schema without need, which does not seem reasonable); hence, there is
no way, not even in an augmented schema, to maintain these FDs.

Now, we define the augmentation operation Aug(SlAUG, S,8") that (further) augments the augmented
schema S?UG = (U, F;) based on the designer’s choice in response to the schema change from S to S’. Let
Diff,(S,S') and Diffs(S,S') be the subsets of Diff}(S,S’) and Diff}(S,S’), respectively, including only
the attributes and FDs the designer has chosen to augment. We note that all attributes occurring in FDs of
Diffy(S,S') must be contained in U; UDiff,(S,S'), as only those FDs can be augmented whose attributes
occur in the augmented schema.’ Then the new augmented version for S; is defined as follows:

Aug(SAY9 8,5 = (U,- UDiff,(S,S"), (F,- U nOiUDi/f?A(S.’S,)(Di £fp(S, S/))> )
The augmentation actions associated with each element in DIff,(S,S') and Diffy(S,S') are reported in
Table 2 and defined as follows:

(1) Estimate values for A: A new measure 4 has been added. To enable cross-version querying, the designer
provides values for 4 for the events recorded under S;, typically by deriving an estimate based on the
values of the other measures. For instance, when measure Discount is added to the shipment fact, if
the discount applied depends on the shipped quantity bracket, its values for past events may be easily
estimated from measure Qty shipped.

4 Designers can, of course, delete attributes and FDs from schema versions. The point is that such deletions do not lead to
augmentations.

5'If an attribute 4 occurs in an FD to be augmented but not in U; U Diff,(S,S’) then the system should warn the designer that she
probably forgot to augment 4. In this case, the designer needs to revise her choices concerning potential actions accordingly.
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Table 2
Augmentation actions associated to added attributes/FDs
Element Condition Augm. action
A€ Diff,(S,8) (E— A) € F; A is measure Estimate values for A4
A is dimension Disaggregate measure values
(E— A) ¢ F; A is derived measure Compute values for 4
A is property Add values for 4
feDiffp(S,S) - Check if f holds

(2) Disaggregate measure values: A new dimension A has been added. To enable cross-version querying, the
designer must disaggregate past events by 4 according to some business rule or by adopting a statistical
interpolation approach that exploits multiple summary tables to deduce the correlation between mea-
sures [28]. For instance, a likely reason for adding dimension ShipFrom is that, while in the past all ship-
ments were made from the same warehouse w, now they are occasionally made from other warehouses:
in this case, all past events can be easily related to w.

(3) Compute values for A: A derived measure 4 has been added; by definition of derived measure, the values
of A for past events are computed by applying some known computation to another measure.

(4) Add values for A: A new property 4 has been added, so the designer may provide values for A. For
instance, when Subcategory is added, the designer may provide values for all subcategories.

(5) Check if f holds: A new FD f has been added. As for migration, we distinguish two cases. (1) If finvolves
two already existing attributes, it is necessary to check whether f, that was added for §’, also holds for S;;
this can be automatically done by inspecting the instance of S;. For instance, when SaleDistrict — Nation
is added, the system checks that no sale district including customers from different nations exists. If the
check fails, the designer is warned: f cannot be augmented since this would require to change the reality
as recorded in the past. (2) If finvolves a new attribute A4 (i.e., one that has just been added), then the
values for 4 must be provided in such a way that f is satisfied.

Example 6. In the shipment example, initially we start from version S, where we have SOAUG = So. When new
version S is created from current version S, we have

Diff; (So,S1) = {Subcategory}
Diff}(So,S) = {SaleDistrict — Nation, Type — Subcategory, Subcategory — Category}

Thus, the actions the designer can undertake on data valid during S, to augment SOAUG are (1) to provide val-
ues for Subcategory and (2) to let the system check if SaleDistrict — Nation holds on Sj. Assuming the designer
decides to undertake action (1), she has the additional choice to augment any subset of the FDs in
Diff}(So,S:) involving Subcategory, and this additional choice is actually materialized by assigning values
to Subcategory consistently with these FDs. As to (2), we note that the FD SaleDistrict — Nation cannot be
augmented since, in Example 5, it does not hold for S,. Then we have Diff, (S,8') =Diff} and

Diffy (S,8") = {Type — Subcategory, Subcategory — Category}, which determines the new augmented
schema for S07S0AUG = Aug(Sy, So,S1). Note that SS‘UG = S since it does not include SaleDistrict — Nation
while it also includes attributes and FDs that have been deleted on the way to S; (e.g., Date and
Terms — Incentive appear in S3U° but not in ;). Fig. 6 shows, with reference to Example 5, the instances
of the dimension table for parts within the new augmented schema for S,. Differently from the migration case,
here all the parts that have been valid under Sy are augmented by specifying their subcategory.

SO0AUG.DT_PARTS| idPart | Part Type Subcat. | Category from to
(after t,) [ 1 VSX-D514 | Amplifier | HiFi Electronics | 1-2001 9-2002
2 VSX-D914 | Amplifier | HiFi Electronics | 6-2002 | 12-2002
3 TZ-MCO05 Speaker | HiFi Electronics | 3-2001 | 12-2002
4 PDP-5045 | TV Video Electronics | 7-2002 | 12-2002
5 PDP-4345 | TV Video Electronics | 2-2000 1-2001

Fig. 6. Augmented dimension table for parts in the shipment example.
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5. Versioning

In this section we consider schema versioning based on sequences of versions as defined in the previous sec-
tion, which influence the history of schemata and augmented schemata. Formally, a history is a sequence H of
one or more triples representing versions of the form (S, SV, 1), where S is a version, S*V¢ is the related
augmented schema, and ¢ is the start of the validity interval of S:

H = ((S0,55Y%,10), .. ., (S, S2Y9, 1)),

where n > 0 and #;_; <t for 1 <i<n. Note that, in every history, for the last triple (S,,S2°,#,) we have
SfUG = §, as augmentation only enriches previous versions using knowledge of the current modifications.
Given version S, created at time 7, the initial history is

H = ((S()?S(/)\UthO))y

where S4Y¢ = S,. Schema modifications then change histories as follows. Let H = ((So, S5V, %), ...,

(S,_1, Sf?_UIG, ta1), (S, SnAUG7 t,)) be a history, and let S, be the new version at time ¢, 1> ¢,; then the resulting
history H’ is

H/ = ((S07 Aug(S0AU07Sn7Sn+1)7 t0)7 sy (Sna Aug(SnAUG7Sn7Sn+l)7 tn)y (Sr1+17SnAﬂGv tn+l))7

where SA0 == 8,.;.

We point out that a schema modification might potentially change any or all augmented schemata con-
tained in the history. E.g., adding a new FD at time n + 1, which has been valid but unknown throughout
the history, may lead to a “back propagation” of this FD into every augmented schema in the history. More-
over, note that new augmentations of previous schemata are based on the augmented schemata as recorded in
the history, not on the schemata themselves. Thus, augmentations resulting from different modifications are
accumulated over time, resulting in augmented schemata whose information content—and, hence, potential
for answering queries—is growing monotonically with every modification.

We close this section by observing that, assuming to rely on a relational DBMS, a relevant choice concerns
how to physically implement augmented schemata and histories. In the literature two approaches are pro-
posed: namely single-pool and multi-pool [15]. In a single-pool implementation all schemata are associated with
a unique, shared, extensional repository, so that the same objects cannot have different values for the same
properties when ““viewed” through different schemata. On the other hand, in a multi-pool implementation
each schema is associated with a “private’ extensional data pool; different data pools may contain the same
objects having (possibly) completely independent representations and evolutions. Although the multi-pool
solution may look more flexible at a first glance, a single-pool solution has usually been considered satisfactory
for implementation as it limits the storage space overhead due to coexistence of multiple schemata. Both solu-
tions do support our approach; however, a detailed comparison is outside the scope of this paper.

6. Querying across versions

In this section we discuss how our approach to versioning supports cross-version queries, i.e., queries whose
temporal horizon spans multiple versions.

Preliminarily, we remark that OLAP sessions in DWs are aimed at effectively supporting decisional pro-
cesses, thus they are characterized by high dynamics and interactivity. A session consists of a sequence of que-
ries, where each query ¢ is transformed into the next one ¢’ by applying an OLAP operator. For instance,
starting from a query asking for the total quantity of parts of each type shipped on each month, the user could
be interested in analyzing in more detail a specific type: thus, she could apply a drill-down operator to retrieve
the total quantity of each part of that type shipped on each month. Then, she could apply the roll-up operator
to measure how many items of each part were shipped on the different years in order to catch a glimpse of the
trend. Hence, since OLAP operators mainly navigate the FDs expressed by the hierarchies in the multidimen-
sional schema, specifying the version for query formulation in the OLAP context does not only mean declaring
which attributes are available for formulating the next query ¢’, but also representing the FDs among attri-
butes in order to determine how ¢’ can be obtained from the previous query gq.
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In this sense, the formulation context for an OLAP query is well represented by a schema graph. If the
OLAP session spans a single version, the schema graph is the associated one. Conversely, when multiple ver-
sions are involved, a schema under which a// data involved can be queried uniformly must be determined. In
our approach, such a schema is univocally determined by the temporal interval 7 covered by the data to be
analyzed, as the largest schema that retains its validity throughout 7. In particular, since 7' may span different
versions, we define an intersection operator, denoted by ®, for determining the common schema between two
different versions.

Definition 9. Let S=({E} U U, F) and S’ =({E} U U', F'). Then the intersection of S and S’, denoted by
S ® S, is the schema defined as S® 8" =({E} U (UNU"), (FFNF™)7).

Intuitively, the intersection between two versions S and S’ is the schema under which data recorded under S
or S’ can be queried uniformly. In fact, it includes only the attributes belonging to both S and §’, as well as
their common FDs. An example of intersection is reported in Fig. 7.

We next show that the intersection operator is closed for schema graphs and that it is commutative and
associative, which allows us to apply the operator to sets of schema graphs.

Theorem 3
(1) Let S and S’ be schema graphs. Then S ® S’ is a schema graph.
(2) Operator ® is commutative and associative.

Proof

(1) We have to show that there is a path from E to every attribute in the intersection. Let 4 € (U N U’)\ {E}.
As S and S’ are schema graphs, there are paths from E to 4 in S and S, ie., E— A4 € F' and
E— A€ F* Thus, E— A € (F'NF"),ie., there is a path from E to 4 in (F* N F'™). Then, by construc-
tion, there is a path from E to 4 in (F* N F'*)", which is what we had to show.

(2) The fact that schema graph intersection is commutative follows immediately from commutativity of set
intersection. To verify that schema graph intersection 1is associative we have to check
(S1® 82) ® 3= ®(S2® S3), Le.,

{E}U (U N U2) N Us), (F1 N0 F3)7) N F3)7) = (E}U (Ui n(U2NU3)), (Fi N ((F3NF3)7)7)7)

Clearly, equality in the first component (i.e., attributes) follows from associativity of set intersection. Concern-
ing equality in the second component (i.e., FDs) we establish the following facts for all sets F, F}, and F, of
simple FDs: (a) (F )" =F" and (b) F; NF; = (F;NF;)"

Afterwards equality in the second component is derived as follows for Fy, F5, Fs:

% k) O\ ¥ k\ (a) % 0\ * *\ — (b) £ % %\ * * * -
(((Flsz) ) ﬂF3) :((FlﬂFz) ﬂF3) :((F1QF2)QF3) :(F1H(F20F3))
(b) * % k) ¥\ — (a) % % s\ O\ K\ —
:(Flﬂ(Fszz)) :(F1m((Fsz3)))
Fact (a) follows immediately from the observation that path reachability remains invariant under transitive
reduction (Definition 2) and schema graph reduction (Definition 4). Concerning fact (b) we have to show
f € FiNF;for f € (F;NF5)". (The other inclusion is trivial.) Let 4, — 4, € (F; N F3)". Due to the inductive

definition of “*” we either have 4, — 4, € (F] N F3), in which case there is nothing to show, or there are
Ay,...,4, for n>=3 such that 4, — 4, € (F{NF;), 1<i<n-—1. In the latter case we have

Fig. 7. Intersection between two schema graphs.
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Ai — Ay € F] and 4, — A € F5, 1 <i<n—1. Thus, we have 4, — 4, € (Fj*)* :F;f, j=1,2. Conse-
quently, we have 4, — 4, € (F] NF3), which concludes the proof. O

In view of Theorem 3 a common schema for cross-version querying can now be defined as follows based on
schema intersection.

Definition 10. Given a history H and a (not necessarily connected) temporal interval 7, we call the span of T
on H the set

Span(H,T) = {S*VC|(S,,SAVC ;) € H A [ti, i [N T # 0}

(conventionally assuming ¢, = +00).
Given a history H and a temporal interval 7, the common schema on H along T is defined as
COI’I’I(H, T) = ®Span(H‘T>S;AUG.

Let ¢ be the last query formulated, and T be the interval determined by the predicates in ¢ on the temporal
hierarchy (if no predicate is present then 7' = ]—oo, +oco[). The formulation context for the next query ¢’ is
expressed by the schema graph Com(H, T). Note that the OLAP operator applied to transform ¢ into ¢’
may entail changing 7 into a new interval 77; in this case, the formulation context for getting a new query
q" from ¢’ will be defined by Com(H, T").

Example 7. Let H = ((So, S5YC, 10), (S1,52VC 1), (S2,52VC, 1,)) be the history for the shipment fact (recall
that we have ¢; = 1/1/2003 and ¢, = 1/1/2004), and let ¢ = “Compute the total quantity of each part category
shipped from each warehouse to each customer nation since July 2002”. The temporal interval of ¢ is T =
[7/1/2002, +oof, hence Span(H, T)={S,, S, S->}. Fig. 8 shows the formulation context, defined by
SAVG @ §4U6 @ 2V in two situations: when no augmentation has been made, and when all possible
augmentations have been made.

First of all, we observe that ¢ is well-formulated only if ShipFrom has been augmented for both previous
versions, since otherwise one of the required attributes does not belong to the formulation context.

Then we observe that, for instance, (1) drilling down from Category to Subcategory will be possible only if
subcategories and their relationship with categories have been established also for 2002 data; (2) drilling down
from Nation to SaleDistrict will be possible only if the FD from sale districts to nations has been verified to
hold also before 2003, which is the assumption underlying Fig. 8.

Finally, we note that if ShippingCostsEU is augmented (which is particularly simple due to the existence of
constant conversion factors) then queries involving ShippingCostsEU can be evaluated over any time period,
although shipping costs were recorded exclusively in DM until 7. Moreover, we point out that the
augmentation of the derived measure ShippingCostsEU can be implemented at virtually no storage cost (e.g., in
terms of a view that applies the constant conversion factor).

(Category) (Region)
A

Incentive

1
(Container) {Subcategory )
A

|
Size T Brand Type
i

- \ —
Part_J«--\PartDescr; Customer (Deal) {ShipFrom |
A —— -

{_ShippingCostsLIT }
B Sy

(QtyShipped) (ShippingCostsDM}””*(\ShippingCostsEU\

1
|
______________ ”

Shipment

Fig. 8. Formulation contexts for the query in Example 7 without augmentation (in plain lines) and with augmentation (in plain and
dashed lines).
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We close this section with some remarks about query rewriting over versions. Due to addition or removal of
dimensions, the granularity of a given measure M (meant as the combination of dimensions under which its
values are recorded) may change from one version to the other. Thus, a given cross-version query g may
require aggregation on some (finer) version §’, and no aggregation on another (coarser) one S”. Importantly,
the aggregation operator used to summarize M on S’ is the one associated with M in the meta-data repository.
If at some time, during augmentation, the designer decides to disaggregate M, it is obviously necessary that
this is done consistently with this aggregation operator, i.e., in such a way that reaggregating M at the original
granularity exactly returns the original values.

Disaggregation also brings to the foreground some subtle summarizability issues. We recall from [16] that
aggregate functions are either distributive or algebraic or holistic. Repeated applications of a distributive aggre-
gate function (e.g., SUM) during a sequence of roll-up operations lead to the correct final result. If an aggre-
gate function is not distributive, i.e., if it is algebraic (e.g., AVQG) or holistic (e.g., Median), then in general the
repeated application during a sequence of roll-up operations leads to an incorrect result. Now, consider an
initial schema version S where some measure is recorded under a non-distributive aggregate function, e.g.,
average quantities in stock (measure Stock) are recorded per product and month. Next, in the new version
S’ these quantities are recorded at a finer granularity, e.g., per product at the end of each day. If the designer
chooses to augment data associated with S to reflect this change, then according to Table 2 measure Stock has
to be disaggregated to obtain daily values. Here, daily values can be obtained easily by just using the original
monthly measure as new daily measure for each day of the month, as shown in Table 3. Clearly, in this way the
averages of the daily measures per month yield the original monthly measures. However, it is less clear how a
roll-up aggregation to the year level should be computed. In fact, as the first half of a year (i.e., 01-Jan until 30-
Jun) has 181 days while the second one (i.e., 01-Jul until 31-Dec) has 184, the aggregation of daily measures to
level year will yield a different result (m‘“;% ~ 15.04) than the aggregation of monthly measures to level
year (% = 15). Following our above argumentation concerning non-distributive aggregate functions,
one might think that taking averages of daily measures to level year (with result 15.04) should be correct, while
averaging the average monthly values (with result 15) should be avoided. Nevertheless, we recall that the
monthly values are the ones that were really recorded in the system, while the daily ones were obtained by
disaggregation during augmentation. In particular, on schema version S users might already have seen the
value 15 computed from monthly values. As augmentation should not introduce inconsistencies by changing
the results of queries, we must make sure that in this particular scenario the daily values are not used to com-
pute the aggregates per year.

We envisage the following two alternative approaches to deal with inconsistencies arising from roll-up oper-
ations involving disaggregated measures. First, the query subsystem could simply warn the user whenever
disaggregated measures have contributed to a query result. Second, and more ideally, the query subsystem
could try to avoid the use of disaggregated measures in roll-up aggregations. For example, in the above sce-
nario roll-up operations beyond the month level would always be computed from monthly measures but not
from daily ones. However, a systematic analysis of how to avoid the use of disaggregated measures in general
and of disaggregated and derived ones in particular still needs to be done.

Table 3

Summarizability issues with disaggregation

Monthly Daily

Product Month Stock Product Day Stock
pl Jan-2003 10 pl 01-Jan-2003 10
i)l jun-2003 iO i)l .30-Jun-2003 '10

pl Jul-2003 20 pl 01-Jul-2003 20

pl Dec-2003 20 pl 31-Dec-2003 20
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7. Computational complexity

To support our approach towards schema versioning, some central operations have to be implemented. The
aim of this section is to indicate that all of these operations can be implemented efficiently (i.e., by means of
polynomial time algorithms), which suggests that our approach can indeed be used in an interactive design and
versioning process. We point out that we do not try to derive exact complexity bounds; instead, we just point
out some well-known polynomial time algorithms that could be used in an ad-hoc implementation. (In par-
ticular, we do not address possibly more efficient incremental algorithms.)

It should not come as a surprise that the complexity of computing transitive reductions underlies the fol-
lowing analysis. Consequently, we recall from [3] that each graph has a transitive reduction that can be com-
puted in polynomial time and, moreover, that the complexity of computing transitive reductions is of the same
complexity as computing transitive closures (which can be computed in O(#>) time using Warshall’s algorithm
where #n is the number of the graph’s nodes).

(1) Schema graph reduction. To compute the reduced schema graph S~ of S the following procedure can be
applied: (a) The strongly connected components of S are identified in linear time (see., e.g., [8]). (b) The
equivalent acyclic schema graph $* = ((7 /=, F*) for S'is constructed from the strongly connected com-
ponents of S in polynomial time via transitive reduction. (c) The reduced schema graph S~ = (U, F") is
computed from §* = (U/__,F’) in polynomial time according to Definition 4.

(2) Projection. To compute a projection 7 y(F) according to Lemma 2 a subset of a transitive closure has to
be selected, which can be done in polynomial time.

(3) Schema modification operations. Operation Add, requires adding the attribute to the current schema,
which is done in constant time. Operation Del, can be seen as a composition of projection followed
by reduction, both of which are polynomial time as we have seen already. Operations Addy and Dely
each require a single reduction, which can be done in polynomial time.

(4) Schema augmentation. Augmentation requires the computation of Diff; and Diff}, which involve
standard (polynomial time) set operations and transitive closures. Afterwards, augmentation proceeds
in terms of (polynomial time) modification operations on augmented schema versions.

(5) Schema intersection. Schema intersection ® is defined in terms of a composition of set operations, tran-
sitive closure, and reduction; hence, it can be computed in polynomial time as well.

8. Conclusions and further remarks

In this paper we have presented an approach towards DW schema versioning. Importantly, our approach
relies on a conceptually simple graph model that captures the core of state-of-the-art data models for DWs. Based
on the standard graph operations of transitive closure and reduction, we have defined four intuitively appealing
schema modification operations in the context of graphical DW schemata. We have shown how single schema
modifications lead to a history of versions that contain augmented schemata in addition to “ordinary” schemata,
and we have defined an intersection operator that allows us to determine whether a given query, possibly span-
ning several versions, can be answered based on the information contained in augmented schemata.

As a side remark, we note that our approach can also be used for horizontal benchmarking, where a com-
pany compares its own performance against competitors’ performance. E.g., in our sample scenario assume
that there is another company shipping similar products but according to a different geographical classifica-
tion. To include the competitor’s shipments for horizontal benchmarking, all one has to do is to (a) create a
new schema version, (b) add the competitor’s geographical classification, e.g., in terms of a new alternative
aggregation path such as Customer — CompetitorSaleDistrict — CompetitorRegion, and (¢) augment previous
schema versions with the new aggregation path.

Appropriate schema versioning and in particular schema augmentation involves considerable manual work
by DW administrators. Nevertheless, we are not aware of “simpler” viable alternatives. E.g., one could be
tempted to try (a) to express augmented information in terms of views over new data and (b) to answer
cross-version queries based on established techniques for answering queries using views. However, this
approach is infeasible for the following reason: Consider the insertion of a new dimensional attribute such
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as Subcategory at time ¢; into the Part hierarchy in our sample scenario. To enable cross-version queries
involving Subcategory on schema versions prior to ¢, somehow Subcategory values have to be “found” for
Part instances prior to #;, even for parts that do not exist any longer after ;. Clearly, those parts do not occur
in versions after #; and hence they do neither occur in views over versions after ¢;. Consequently, a manual
assignment of subcategories to parts cannot be avoided if cross-version queries need to be supported. (Note
that an automated assignment of default or null values would not increase the analysis potential.)

Next, we observe that our approach to versioning can be regarded as “pure” since data never gets deleted.
In particular, if an attribute 4 is deleted by Del, then a new version is created whose schema does not contain
A any longer; hence, A-values will not be stored for new data any longer. However, previous versions and aug-
mented schemata still contain 4, and their associated instances contain values for 4, which allows us to answer
queries involving 4 on old data.

While this fully complies with the idea of versioning [19,31], for practical purposes designers might want to
delete data physically to free disk space. This could be easily achieved in at least two ways. First, designers
might want to delete entire (old) versions and their associated data, which can be implemented by deleting
appropriate data entries and/or tables of those schemata from the database. Second, designers might want
to erase individual attributes from the history of versions (as if the attributes never existed). In this case,
all tables (belonging to versions and augmented schemata for those versions) containing the specified attribute
have to be altered to drop those attributes.

Finally, we remark that our approach to DW schema versioning provides an initial step that covers the
majority of schema elements occurring in real world data warehouses. However, future research is necessary
to include side concepts such as (1) cross-dimensional attributes (e.g., an attribute VAT that is functionally
determined by the pair of attributes product and location is a cross-dimensional attribute) and (2) derived mea-
sures that can be computed from sets of other measures. Indeed, both concepts go beyond our assumption of
simple FDs and require general FDs that could be represented by using a schema hyper-graph, where hyper-
arcs go from sets of attributes to single attributes. The generalization of our approach to the setting of hyper-
graphs remains an open issue.
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