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Abstract

Accurately estimating the cardinality of aggregate
views is crucial for logical and physical design
of data warehouses. While the warehouse is un-
der development and data are not available yet,
the approaches based on accessing data cannot be
adopted. This paper proposes an approach to es-
timate the cardinality of views based on a-priori
information derived from the application domain.
We face the problem by first computing satisfac-
tory bounds for the cardinality, then by capital-
izing on these bounds to determine a good prob-
abilistic estimate for it. Bounds are determined
by using, besides the functional dependencies ex-
pressed by the multidimensional scheme, addi-
tional domain-derived information in the form of
cardinality constraints which may bound either
the cardinality of a given view or the ratio between
the cardinalities of two given views. In particular,
we propose a bounding strategy which achieves
an effective trade-off between the tightness of the
bounds produced and the computational complex-
ity.

1 Introduction and Motivation

The multidimensional model is the foundation for data
representation and querying in multidimensional databases
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and data warehouses [AGS97]. It represents facts of inter-
est for the decision process intocubesin which each cell
contains numericalmeasureswhich quantify the fact from
different points of view, while each axis represents an in-
terestingdimensionfor analysis. For instance, within a 4-
dimensional cube modeling the phone calls supported by a
telecommunication company, the dimensions might be the
calling number, the number called, the date, and the time
segment in which the call is placed; each cube cell could
be associated to a measure of the total duration of the calls
made from a given number to another number on a given
time segment and date.

The basic mechanism to extract significant information
from the huge quantity of fine-grained data stored in base
cubes is aggregation according to hierarchies of attributes
rooted in dimensions [GL97]. In most application cases,
cubes are significantly sparse (for instance, most couples
of telephone numbers are never connected by a call in a
given date), and so are the aggregate views.

Accurately estimating the actual cardinality ofeach
view is crucial for logical and physical design as well as for
query processing and optimization [Vas00]. As a relevant
case, consider the view materialization problem, where the
aggregate views which are the most useful in answering
the workload queries have to be selected for materializa-
tion (see [TB00] for a survey). Since the number of pos-
sible views which can be derived by aggregating a cube is
exponential in the number of attributes, most approaches
assume that a constraint on the total disk space occupied
by materialization is posed, and attempt to find the subset
of views which contemporarily satisfies this constraint and
minimizes the workload cost [GR00, Gup97, HRU96]. An-
other case where estimation of view cardinalities is relevant
is index selection [GHRU97].

If the data warehouse has already been loaded, view car-
dinalities can be quiteaccurately estimated by using sta-
tistical techniques based, say, on histograms [MD88] or
sampling [HO91]. However, such techniques cannot be
applied at all if the data warehouse is still under develop-
ment, and the estimation of view cardinalities is needed for
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design purposes. To obviate this, current approaches are
based on estimation models that only exploit the cardinal-
ity of the base cube and that of the single attribute domains
[RS97, SDNR96], which however leads to significant over-
estimation.

In this paper we propose a novel approach to estimate
the cardinality of views based on a-priori information de-
rived from the application domain. Similarly to what is
done when estimating the cardinality of projections in re-
lational databases [CM95], we face the problem by first
computing satisfactory bounds for the cardinality, then by
capitalizing on these bounds to determine a good proba-
bilistic estimate for it. Besides the functional dependen-
cies expressed by the multidimensional scheme, the bounds
we determine also take into account additional domain-
derived information expressed in the form ofcardinality
constraints, namely, bounds of the cardinality of some
views and bounds (calledk-dependencies) on the ratio be-
tween the cardinalities of two views. The computation of
bounds is based on abounding strategy, which is aimed at
achieving an effective trade-off between the tightness of the
bounds produced and the computational complexity.

The paper is organized as follows. After providing some
basic definitions in Section 2, in Section 3 we introduce k-
dependencies. In Section 4 we outline our overall approach
to estimation and show its benefits with an example. Sec-
tion 5 introduces the basic properties of bounds, proposes
an efficient bounding strategy, and sketches a branch-and-
bound approach to determine the upper bound of the car-
dinality of a given view when the cardinality constraints in
input do not contain k-dependencies; besides, it discusses
how the strategy introduced can be improved. Section 6
shows how the bounds derived may be used to improve the
cardinality estimates. Finally, Section 7 discusses the most
interesting open issues.

2 Background and Working Example

In this section we formalize the concept of view, define a
partial ordering on the set of views, and present the appli-
cation domain we will use as an example.

Definition 1 (Dimensional Scheme)We calldimensional
schemeD a couple(U;F) whereU is a set of attributes
andF = fAi ! Aj j Ai; Aj 2 Ug is a set of functional
dependencies (FD’s) which relate the attributes ofU into a
set of pairwise disjoint directed trees. We calldimensions
the attributesAk 2 U in which the trees are rooted, i.e.,
such that8Ai 2 U (Ai ! Ak) 62 F ; let dim(D) � U
denote the set of dimensions ofD.

Definition 2 (View) Let D = (U;F) be a dimensional
scheme. We callview onD any subset of attributesV � U
such that8Ai; Aj 2 V (Ai ! Aj) 62 F+, whereF+

denotes the set of all functional dependencies logically im-
plied byF .

It should be noted that we are using the termview to de-
note the set of grouping attributes used for aggregation,
while the “actual” views will typically include also one or
more measures. This slight abuse in terminology is possi-
ble since we are interested in determining thecardinalityof
views, which only depends on the grouping attributes.

Definition 3 (Roll-up) Given the setVD of all possible
views onD, we define onVD the roll-up partial order �
as follows:V�W iff 8Ai 2 V 9Aj 2 W j (Aj ! Ai) 2
F+, i.e., iff W ! V . We call multidimensional lattice
for D the corresponding lattice, whose top and bottom el-
ements aredim(D) and the empty viewfg, respectively.
We will denote withV�W the view that is the least upper
bound ofV andW in the lattice; given a set of viewsS,
we will briefly denote with�(S) the view that is their least
upper bound.

Example 1 Consider an enterprise with branches in differ-
ent cities. A simple dimensional schemeTransfersmod-
eling the transfers of employees between offices might in-
clude:

U = fdate;month; year; fromOÆce; fromDept; fromCity;

toOÆce; toDept; toCity; employeeg

F = fdate ! month;month! year;

fromOÆce! fromDept; fromOÆce! fromCity;

toOÆce! toDept; toOÆce! toCityg

thus dim(D) = fdate; fromOÆce; toOÆce; employeeg.
Examples of views on theTransfersscheme are

V = fmonth; fromOÆce; toCity; employeeg

W = fmonth; fromCity; fromDeptg

Z = fyear; fromOÆce; toCityg

It is W�Z = fmonth; fromOÆce; toCityg, with
(W�Z)�V . 2

The following notation is used throughout the rest of the
paper. Uppercase letters from the beginning of the alpha-
bet (A, B, : : : ) denote dimensions. Attributes which are
functionally determined by another attribute, i.e. attributes
other than dimensions, are denoted by the corresponding
primed letters (e.g.,A ! A0, A ! A00). Sets of attributes
are represented by omitting braces, thus writing ABC for
fA;B;Cg. V is the view whose cardinality is to be es-
timated, whileW , X, Y , andZ, possibly with subscripts
(W1;W2; : : : ), denote generic views inVD. Finally, low-
ercase letters are used for the cardinalities of views and at-
tributes (e.g.,w is the cardinality of viewW , abc is the
cardinality of the view with attributesABC, and so on).

3 The k-dependencies

A k-dependency is a relevant case of cardinality constraint
which naturally generalizes a functional dependency. In the
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authors’ experience, k-dependencies are particularly use-
ful to characterize the knowledge of the business domain
held by the experts in the field. For instance, in the trans-
fer domain, we might have some information concerning
the number of destination cities for an employee, or on the
number of distinct areas moved to from each area. If such
information is in the form of bounds, it can be effectively
used to improve the bounds of view cardinality.

Definition 4 (k-dependency) Let X and Y be two views
onD. We say that ak-dependency(kD) holds betweenX

andY , and denote it withX
k
! Y , whenk (k � 1) is an

upper bound of the number of distinct tuples ofY which
correspond to each distinct tuple ofX within viewX�Y .

Example 2 In the Transfersscheme, assume the domain
expert provides the following information:The maximum
number of inter-department transfers of an employee dur-
ing one year is 2. This constraint can be formalized by

the following kD:X 2
! Y , whereX = fyear; employeeg,

Y = ftoDeptg. Intuitively, from this we can derive that
the cardinality of the viewfyear; employee; toDeptg can-
not exceed twice the cardinality of X. 2

The kD’s have been studied in the context of relational
database theory, where they are also known asnumerical
dependencies. Grant and Minker [GM83] proved that kD’s
are not finitely axiomatizable, thus no fixed set of inference
rules can be used to determine whether or not a given kD
is logically implied by a set of kD’s. Nonetheless, a ba-
sic set of rules, which naturally extend those for FD’s, was
proposed in [GM83]. The rules we use, generalized to the
multidimensional lattice, are:

R1 : X
k
! Y ` X�Z

k
! Y�Z

R2 : X
k
! Y ^ Y

l
! Z ` X

k�l
! Y �Z

R3 : X
k
! Y�Z ` X

k
! Y

R4 : X
k
! Y ^X

l
! Z ` X

k�l
! Y �Z

Note that the “union” rule R4 is not strictly needed, since it
can be derived from rules R1 (“extension”), R2 (“transitiv-
ity”), and R3 (“decomposition”).

4 A Framework for Estimation

The framework for this work is the logical design of mul-
tidimensional databases carried out off-line, i.e. assuming
that the source data cannot be directly queried to estimate
the cardinality of multidimensional views. Without loss of
generality, in the following we consider that estimates are
needed for the purpose of view materialization, thus reli-
able information on the size of the candidate views has to
be supplied to the materialization algorithm.

As sketched in Figure 1, whenever the materialization
algorithm requires information about a candidate viewV ,
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Figure 1: Overall architecture for logical design

our approach works in two steps. First, thebounderuses
the setI of cardinality constraintssupplied by the user to
determine effective bounds for the cardinalities of a proper
set of views; then, theestimatoruses these bounds to derive
a probabilistic estimate for the cardinality ofV . Note that
this two-steps approach generalizes well-knownparamet-
ric models for the estimation of the cardinality of relational
queries [MCS88], and in particular those for projection size
estimation [CM95], for which bounds are typically given as
input parameters.

The different forms of cardinality constraints we will
consider are:

1. a lower (w�) and/or an upper (w+) bound of the car-
dinalityw of a viewW ;

2. a k-dependency (X
k
! Y ) expressing an upper bound

of the ratio between the cardinalities of two viewsX
andY .

We will assume that at least the upper bounds of the car-
dinalities of all the single attributes in the dimensional
scheme are known. This assumption, which is perfectly
reasonable in all application domains, is necessary in order
to guarantee that at least one upper bound can be deter-
mined for each view.

The setI, together with the dimensional schemeD, uni-
vocally determines two bounds for the cardinality ofV ,
which are called thegreatest lower boundand theleast
upper bound, denoted asv� and v+, respectively.1 The
interpretation of such bounds is as follows:

1. in each instance ofD that does not violate any con-
straint inI, the cardinalityv of V is such thatv 2
[v�; v+]; and

2. there exist two instances, both compatible withI,
wherev equalsv� andv+, respectively.

We say a constraintc 2 I is redundantiff all the greatest
lower bounds and the least upper bounds determined byI
are equal to those determined byI � fcg.

1For simplicity of notation, in denoting bounds we omit the depen-
dence onD andI.
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Definition 5 (Sound and Minimal Input) Let I be a set
of cardinality constraints on dimensional schemeD. We
sayI is soundiff there exists at least one non-empty in-
stance ofD which satisfies all the constraints inI. We say
I is minimal iff no constraint inI is redundant.

In this paper we will assume that the inputI is sound and
minimal. It is straightforward to derive that, in this case,
all the bounds inI are either greatest lower bounds or least
upper bounds (whereas the opposite is not necessarily true).

Computing the bounds implied byI turns out to be
a challenging combinatorial problem, even for “simple”
forms of cardinality constraints. For instance, it is known
that the problem is NP-hard for arbitrary patterns of func-
tional dependencies [CM92]. Furthermore, the actual com-
putational effort needed to compute these bounds might
limit applicability in real-world cases. For this reason, the
bounder is built around the concept ofbounding strategy. A
bounding strategys is characterized by a couple of bound-
ing functions that, givenI;D, andV , compute boundsv�

s

andv+
s

such thatv�
s
� v� andv+ � v+

s
both hold. In

other terms, a bounding strategy never computes bounds
which are more restrictive than the ones logically implied
by the input constraints, trading-offaccuracy for speed of
evaluation. We say that a strategys is decouplediff com-
putingv+s for an arbitrary viewV only requires the knowl-
edge of upper boundsw+

s of other viewsW , but no knowl-
edge of lower boundsw�

s , and vice versa. Thus, for a de-
coupled bounding strategy, the two bounding functions can
be defined independently of each other.

Turning to the estimator, our framework supports differ-
ent probabilistic models. A probabilistic model is a func-
tion that, givenI;D, V , as well as bounds computed by
the bounder, provides an estimate,v, for the cardinality of
V . In general, this step can use further information from
the application domain that is not suitable to derive bounds.
Typically this is the case with information concerning aver-
age values (e.g., the number of transfers of each employee
on each year is 1.5, on the average).

Example 3 Let 104 be the number of employees who have
been transfered at least once, and let the enterprise con-
sist of 103 offices distributed over 10 cities and belong-
ing to one of 10 departments; let103 days be the observa-
tion period. LetV = fdate; fromOÆce; toOÆceg. Since
each office is involved in transfers at most with every other
office on each date, the first trivialupper bound ofv is
103 � 103 � 103 = 109. If the maximum number of transfers
for an employee during one year is 2, and since we con-
sider 3 years, it is derived that the cardinality of the base
cube is at most2 � 3 = 6 times the number of transferred
employees, i.e.6 � 104. Thus, the upper bound ofv can be
improved to6 � 104 as well (the cardinality of a view can-
not exceed that of its base cube). On the other hand, if we
assume that each office is involved in at least one transfer,

it is v � 103. Finally, by using the model in Section 6, the
cardinality ofV is estimated asv = 3:8 � 104. 2

5 The Bounder

The basic observation to determine bounds for view car-
dinalities using bounds of the cardinalities of other views
is that the multidimensional lattice induces an isomorphic
structure over such cardinalities. In fact, from Definition
3 it follows thatW�Z impliesw � z in each instance of
D, sinceZ ! W holds. This inequality also applies to
bounds.

Lemma 1 If W�Z, thenw� � z� andw+ � z+.

Proof: (w� � z�) Assumew� > z�. Then, there is
an instance ofD in whichw � w� > z � z�, thusw > z,
which is a contradiction. Similarly forw+ � z+. 2

As to k-dependencies, their influence on the determina-
tion of bounds is summarized by the following lemma.

Lemma 2 LetZ = X�Y . If X
k
! Y , thenx� � z�=k

andz+ � k � x+.

Proof: From Definition 4 it follows immediately that, if

X
k
! Y , the cardinalityz of Z is related to the cardinality

x ofX by inequalityz � k � x. The inequalities on bounds
follow immediately. 2

In the rest of this section we first propose a decoupled
strategy to compute upper bounds (Section 5.1), then we
discuss some issues related to coupled strategies (Section
5.2).

5.1 A Decoupled Upper Bounding Strategy

The bounding strategy we propose in this section, called
cover-based, relies on the concept ofcover of a view to
compute upper bounds. The following are two preliminary
definitions whose aim is to precisely characterize how sets
of views and kD’s can be sinergically combined together.

Definition 6 (Graph of a set of kD’s) Let K = fX1
k1!

Y1; : : : ; Xp

kp
! Ypg be a set of kD’s. The (labelled ori-

ented)graph ofK is G(K) = (N;E), with set of nodes
N =

S
ifXi; Yig, set of edgesE = fei = (Xi; Yi); i =

1; : : : ; pg, and labeling function� such that�(ei) = ki.2

Definition 7 (K-set of views) Let S = fW1; : : : ;Wmg

be a non-empty set of views, and letK = fX1
k1!

Y1; : : : ; Xp

kp
! Ypg be a set of kD’s. The coupleC =

2Technically,G(K) is a multi-graph, since two edges may share the
same couple of nodes. This, however, does not influence the following
arguments.
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(S;K) is called ak-set of viewsiff 8i = 1; : : : ; p it is

Yi 2 S and there exists a set of kD’s,K0 = fWj1

k1!

Y1; : : : ;Wjp

kp
! Ypg, such that: 1)8i = 1; : : : ; p it is

Xi�Wji withWji 2 S, and 2)G(K0) = (N 0; E0) is a for-
est, i.e., a set of disjoint directed trees. We callS-compliant
a setK0 with such properties.

Each kD in anS-compliant setK0 is derived from a cor-
responding kD inK by applying rules R1 and R3 (since,
by hypothesis, it isXi�Wji = Wji ). Note thatN 0 � S
always holds and that, in general, multipleS-compliantK0

sets can be derived from the sameC, depending on how
eachWji 2 S is chosen.

Example 4 C1 = (fA0B;C;Dg;K), withK = fA0B
k1!

C;C
k2! Dg, is a k-set of views, sinceK is S-compliant.

The same is true forC2 = (fAB;C;Dg;K), sinceK0 =

fAB
k1! C;C

k2! Dg is S-compliant (in fact,A0B�AB).
On the other hand,C3 = (fB;C;Dg;K) is not a k-set
since noS-compliant set of kD’s can be found.

It is important to remark that Definition 7 requiresK0,
and not necessarilyK, to be a forest. For instance, the

couple(fAg; fA0 k
! Ag) is not a k-set, thoughG(fA0 k

!

Ag) is a forest, sinceG(fA k
! Ag) is cyclic. On the other

hand,C4 = (fA;A0; Bg; fA0 k1! B;B
k2! A0g) is a k-set

(after derivingA
k1! B from A0 k1! B) even ifG(fA0 k1!

B;B
k2! A0g) is cyclic.

Finally, for the k-setC5 = (fA;A0B;A0Cg; fA0 k
!

Ag), two S-compliant sets,K0
1 = fA0B

k
! Ag and

K0
2 = fA0C

k
! Ag, can be derived. 2

Definition 8 (Cover) Let V 2 VD be a view onD and
C = (S;K) be a k-set of views.C is called aV -cover iff
V��(S).

As the following example suggests, aV -cover can be
used to bound from above the cardinality ofV by generaliz-
ing Lemma 1 to the case of multiple views (sinceV��(S)
holds). When also kD’s are present, Lemma 2 can be ex-
ploited to improve the bound. Since a cover must be a k-set,
we are guaranteed that the cardinalities of some views inS
can be safely “replaced” by theki’s of the kD’s inK0.

Example 5 Let V = ABC. Below we consider some no-
table examples ofV -covers and show how each of them
can be used to derive an upper bound forv. In order to
help the reader, Figure 2 depicts the roll-up relationships
between the views involved.

� C1 = (fABCDg; ;) is aV -cover sinceV��(S1) =
ABCD. From Lemma 1 it is derivedabc � abcd+.

� C2 = (fAB;BCg; ;) is aV -cover sinceV��(S2) =
ABC. Since the natural join between two views is a
subset of their Cartesian product, it isabc � ab+ �bc+.

ABCD

ABC

AB BC CD

A'B

A B C D

A'

Figure 2: Roll-up relationships of views in Example 5

� C3 = (fAB;Cg; fAB
k
! Cg). From Lemma 2 it

immediately followsabc � ab+ � k.

� C4 = (fA;B;Cg; fA
k1! B;B

k2! Cg). By applying

rule R2, we deriveA
k1k2! BC, thusabc � a+ �k1 �k2.

� C5 = (fA;B;Cg; fA
k1! B;A

k2! Cg). Rule R4 is

now used to deriveA
k1k2! BC, thusabc � a+ �k1 �k2.

� C6 = (fA;A0B;Cg; fA0 k
! Ag). According to rule

R1 it isA0B
k
! AB, and from Lemma 2ab+ � k �

a0b+. On the other hand,abc � ab+ � c+, thusabc �
k � a0b+ � c+. 2

The following theorem precisely characterizes how
bounds are related to the graph ofK0.

Theorem 1 (Cover-based bounding)LetV be a view and
C = (S;K) be a V -cover, withS = fW1; : : : ;Wmg

and K = fX1
k1! Y1; : : : ; Xp

kp
! Ypg. Let K0 be an

S-compliant set,R(G(K0)) be the set of root nodes of
the forestG(K0) = (N 0; E0) associated toK0, and let
S0 = S�N 0 stand for the set of views which are not nodes
in G(K0). Then:

v � u(C;K0)
def
=

pY
i=1

ki �
Y

Wj2R(G(K0))[S0

w+
j (1)

Proof: The intuition behind the proof is thateach tree
Gt = (N 0

t; E
0
t) of G(K0) contributes tou(C;K0) with the

upper bound of the cardinality of its rootWt times all the
ki’s which label the edges inE0

t.
Since by Definition 8 it isV��(S), it is sufficient to

prove thatu(C;K0) is an upper bound of�(S). Since the
size of the natural join of a set of views can never exceed
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that of their Cartesian product, it is

card(�(S)) � card((�(S0))�(�(N
0)))

� card(�(S0)) � card(�(N
0))

�
Y

Wj2S0

w+
j �
Y
t

card(�(N 0
t))

Since theki’s are partitioned over the trees, it is enough to
prove thatw+

t �
Q
i2�0

t
ki, whereWt is the root ofGt and�0t

is the set of labels inGt, is an upper bound ofcard(�(N 0
t)).

This is proved by induction on the numberL of levels inGt.
Base step(L=2). 3 In this caseGt corresponds to the

set of kD’sfWt

k2;1
! W2;1; : : : ;Wt

k2;q2! W2;q2g. From the
union rule R4 it immediately follows thatcard(�(N 0

t)) �
w+
t �
Qq2

i=1 k2;i.
Inductive step (L � 1 ) L). Let N 0

t(L � 1)
be the set of nodes in the firstL � 1 levels. By in-
ductive hypothesis it iscard(�(N 0

t(L � 1))) � w+
t �QL�1

l=2

Qql
i=1 kl;i. Adding theL-th level introduces new

edges with labelskL;1; : : : ; kL;qL and corresponding ter-
minal nodesWL;1; : : : ;WL;qL. From thei-th of the corre-
sponding kD’s we can derive (using rules R1 and R3) the

kD �(N 0
t(L � 1))

kL;i

! WL;i. From the union rule R4 it is
derived:

�(N 0
t(L� 1))

QqL
i=1

kL;i

! �(fWL;1; : : : ;WL;qLg)

which, due to Lemma 2, leads to:

card((�(N 0
t(L � 1)))�(�(fWL;1; : : : ;WL;qLg))) =

= card(�(N 0
t(L)))

�

qLY
i=1

kL;i �w
+
t �

L�1Y
l=2

qlY
i=1

kl;i = w+
t �

LY
l=2

qlY
i=1

kl;i 2

It is possible to prove that (1) is valid even ifG(K0) is
not a forest, provided thatR(G(K0)) contains (at least) a
set of nodes from whicheveryother node inG(K0) can be
reached through a directed path. On the other hand, the
bounds determined by such “non-forest”V -covers are al-
ways redundant, meaning that a properV -cover yielding a
better bound forv can always be found.

Example 6 Let V = ABC, and consider the couple

(fA;B;Cg;K) with K = fA
k1! C;B

k2! Cg), which
is not a k-set since the graph ofK0 = K has two roots (A
andB). The bound returned by (1) isv � k1 � k2 � a

+ � b+

which is redundant, since a better bound is obviously ob-

tained through theV -cover(fA;B;Cg; fA
k1! Cg). 2

The following lemma shows that, when multipleS-
compliant sets exist for a given cover, the bound returned

3The caseL = 1 cannot arise, since eachGt has at least one edge.

by (1) is actually independent of the one chosen. For in-
stance, the reader may immediately verify that, in Example
4, it isu(C5;K 0

1) = u(C5;K0
2) = k � a0b+ � a0c+.

Lemma 3 Let C = (S;K) be aV -cover, and letK0
1 and

K0
2 be two arbitraryS-compliant sets. It isu(C;K0

1) =

u(C;K0
2)

def
= u(C).

Coherently with Theorem 1 and Lemma 3, the cover-
based bounding strategycb computesv+

cb
as:

v+
cb

=

(
v+ if v+ 2 I;

minfucb(C) j C is aV -coverg if v+ 62 I:
(2)

whereucb(C) is obtained by replacingw+
j with w+

j;cb in
u(C). In general, evaluating the cover-based bound leads
to a recursive computational flow; note that the “case-0” of
recursion,v+

cb
= v+, is correctly defined since we assumed

the inputI to be minimal.
The space of theV -covers to be analyzed in order to

determinev+
cb

has exponential size. On the other hand, the
following theorem shows that, under some circumstances, a
V -coverC2 can be discarded from the search space without
even computingucb(C2).

Theorem 2 Let C1 = (S1;K1) andC2 = (S2;K2) be two
V -covers. IfS1 � S2 andK1 = K2 or S1 = S2 and
K2 � K1, thenucb(C1) � ucb(C2).

5.1.1 Reasoning without k-dependencies

When no k-dependencies are included among the input
constraintsI, covers degenerate into sets of views, which
allows us to precisely characterize the set ofV -covers
that can provide useful (non redundant) bounds. To see
how such covers are determined, two orthogonal aspects
are considered: adominationrelationship between sets of
views and the input information,I. While the former in-
duces a partial order on the bounds obtainable fromV -
covers, regardless of the specific inputI, the latter can be
used to restrict the set of usefulV -covers to those including
only views inI.

In this section, since we assumeK = ;, we will work
only with theS part of V -covers. Consequently, in (2),
ucb(C) can be replaced by

ucb(S) =
Y
Wi2S

w+
i : (3)

Definition 9 (Domination between sets of views)
Let S1 = fW1;1; : : : ;W1;i; : : : ;W1;mg and S2 =
fW2;1; : : : ;W2;j; : : : ;W2;ng be two sets of views. We
say thatS1 dominatesS2, written S1vS2, iff S2 can
be partitioned intom subsetsS2;1; : : : ; S2;m such that
W1;i��(S2;i) 8i = 1; : : : ;m.

P. Ciaccia, M. Golfarelli, S. Rizzi 12-6



For instance,fA0B;CgvfAB;CD;Eg. Note that if
SivSj then�(Si)��(Sj) necessarily holds, whereas the
opposite is not always true (e.g.,fAB;BCg6vfABCDg
thoughABC�ABCD).

Lemma 4 Let S1 andS2 be two sets of views. IfS1vS2
thenucb(S1) � ucb(S2).

Definition 10 (Ground Views and Covers) We say that a
viewW is groundiff w+ is in I. A V -cover is said to be
groundwhen all the views it includes are ground.

Lemma 5 LetS be a non-groundV -cover. Then there ex-
ists a groundV -coverS1 such thatucb(S1) � ucb(S).

Proof (sketch): SinceS is not ground, at least one view
in S is not ground. By recursively applying (3),ucb(S) will
be eventually expressed as a product of bounds inI. The
case of strict inequality (ucb(S1) < ucb(S)) can arise since
in this recursive process there is no guarantee that a given
ground view will be generated just once, thus its least upper
bound might appear more than once inucb(S). 2

Definition 11 (Minimal Cover) A ground V -cover S is
minimal iff there is no other groundV -coverS1 such that
S1vS holds.

The following theorem immediately derives from Lem-
mas 4 and 5.

Theorem 3 (Sufficiency of Minimal Covers) It is:

minfucb(S) j S is aV -coverg =

= minfucb(S) j S is a minimalV -coverg: (4)

For instance, letI = fab0+; cd+; a0de+; a+; a0+; b+;
b0
+
; c+; d+; e+g and V = A0B0CD. The min-

imal V -covers are fAB0; CDg, fA0; B0; CDg, and
fA0DE;B0; Cg.

From the above results, several facts can be easily de-
rived, which can be exploited to efficiently generate mini-
mal V -covers by means, say, of a branch-and-bound algo-
rithm:

1. A ground viewW such thatV �W is a groundV -
cover (from Definition 8).

2. A ground viewW such thatarity(W ) = 1 and
W \V = ; does not belong to any minimalV -cover4

(from Definitions 9 and 11).

3. A ground viewW such thatarity(W ) > 1 and8W 0

for whichW 0�W it is arity(W 0 \ V ) < 2 does not
belong to any minimalV -cover (sinceC includes the
cardinalities of all the attributes).

4arity(W ) denotes the number of attributes inW .

Z1

V

Y1= W1

Z2

Y2

W3W2

Y3

Figure 3: Roll-up relationships between views in Lemma
6, in the casen = 3

4. If S is a groundV -cover, no setS0 such thatS � S0

is a minimalV -cover (from Definitions 9 and 11).

5. If a minimalV -coverS contains a ground viewW ,
it cannot contain any other ground viewW 0 such that
W�W 0 (from Definitions 9 and 11).

5.2 Towards a Coupled Bounding Strategy

The bounds we derive through the strategy described in
Section 5.1 are not necessarily the tightest possible ones.
In fact, more complex and effective bounding strategies
can be defined to the detriment of computational speed.
Basically, in these strategies the concept of cover may be
extended by considering more complex patterns of views,
where upper and lower bounds are used jointly. In this sec-
tion we present some preliminary considerations on cou-
pled strategies; for simplicity, we will assume that the input
does not contain k-dependencies.

As to upper bounding, the cover-based strategy can be
improved by exploiting results frommajorization theory,
which state that the size of the natural join between two
relations is majorized when the distributions of the join at-
tribute(s) in the two relations are maximally skewed [IC91].
The extension of this argument to the multidimensional
lattice is as follows. Given two viewsW1 andW2 such
that W1ÆW2 and W2ÆW1, let Y = W1�W2 and let
Z = W1
W2, where
 is the greatest lower bound op-
erator on the lattice; it can be proved that

y � w+
1 �w

+
2 � (z� � 1)(w+

1 + w+
2 � z�) (5)

It should be noted that, whenW1
W2 = fg, since the
empty viewfg has cardinality 1, (5) correctly reduces to
(3).

This result can be extended to aV -cover whose views
are connected by alinear join graph.

Lemma 6 LetS = fW1; : : : ;Wng be aV -cover; letZi =
Wi
Wi+1, i = 1; : : : ; n � 1, Y1 = W1, and Yi+1 =
Yi�Wi+1, i = 1; : : : ; n� 1. Then:

y+i+1 � y+i �w
+
i+1 � (z�i � 1)(y+i +w+

i+1 � z�i )

for i = 1; : : : ; n� 1 ;

v � y+n :

(6)
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The pattern consisting of viewsYi, Wi+1, Zi, and
Yi+1, depicted in Figure 3, can in principle be extended
to take into account also size information onYi � Zi and
Wi+1 � Zi, that is, on non-join attributes; this will further
strengthen the upper bound. At present, we guess that the
exact computation ofv+ might involve taking into account
patterns that can extend over the whole lattice. However,
besides the theoretical interest, it is important to trade-off
the increased complexity with the actual gain that could be
obtained by having more accuratebounds, considering also
how bounds can be used by the estimator.

A coupled strategy requires also lower bounds to be
computed, which is radically different from computing up-
per bounds. In fact, while computing an upper bound cor-
responds to bounding the size of a join, computing a lower
bound corresponds to bounding the size of a projection,
where the relevant difference is that projection is a unary
operator. This leads to a much simpler situation to deal
with, in which Lemma 1 is exploited and the lower bound
of v is computed asmaxfw� j w� 2 I;W�V g. Differ-
ently from upper bounds, no combinatorial issues arise in
computing lower bounds through this strategy; thus, com-
plexity is linear in the cardinality ofI.

A better bound can be obtained by using information
associated to “sibling” views. LetW be a view such that
V \W = ;, andZ = V �W ; then:

v� �
z�

w+
(7)

In fact, if v < z�=w+, then the size of the Cartesian prod-
uct ofV andW would be less thanz�, which is impossible.

6 The Estimator

Assuming that effective bounds have been derived, cardi-
nality estimation must be based on a probabilistic model
to derive an estimate,v, of the cardinality of viewV . The
model we adopt here is based on the Cardenas’ formula
[Car75], which states that, when throwingN distinct ob-
jects intoB buckets, the expected number of buckets in
which at least one object will fall can be estimated as:

�(B;N )
def
= B �

 
1�

�
1�

1

B

�N!
� minfB;Ng

(8)

Within the approach proposed in [SDNR96], (8) is used to
estimatev by relying on the maximum cardinality ofV ,
defined as the Cartesian product of the cardinalities of the
attributes inV , vmax =

Q
Ai2V

ai, and on the cardinality
of the base cube,d = card(dim(D)), that is:

vsdnr = �(vmax; d) � minfvmax; dg (9)

This formula turns out to significantly overestimate the
cardinalities and can easily lead to violate the constraint
vsdnr � v+.

In our approach, denotedse (“safe-estimate”), the above
estimate is improved in two ways: by replacingvmax with
the upper bound computed forv, for instancev+

cb
, as a mea-

sure of the maximum cardinality ofV , and by replacing the
cardinality of the base cubed with an estimate,wse, of the
cardinality of a viewW such thatV �W . This leads to:

vse = �(v+
cb
; wse) � minfv+

cb
; wseg (10)

Since bothv+
cb

andwse can be considerably lower than
vmax andd, respectively, it is usually the case thatvse �
vsdnr. The rationale for (10) is that we can view the prob-
lem of estimatingv as the one of distributing the tuples of
view W , which are estimated to bewse, over a number of
v+
cb

“buckets”.
Due to the need to knowwse, it is obvious that our es-

timation process must move downward from the top of the
lattice (whose cardinalityd is typically known) following a
path leading toV . Clearly, this represents a simplification
of the correct estimation procedure, which would require to
determinev by following all the paths fromdim(D) to V .
On the other hand, this would lead to combinatorial explo-
sion and necessitate of highly complex probabilisticmodels
that are well beyond the current state-of-the-art knowledge.

From a more practical (numerical) point of view, it
should be noted that moving from upper bounds to esti-
mates leads to significant differences under specific condi-
tions only. Two relevant cases should be considered, which
arise from the limit behavior of Cardenas’ formula:

1. Whenwse � 0:1 � v+
cb

it is vse � wse

2. Whenwse � 3 � v+
cb

it is vse � v+
cb

The values0:1 and3 can thus be used to predict whether
the estimator will deliver results which substantially differ
from those directly obtainable from the bounder.

Example 7 In theTransfersscheme, we consider three in-
put situations:

I1 =
�
fdateg

+
= 103; fyearg

+
= 3; femployeeg

+
= 104;

ffromOÆceg+ = ftoOÆceg+ = 103;

ffromCityg+ = ftoCityg+ = 10;

ffromDeptg
+ = ftoDeptg+ = 10

	
I2 =I1 [

�
femployee; yearg

4
! ffromOÆce; toOÆce; dateg

	
I3 =I2 [

�
ffromCity; fromDeptg+ = 40;

ftoCity; toDeptg+ = 40;

ffromCity; fromDeptg
2
! ftoCity; toDeptg;

ffromCity; fromDeptg
30
! ffromOÆceg;

ftoCity; toDeptg
30
! ftoOÆceg
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Table 1: Improving upper bounds and estimates for increas-
ing domain-derived information

input w+
cb

v+
cb

wse vse
I1 1013 106 1013 106

I2 1:2 � 105 1:2 � 105 1:2 � 105 7:6 � 104

I3 1:2 � 105 7:2 � 104 1:2 � 105 5:8 � 104

LetW = dim(D) = fdate; employee; fromOÆce; toOÆceg
be the base cube andV = ffromOÆce; toOÆceg be the
view whose cardinality is to be estimated. Table 1 shows
how the upper boundw+

cb
of W , the upper boundv+

cb
of V ,

and the estimatevse improve as new cardinality constraints
are progressively supplied. The estimatevse is based on
the estimate ofw, wse, which is assumed to be equal to its
upper boundw+

cb
. 2

7 Conclusions and Open Issues

In this paper we have shown how cardinality constraints
derived from the application domain may be employed to
determine effective bounds on the cardinality of aggregate
views and how, in turn, such bounds can be used to esti-
mate the cardinality of the views. In order to improve the
approach effectiveness, some issues still need to be investi-
gated. In the following we briefly discuss those we believe
to be crucial:

� Domination. A characterization of domination be-
tween k-sets of views, similar to that reported in Def-
inition 9 for sets of views, needs to be developed in
order to reduce the complexity of computing upper
bounds in presence of k-dependencies.

� Minimality. Throughout this paper we assumed that
the cardinality constraints supplied by the domain ex-
pert are sound and non redundant. Of course, this
gives rise to the problem of determining, given an in-
putI, if I is sound and minimal, which we argue can
be dealt with as done for, say, functional dependencies
(whose inference rules can be used both for schema
normalization as well as for input minimization).

� Cardinality constraints. The input knowledge may be
further extended by considering other forms of car-
dinality constraints which are typically known to the
experts of the application domain. For instance, while
in this paper we have defined k-dependencies to ex-
pressboundson the ratio between the cardinalities of
two views, they may also be used to denote theaver-
ageof such ratio; while this kind of knowledge cannot
be used by the bounder, it allows the cardinality esti-
mations to be improved. For instance, knowing that
the average number of transfers for each employee on

each year is 2, would allow the cardinality of the base
cube to be estimated as twice the cardinality of view
femployee; yearg.

� Probabilisticestimates. Estimates based on Cardenas’
formula can be improved in several ways. In particu-
lar, information on lower bounds could be considered
by exploiting the results in [CM95], as well as infor-
mation concerning the distribution of attribute values
over their domains. For this, the challenge is to derive
new models that can be applied when the data ware-
house has not been loaded yet.
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