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Abstract

Accurately estimating the cardinality of aggregate
views is crucial for logical and physical design
of data warehouses. While the warehouse is un-
der development and data are not available yet,
the approaches based on accessing datiaatde
adopted. This paper proposes an approach to es-
timate the cardinality of views based on a-priori
information derived from the application domain.
We face the problem by first computing satisfac-
tory bounds for the cardinality, then by capital-
izing on these bounds to determine a good prob-
abilistic estimate for it. Bounds are determined
by using, besides the functional dependencies ex-
pressed by the multidimensional scheme, addi-
tional domain-derived information in the form of
cardinality constraints which may bound either
the cardinality of a given view or the ratio between
the cardinalities of two given views. In particular,
we propose a bounding strategy which achieves
an effective trade-off between the tightness of the
bounds produced and the computational complex-

ity.

Introduction and Motivation

and data warehouses [AGS97]. It represents facts of inter-
est for the decision process intobesin which each cell
contains numericaheasuresvhich quantify the fact from
different points of view, while each axis represents an in-
terestingdimensiorfor analysis. For instance, within a 4-
dimensional cube modeling the phone calls supported by a
telecommunication company, the dimensions might be the
calling number, the number called, the date, and the time
segment in which the call is placed; each cube cell could
be associated to a measure of the total duration of the calls
made from a given number to another number on a given
time segment and date.

The basic mechanism to extract significant information
from the huge quantity of fine-grained data stored in base
cubes is aggregation according to hierarchies of attributes
rooted in dimensions [GL97]. In most application cases,
cubes are significantly sparse (for instance, most couples
of telephone numbers are never connected by a call in a
given date), and so are the aggregate views.

Accurately estimating the actual cardinality efch
view is crucial for logical and physical design as well as for
query processing and optimization [Vas00]. As a relevant
case, consider the view materialization problem, where the
aggregate views which are the most useful in answering
the workload queries have to be selected for materializa-
tion (see [TBOQ] for a survey). Since the number of pos-
sible views which can be derived by aggregating a cube is
exponential in the number of attributes, most approaches
assume that a constraint on the total disk space occupied

The multidimensional model is the foundation for datapy materialization is posed, and attempt to find the subset
representation and querying in multidimensional databasesf views which contemporarily satisfies this constraint and
minimizes the workload cost [GR0O, Gup97, HRU96]. An-

* This work has been partially supported by the D2I MURST project. h h 8 ) fyi inalities |
The copyright of this paper belongs to the paper’s authors. Permission to,ot er case where estimation of view cardinalities is relevant

copy without fee all or part of this material is granted provided that the IS index selection [GHRU97].

copies are not made or distributed for direct commercial advantage. If the data warehouse has already been loaded, view car-
Proceedings of the International Workshop on Design and dinalities can be quitaccurately estimated by using sta-
Management of Data Warehouses (DMDW'2001) tistical techniques based, say, on histograms [MD88] or
Interlaken, Switzerland, June 4, 2001 sampling [HO91]. However, such techniques cannot be
(D. Theodoratos, J. Hammer, M. Jeusfeld, M. Staudt, eds.) applied at all if the data warehouse is still under develop-
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/\ol-39/ ment, and the estimation of view cardinalities is needed for
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design purposes. To obviate this, current approaches ateshould be noted that we are using the teriew to de-
based on estimation models that only exploit the cardinalnote the set of grouping attributes used for aggregation,
ity of the base cube and that of the single attribute domainsvhile the “actual” views will typically include also one or
[RS97, SDNR96], which however leads to significant over-more measures. This slight abuse in terminology is possi-
estimation. ble since we are interested in determiningt¢hedinality of

In this paper we propose a novel approach to estimatgiews, which only depends on the grouping attributes.
the cardinality of views based on a-priori information de-

rived from the application domain. Similarly to what is views onD, we define orVp the roll-up partial order <

done when estimating the cardinality of projections in re- s follows: V=<V ifft VA; € V 3A; € W | (A; — A;) €

lational databases [CM95], we face the problem by flrst}_+, ie. iff IV — V. We callmultidimensional lattice

computing satisfactory bounds for the cardinality, then byfor D the corresponding lattice, whose top and bottom el-

capitalizing on these bounds to determine a good proba- : h ; el
bilistic estimate for it. Besides the functional dependen—ernents arelim(D) and the empty view}, respectively.

cies expressed by the multidimensional scheme, the boun%\s/e will denote with@:JV" the view that s the least upper

we determine also take into account additional domain- ounq Of‘./ and iy in the lattice; given a sej[ of V{e\AS,

. : . . L we will briefly denote withb(S) the view that s their least
derived information expressed in the form adrdinality

. o upper bound.

constraints namely, bounds of the cardinality of some
views and bounds (callektdependencig®on the ratio be- Example 1 Consider an enterprise with branches in differ-
tween the cardinalities of two views. The computation ofent cities. A simple dimensional scherfieansfersmod-
bounds is based onteunding strategywhich is aimed at  eling the transfers of employees between offices might in-
achieving an effective trade-off between the tightness of thelude:
bounds produced and the computational complexity. _ )

The paper is organized as follows. After providingsome ! = {date, month, year, fromOffice, fromDept, fromCity,
basic definitions in Section 2, in Section 3 we introduce k- toOffice, toDept, toCity, employee}
dependencies. In Section 4 we outline our overall approachr — {date — month, month — year,
to estimation and show its benefits with an example. Sec-
tion 5 introduces the basic properties of bounds, proposes
an efficient bounding strategy, and sketches a branch-and-

bound approach to determine the upper bound of the cag, ;s dim(D) = {date, fromOffice, toOffice, employee}.

dinality of a given view when the cardinality constraints in Examples of views on th&ransfersscheme are
input do not contain k-dependencies; besides, it discusses

Definition 3 (Roll-up) Given the setVp of all possible

fromOffice — fromDept, fromOffice — fromCity,
toOffice — toDept, toOffice — toCity}

how the strategy introduced can be improved. Section 6 V' = {month, fromOffice, toCity, employee}
shows how the bounds derived may be used to improve the W = {month, fromCity, fromDept}
pardmahty estlmqtes. Finally, Section 7 discusses the most 7 = {year, fromOffice, toCity}
interesting open issues.

It is WaZ = {month, fromOffice, toCity}, with
2 Background and Working Example Waz)=V. m

In this section we formalize the concept of view, define a The following notation is used throughout the rest of the
partial ordering on the set of views, and present the applipaper. Uppercase letters from the beginning of the alpha-
cation domain we will use as an example. bet (4, B, ... ) denote dimensions. Attributes which are
e . . _ . functionally determined by another attribute, i.e. attributes
Definition 1 (Dimensional Scheme)We calldimensional  5iner than dimensions, are denoted by the corresponding
schemeD a couple(U, F) wherelUU ﬁs a set of attriputes primed letters (e.g.4 — A/, A — A”). Sets of attributes
andF = {A; — A; | Ai, 4; € Ul is aset of functional  5re represented by omittingdwes, thus wiing ABC for
dependencies (FD’s) which relate the attribute$/anto a {A,B,C}. V is the view whose cardinality is to be es-

set of pairwise disjoint directed trees. We adiinensions  imated, whilel’, X, v, andZ, possibly with subscripts
the attributesd, € U in which the trees are rooted, i.e., (yy, ¥, ...), denote generic views ibip. Finally, low-
such thatvA; € U (A — Ax) & F;let dim(D) C U grease letters are used for the cardinalities of views and at-
denote the set of dimensionsof tributes (e.g.,w is the cardinality of viewiV, abe is the

Definition 2 (View) Let D = (U/, %) be a dimensional cardinality of the view with attributed BC', and so on).

scheme. We calliew onD any subset of attributds C U
such thatvA;, A; € V (A; — A;) € FT, whereF+
denotes the set of all functional dependencies logically imA k-dependency is a relevant case of cardinality constraint
plied by F. which naturally generalizes a functional dependency. In the

3 The k-dependencies
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dimensional

authors’ experience, k-dependencies are particularly use- '
scheme

ful to characterize the knowledge of the business domain

candidate view

held by the experts in the field. For instance, in the trans- bounder

fer domain, we might have some information concerning oun logical
the number of destination cities for an employee, or on the dimen-zonal _ scheme
number of distinct areas moved to from each area. If such g bounﬂ atorializer
information is in the form of bounds, it can be effectively constraints

used to improve the bounds of view cardinality. estimetor %§

Definition 4 (k-dependency) Let X and Y be two views 5 -

onD. We say that &-dependencykD) holds betweerk g~ workoa

andY’, and denote it withy % V', whenk (k> 1)isan
upper bound of the number of distinct tuplesYofwhich
correspond to each distinct tuple &f within view X ¢Y".

Example 2 In the Transfersscheme, assume the domain OUr approach works in two steps. First, theunderuses

expert provides the following informatiorfhe maximum the setZ of cardinality constraintssupplied by the user to

number of inter-department transfers of an employee dur_determ!ne effective boqnds for the cardinalities of a proper

ing one year is 2 This constraint can be formalized by set of views; then, thestimatomuses these bounds to derive

a probabilistic estimate for the cardinality Bf Note that

this two-steps approach generalizes well-kngvanamet-

ric models for the estimation of the cardinality of relational

gueries [MCS88], and in particular those for projection size

estimation [CM95], for which bounds are typically given as
The kD’s have been studied in the context of relationalinput parameters.

database theory, where they are also knownuaserical The different forms of cardinality constraints we will

dependenciesGrant and Minker [GM83] proved that kD’s consider are:

are not finitely axiomatizable, thus no fixed set of inference 1 5 jower ¢~) and/or an upperg*) bound of the car-

rules can be used to determine whether or not a given kD ginality w of a viewIV;

is logically implied by a set of kD’s. Nonetheless, a ba-

sic set of rules, which naturally extend those for FD's, was 2. a k-dependency¥ A Y') expressing an upper bound

proposed in [GM83]. The rules we use, generalized to the  of the ratio between the cardinalities of two views

Figure 1: Overall architecture for logical design

the following kD: X 2Y, whereX = {year, employee},
Y = {toDept}. Intuitively, from this we can derive that
the cardinality of the viewyear, employee, toDept} can-
not exceed twice the cardilitg of X. O

multidimensional lattice, are: andY’.
Rl - xA5y - xazbvaes We vyl_ll assume that a}t least the upper bound; of th_e car-
. l o dinalities of all the single attributes in the dimensional
R2Z: X S YAY S Z F XS YRZ scheme are known. This assumption, which is perfectly
nable in all lication domains, is necessary in order
RS - Yhvezr x5y reasonable in all application domains, is nec y

to guarantee that at least one upper bound can be deter-
RI: XA vaxhzr xHyaz mined for each view.
~_ ThesetZ, together with the dimensional sche®euni-
Note that the “union” rule R4 is not strictly needed, since ityvocally determines two bounds for the cardinality 16f
can be derived from rules R1 (“extension”), R2 (“transitiv- which are called thereatest lower boun@nd theleast
ity”), and R3 (“decomposition”). upper bound denoted as~ andvt, respectively. The
interpretation of such bounds is as follows:

4 AFramework for Estimation 1. in each instance dP that does not violate any con-
The framework for this work is the logical design of mul- straint inZ, the cardinalityv of V' is such thatv &
tidimensional databases carried out off-line, i.e. assuming [y~ v*]; and
that the source data cannot be directly queried to estimate
the cardinality of multidimensional views. Without loss of
generality, in the following we consider that estimates are
needed for the purpose of view materialization, thus reli\We say a constraint € 7 is redundantiff all the greatest
able information on the size of the candidate views has tdower bounds and the least upper bounds determinetl by
be supplied to the materialization algorithm. are equal to those determined by- {c}.

As sketched in Figure 1, whenever the materialization 1oy simpiicity of notation, in denoting bounds we omit the depen-
algorithm requires information about a candidate viéw  dence orD andZ.

2. there exist two instances, both compatible with
wherev equalsy~ andv™, respectively.
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Definition 5 (Sound and Minimal Input) LetZ be a set itis v > 103. Finally, by using the model in Section 6, the
of cardinality constraints on dimensional schee We cardinality ofV is estimated as = 3.8 - 10*. O
sayZ is soundiff there exists at least one non-empty in-

stance ofD which satisfies all the constraintsth Wesay 5 The Bounder

7 is minimal iff no constraint inZ is redundant. ) . i )
The basic observation to determine bounds for view car-

d dinalities using bounds of the cardinalities of other views
is that the multidimensional lattice induces an isomorphic
tstructure over such cardinalities. In fact, from Definition
3 it follows thatW <~ impliesw < z in each instance of
D, sinceZ — W holds. This inequality also applies to
» bounds.

In this paper we will assume that the inguts sound an
minimal. It is straightforward to derive that, in this case,
all the boundsirf are either greatest lower bounds or leas
upper bounds (whereas the opposite is reaassarily true).

Computing the bounds implied ¥ turns out to be
a challenging combinatorial problem, even for “simple
forms of cardinality constraints. For instance, it is known
that the problem is NP-hard for arbitrary patterns of func-
tional dependencies [CM92]. Furthermore, the actual com- Proof: (w= < »~) Assumew~ > =—. Then, there is
putational effort needed to compute these bounds mighén instance b inwhichw > w= > z > »- thu,s,w S
limit applicability in real-world cases. For this reason, the, .. ic o contradiction. Sﬁnilarly fout < ZZ+_ O
bounder is built around the conceptafunding strategyA -
bounding strategy is characterized by a couple of bound-
ing functions that, givef, P, and}’, compute bounds;
andwv such thaty, < v~ andv™ < v both hold. In
other terms, a bounding strategy never computes bounci_se
which are more restrictive than the ones logically implied
by the input constraints, trading-adtcuracy for speed of
evaluation. We say that a strategys decoupledff com-
putingw} for an arbitrary viewy” only requires the knowl-
edge of upper bounds} of other viewsl¥, but no knowl-
edge of lower bounds~, and vice versa. Thus, for a de- ) X
coupled bounding strategy, the two bounding functions caf°!low immediately.
be defined independently of each other.

Turning to the estimator, our framework supports differ-
ent probabilistic models A probabilistic model is a func-
tion that, givenZ, D, V, as well as bounds computed by
the bounder, provides an estimatefor the cardinality of
V. In general, this step can use further information from
the application domain that is not suitable to derive bounds:”
Typically this is the case with information concerning aver- The bounding strategy we propose in this section, called
age values (e.g., the number of transfers of each employesyver-basedrelies on the concept afoverof a view to
on each year is 1.5, on the average). compute upper bounds. The following are two preliminary

definitions whose aim is to precisely characterize how sets
Example 3 Let 10* be the number of employees who have of views and kD’s can be sinergically combined together.
been transfered at least once, and let the enterprise con-
sist of 10% offices distributed over 10 cities and belong- pefinition 6 (Graph of a set of kD's) Let K = {X; ky

ing to one of 10 departments; l&®3 days be the observa- v .
g P y Yi,... X, k—> Y,} be a set of kD's. The (labelled ori-

tion period. LetV = {date, fromOffice, toOffice}. Since P N .
each office is involved in transfers at most with every Otherented)graph of K is G(K) = (N, E), with set of nodes

office on each date, the first trivialpper bound ofv is iv - Ui{Xi’dYIi}bSIE."t OI edgtj_eﬁ — {rfi[h:t/\(xi’if)];i;
103103 - 102 = 10°. If the maximum number of transfers 1+ - » P} @nd labeling functiork such that\(e;) = k.

for an employee during one year is 2, and since we con,_.. .. .
; e ) P Definition 7 (K-set of views) L = . "
sider 3 years, it is derived that the cardinality of the base ( ) et s {7W1’ ’Wk}

cube is at most - 3 = 6 times the number of transferred P& @ non-e;npty set of views, and &t = {X; =
employees, i.e6 - 10*. Thus, the upper bound efcanbe  v;,..., X, 3 Y,} be a set of kD's. The couplé =

. T4 L . )

improved to6 - 10 ?S well (the cardinality of a view Car.‘ 2Technically,G(K) is amulti-graph since two edges may share the
not exceed that of its base cube). On the other hand, if Wgame couple of nodes. This, however, does not influence the following

assume that each office is involved in at least one transfesrguments.

Lemmal If W=<Z,thenw™ < z~ andwt < zt.

As to k-dependencies, their influence on the determina-
tion of bounds is summarized by the following lemma.

mma2 LetZ = X&Y. If X 5 vV, thenz— > »~/k
andzt < k.zt.

Proof: From Definition 4 it follows immediately that, if

x5 Y, the cardinalityz of 7 is related to the cardinality
z of X by inequalityz < % - z. The inequalities on bounds
O

In the rest of this section we first propose a decoupled
strategy to compute upper bounds (Section 5.1), then we
discuss some issues related to coupled strategies (Section
5.2).

1 A Decoupled Upper Bounding Strategy
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(S, K) is called ak-set of viewsiff Vi = 1,... pitis

Y; € S and there exists a set of kD'¢y’ = {W;, i\

Yi,...,W;, ’3 Yy}, such that: 1)vi = 1,...,pitis
Xi=W;, withW;, € S, and 2)G(K') = (N', E') is afor-
est i.e., a set of disjointdirected trees. We cgitompliant
a setK’ with such properties.

Each kD in anS-compliant setk”’ is derived from a cor-
responding kD ink" by applying rules R1 and R3 (since,
by hypothesis, it isX;&W;, = W;,). Note thatN' C S
always holds and that, in general, multipleeompliantx”
sets can be derived from the safedepending on how
eachlV;, € S is chosen.

Figure 2: Roll-up relationships of views in Example 5
Example 4 ¢, = ({A’'B,C, D}, K), with K = {A'B %3 g P P P
c,C LE D}, is a k-set of views, sinc&’ is S-compliant.
The same is true fo€; = ({AB,C, D}, K), sinceK’ =
{AB 5 ¢ ¢ 53 D} is S-compliant (in fact,A’ B<AB).
On the other hand¢s = ({B,C, D}, K) is not a k-set
since noS-compliant set of kD’s can be found.

e C3 = ({AB,C},{AB LA C'}). From Lemma 2 it
immediately followszbe < abt - k.

e Cy=({A,B,C}, {4 ky B, B kg C'}). By applying

kik

It is important to remark that Definition 7 requirés, rule R2, we derivel "= BC, thusabe < a™ - ky - ko.
and not necessarily, to be a forest. For instance, the
couple({A}, {A A A}) is not a k-set, thoug ({ A’ A o Cs = ({4,B,C}, {4 i\ B, A LE C1). Rule R4 is
A}) is a forest, sincg ({4 £ A}) is cyclic. On the other now used to derivel “5* BC', thusabe < at -k -ko.
hand,C, = ({A, A", B}, {A’ 3 B, B 53 4'}) is a k-set
(after derivingA 5B from A’ & B) even ifG({ A’ i\ e Cs = ({4, A'B,C}H{A LA A}). According to rule
B,B LE A'}) is cyclic. R1litis A'B % AB, and from Lemma 2ib+ <k-
Finally, for the k-setCs = ({A, A'B, A'C’},{A’ LA a’b"’/. ?n t_f:e other handibc < ab™ - cT, thusabe <
A}), two S-compliant sets X! = {A'B % A} and hoalb et .
K, ={A'C A A}, can be derived. O

The following theorem precisely characterizes how
Definition 8 (Cover) LetVV € Vp be a view onD and  bounds are related to the graphrof.
C = (S, K) be a k-set of viewsC is called al/-coveriff

= . ; ;
V=e(9) Theorem 1 (Cover-based bounding)Letl” be a view and

As the following example suggests,Vacover can be ¢ = (5, K) be aV-cover, withS = {W,,... Wy}
used to bound from above the cardinality6by generaliz- and K = {X, By Yi,.. X, g Y,}. Let K’ be an

ing Lemma 1 to the case of multiple views (Sirice®/(.5) S-compliant set,R(G(K')) be the set of root nodes of
holds). When also kD’s are present, Lemma 2 can be Xhe forestG(k’) = (N',E') associated tak’, and let

ploited to improve the bound. Since a cover must be a k—setS0 — 6 _ N’ stand for the set of views which are not nodes
we are guaranteed that the cardinalities of some views in ; G(K'). Then:

can be safely “replaced” by thg’s of the kD's in K.

Example5 LetV = ABC'. Below we consider some no- e def T +

table examples of/-covers and show how each of them v<u(C K = H ki - H wi (@)
can be used to derive an upper bound forin order to =l W;eR(G(K'))us

help the reader, Figure 2 depicts the roll-up relationships

between the views involved. Proof: The intuition behind the proof is thaach tree

G = (N/, E}) of G(K') contributes tou(C, K') with the

upper bound of the cardinality of its rodt; times all the

k;'s which label the edges iA;.

o Cy = ({AB, BC'},0) isaV-cover sincd/ <&(S52) = Since by Definition 8 it isV <&(9), it is sufficient to
ABC. Since the natural join between two views is a prove thatu(C, K') is an upper bound ob(S). Since the
subset of their Cartesian product, itiis: < ab®-bct.  size of the natural join of a set of views can never exceed

e G = ({ABCD}, D) is aV-cover since/ <& (51) =
ABCD. From Lemma 1 it is derivedbc < abedt.
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that of their Cartesian product, it is by (1) is actually independent of the one chosen. For in-
stance, the reader may immediately verify that, in Example

card(®(S)) < card((H(S))D(H(N))) 4,itisu(Cs, K|) = u(Cs, K}) = k - a'b* - a'ct,
< card(P(Ss)) - card(S(N'
; H( w(+0.)i—[ card((@((]\f/)))) Lemma3 LetC = (S, K) be aV-cover, and letK| and
T Wi J ; t K be two arbitrary.S-compliant sets. Itisi(C, K]) =
j&P0 def

u(C, K%) = u(C).
Since thek;’s are partitioned over the trees, it is enough to
prove thatw;” ], », ki, wherelV; is the root oG, andA; Coherently with Theorem 1 and Lemma 3, the cover-
is the set of labels iff;, is an upper bound efird(®(N/)).  based bounding strategly computes}; as:
This is proved by induction on the numbkenof levels inG;.
Base step(L=2). ? In this caseg; corresponds to the + {v"’ if vt €7, @)

set of KD's{W; 2 Wai,..., W, Faga W 4, }. From the feb min{ue(C) | CisaV-covery if vt & 7.

union rule R4 it immediately follows thatrd(®(N/)) <

wit - TTE2 ko where ue(C) is obtained by replacing with w, in
Inductive step (L — 1 = L). Let N/(L — 1) w(C). In general, evaluating the cover-based bound leads

be the set of nodes in the firdt — 1 levels. By in-  to arecursive computational flow; note that the “case-0" of

ductive hypothesis it isard(®(N/(L — 1))) < wi - recursionyk = vt, is correctly defined since we assumed
,L:_Zl [T, ki ;. Adding the L-th level introduces new the inputZ to be minimal.

edges with labelgy, 1, ..., k., and corresponding ter- The space of thé -covers to be analyzed in order to

minal nodedVy 1, ..., Wy ,, . From thei-th of the corre-  determinev;, has exponential size. On the other hand, the

sponding kD's we can derive (using rules R1 and R3) thgollowing theorem shows that, under some circumstances, a
kD &(N/(L — 1)) ’gz Wy ;. From the union rule R4 it is V-coverC, can be discarded from the search space without
derived: even computingc, (Ca).

Theorem 2 LetC; = (Sl,[(l) andCz = (SQ, [(2) be two

ML ke,
NI(L— 1) = (W, W
BN ) WL Lact) V-covers. IfS; C S, andK; = K, or S; = S, and

which, due to Lemma 2, leads to: Ky C K, thenue,(C1) < uep(Ca).
card((®(N/(L = D))S@HWr 15, Wrg 1)) = 5.1.1 Reasoning without k-dependencies
= card(6(N/(L)))

When no k-dependencies are included among the input
i constraintsZ, covers degenerate into sets of views, which
< Hk’LJ ‘wit H Hk’hi = w; HHk’lz 0 allows us to precisely characterize the setlbfcovers
i=1 [=2i=1 [=2i=1 that can provide useful (non redundant) bounds. To see
how such covers are determined, two orthogonal aspects
are considered: dominationrelationship between sets of

. 7, ) views and the input informatiorf,. While the former in-
not a forest, provided thalt(¢(K")) contains (at least) 8 g\ceg 4 partial order on the bounds obtainable fiom

set of nodes from whickveryother node irgj(£) can be covers, regardless of the specific infiytthe latter can be

reached thnugh a directed path. On the other hand, the, s 1q restrict the set of usefidtcovers to those including
bounds determined by such “non-forest*covers are al-

. S only views inZ.
ways redundant, meaning that a propecover yielding a In this section. since we assunie = 0. we will work
better bound for can always be found. ' '

only with the S part of VV-covers. Consequently, in (2),
Example 6 Let V = ABC, and consider the couple Ucb(C) can be replaced by

N it k k .
({4, B,C}, K) with K = {A = C,B =% (}), which wes(S) = ] i

L-1 q L aq

It is possible to prove that (1) is valid evend{ k) is

is not a k-set since the graph &f = K has two roots 4 WS (3)
andB). The bound returned by (1) is< ky - ko - aT - bt i€
which is redundant, since a better bound is obviously obpefinition 9 (Domination between sets of views)
tained throughthé’—cover({A,B,C},{A’S cH. o0 LetS = {Wia,...,Wi;..., Wi} and S; =
. _ Wan,... , Way, ..., Ws,} be two sets of views. We
The following lemma shows that, when multiple sy thats, dominatesS,, written S;CSs, iff S, can
compliant sets exist for a given cover, the bound returnegye partitioned intom subsetsSs 1, .. . , S, such that
#The casd. = 1 cannot arise, since each has at least one edge. Wi, =®(S2:)Vi=1,...,m.
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For instance{A’'B, C}C{AB,CD,E}. Note that if

SiCS; then®(S;)=4(S;) necessarily holds, whereas the

opposite is not always true (e.d.AB, BC}Z{ABCD}
thoughABC<ABC D).

Lemma4 Let S; and .S, be two sets of views. §,C.S,
thenucb(Sl) < ucb(Sz).

Definition 10 (Ground Views and Covers) We say that a
view W is groundiff wT isinZ. A V-cover is said to be
groundwhen all the views it includes are ground.

Lemmab5 LetS be a non-ground’-cover. Then there ex-
ists a ground/ -coverS; such thatuc,(S1) < ueb(S).

Proof (sketch): SincesS is not ground, at least one view
in S is not ground. By recursively applying (3)es (:S) will
be eventually expressed as a product of bounds ifithe

Figure 3: Roll-up relationships between views in Lemma
6, inthe case: = 3

4. If S'is a groundV-cover, no set5’ such thats C 5’
is a minimall’-cover (from Definitions 9 and 11).

5. If a minimal V'-cover S’ contains a ground viewl,
it cannot contain any other ground vié®’ such that
W=<W’ (from Definitions 9 and 11).

case of strict inequalityu,(S1) < uep(.S)) can arise since .
in this recursive process there is no guarantee that a givén2 Towards a Coupled Bounding Strategy

ground view will be generated justonce, thusits least uppefhe hounds we derive through the strategy described in
bound might appear more than once:i(5). D Section 5.1 are not necessarily the tightest possible ones.
In fact, more complex and effective bounding strategies
can be defined to the detriment of computational speed.
Basically, in these strategies the concept of cover may be
extended by considering more complex patterns of views,
where upper and lower bounds are used jointly. In this sec-
tion we present some preliminary considerations on cou-
pled strategies; for simplicity, we will assume that the input
does not contain k-dependencies.

As to upper bounding, the cover-based strategy can be
improved by exploiting results frormajorization theory
which state that the size of the natural join between two
relations is majorized when the distributions of the join at-
tribute(s) in the two relations are maximally skewed [IC91].
The extension of this argument to the multidimensional
lattice is as follows. Given two viewdl; and W, such

Definition 11 (Minimal Cover) A ground V-cover S is
minimal iff there is no other ground’-cover.S; such that
S1CS holds.

The following theorem immediately derives from Lem-
mas 4 and 5.

Theorem 3 (Sufficiency of Minimal Covers) It is:

min{ue(S) | SisaV-cover =
= min{ue(S) | Sisa minimalV-cover}. (4)
For instance, lef = {ab’+, cdt, d'det at, a'T b,
pytoet dt et} and V A'B'CD. The min-
imal V-covers are {AB',CD}, {A',B,CD}, and ihat Wi AWy and Wa Wi, letY = Wi@Ws and let

{A'DE,B',C}. _ Z = W,@W,, where® is the greatest lower bound op-
From the above results, several facts can be easily desiator on the lattice: it can be proved that

rived, which can be exploited to efficiently generate mini-
mal V' -covers by means, say, of a branch-and-bound algo-
rithm:

+

cwi = (a7 = D (wf 4wl —27)

(5)

It should be noted that, wheW,@W-, = {}, since the
empty view{} has cardinality 1, (5) correctly reduces to

3).

This result can be extended toacover whose views

+
y < wy

1. A ground viewlW such thatV <W is a groundV -
cover (from Definition 8).

2. A ground viewW such thatarity(}¥) = 1 and are connected bylaear join graph
vam VD:f'@ _(:_oes r;ot bjlf;gto any minimél-cover Lemma6 LetS = {Wy,...,W,} beaV-cover; let7; =
(from Definitions 9 an ). Wi@Wigr, i = 1,...,n— 1, = Wy, and Yy, =
3. Aground viewW such tharity(W) > 1andvWw’  Yi®Wipr,i=1,...,n — 1. Then:

for which W/<W itis arity(W’' N V) < 2 does not + et wt - + + _

- .. . ) i Few o — (g — Dy Fwly —
belong to any minimal’-cover (since’ includes the Yit1 =Y . w1 )y +1 )
cardinalities of all the attributes). fori=1,....n—-1; (6)

+
4 arity(W) denotes the number of attributest. v Y,
P. Ciaccia, M. Golfarelli, S. Rizzi 12-7



The pattern consisting of views;, W;y1, Z;, and In our approach, denoted (“safe-estimate”), the above
Y;i+1, depicted in Figure 3, can in principle be extendedestimate is improved in two ways: by replacing,., with
to take into account also size information Bn— Z; and  the upper bound computed forfor instances7;, as a mea-
Wit1 — Z;, thatis, on non-join attributes; this will further sure of the maximum cardinality &f, and by replacing the
strengthen the upper bound. At present, we guess that theardinality of the base cubwith an estimateiz,., of the
exact computation of* might involve taking into account cardinality of a viewi¥ such that’ <W . This leads to:
patterns that can extend over the whole lattice. However,
besides the theoretical interest, it is important to trade-off Tse = O(v}, Wee) < min{v}, Wee} (10)
the increased complexity with the actual gain that could be
obtained by having more accurateunds, considering also Since bothv%, and w. can be considerably lower than
how bounds can be used by the estimator. Umae @Ndd, respectively, it is usually the case thgt <

A coupled strategy requires also lower bounds to besanr- The rationale for (10) is that we can view the prob-
Computed which is rad|ca||y different from Comput|ng up- lem of estimating) as the one of dlStnbUﬂng the tUpleS of
per bounds. In fact, while computing an upper bound corV'eW W, which are estimated to ke, over a number of
responds to bounding the size of a join, computing a lowerss “buckets”.
bound corresponds to bounding the size of a projection, Due to the need to know., it is obvious that our es-
where the relevant difference is that projection is a unaryjimation process must move downward from the top of the
operator. This leads to a much simpler situation to dealattice (whose cardinality is typically known) following a
with, in which Lemma 1 is exploited and the lower bound path leading td”. Clearly, this represents a simplification
of v is computed asnax{w~ | w~ € Z, W=V}. Differ-  ofthe correct estimation procedure, which would require to
ently from upper bounds, no combinatorial issues arise irleterminev by following all the paths fromiim(D) to V.
computing lower bounds through this strategy; thus, comOn the other hand, this would lead to combinatorial explo-
plexity is linear in the cardinality of . sion and necessitate of highly complex probabilistic models

A better bound can be obtained by using informationthat are well beyond the current state-of-the-art knowledge.
associated to “sibling” views. Lt/ be a view such that From a more practical (numerical) point of view, it

VNW =0 andZ = VoW, then: should be noted that moving from upper bounds to esti-
_ mates leads to significant differences under specific condi-
-> (7)  tionsonly. Two relevant cases should be considered, which

er arise from the limit behavior of Cardenas’ formula:

In fact, if v < z~ /w*, then the size of the Cartesian prod-

— + Lt — ~ T
uct of i andW would be less than, whichis impossible. 1+ Whenwse < 0.1 -vg, itis Tse ~ Wse

_ oo o+
6 The Estimator 2. Whenw,, > 3 - v, itis Tse = v},
Assuming that effective bounds have been derived, cardi-
nality estimation must be based on a probabilistic modet
to derive an estimate;, of the cardinality of viewl/. The

model we adopt here is based on the Cardenas’ formul
[Car75], which states that, when throwi distinct ob-

jects into B buckets, the expected number of buckets in

The valued).1 and3 can thus be used to predict whether
he estimator will deliver results which substantially differ
rom those directly obtainable from the bounder.

Example 7 In theTransfersscheme, we consider three in-
put situations:

which at least one object will fall can be estimated as: T, ={{date}* = 10°, {year}" = 3, {employee}* = 10%,
N fa1t c ot 3
€ 1 . = =
®(B, N) def 1 (1 _ (1 _ _) ) < min{B, N} {fromOffice} {toOffice} 10°,
B {fromCity}* = {toCity}" = 10,
(8) {fromDept}t = {toDept}* = 10}

Within the approach proposed in [SDNR96], (8) is used to ) .
estimatev bsprelying%nﬁhe maxi[mum car(]:iir(la)lity df, L=l U {{employee’ year} = {fromOffice, toOffice, date}}
defined as the Cartesian product of the cardinalities of thés =Z» U {{fromCity,fromDept}+ = 40,

attributes iV, vpmae = [[4,¢y @, and on the cardinality {toCity, toDept} ™ = 40

of the base cubel = card(dim(D)), thatis: ’ ’

Usdnr = q)(vmaxa d) < min{vmam d} (9)

This formula turns out to significantly overestimate the 10
cardinalities and can easily lead to violate the constraint ~ {toCity, toDept} = {toOffice}}
Usdnr S U+.

{fromCity, fromDept } N {toCity, toDept},
{fromCity, fromDept} 3 {fromOffice},

P. Ciaccia, M. Golfarelli, S. Rizzi 12-8



Table 1: Improving upper bounds and estimates for increas-
ing domain-derived information

input wl, vl Wie Use
7 1013 10° 1013 10°

Iy 1.2-10° | 1.2-10° | 1.2-10° | 7.6- 104

s 1.2-10° [ 7.2-10* | 1.2-10° | 5.8-10%

Let W = dim(D) = {date, employee, fromOffice, toOffice}
be the base cube afd = {fromOffice, toOffice} be the

each year is 2, would allow the cardiitgof the base
cube to be estimated as twice the cardinality of view

employee, year}.
p

o Probabilistic estimatesEstimates based on Cardenas’
formula can be improved in several ways. In particu-
lar, information on lower bounds could be considered
by exploiting the results in [CM95], as well as infor-

mation concerning the distribution of attribute values
over their domains. For this, the challenge is to derive

view whose cardinality is to be estimated. Table 1 shows
how the upper bound;, of W, the upper bound; of V/,
and the estimate,. improve as new cardinality constraints

are progressively supplied. The estimatg is based on [AGS97]

the estimate ofv, w,e, Which is assumed to be equal to its
upper boundo; . i

7 Conclusions and Open Issues [Car75]

In this paper we have shown how cardinality constraints
derived from the application domain may be employed to

determine effective bounds on the cardinality of aggregatédCM92]

views and how, in turn, such bounds can be used to esti-
mate the cardinality of the views. In order to improve the
approach effectiveness, some issues still need to be investi-
gated. In the following we briefly discuss those we believe
to be crucial:

e Domination A characterization of domination be-
tween k-sets of views, similar to that reported in Def-
inition 9 for sets of views, needs to be developed in
order to reduce the complexity of computing upper
bounds in presence of k-dependencies.

¢ Minimality. Throughout this paper we assumed that

the cardinality constraints supplied by the domain ex-
pert are sound and non redundant. Of course, this
gives rise to the problem of determining, given an in-
putZ, if Z is sound and minimal, which we argue can
be dealt with as done for, say, functional dependencies
(whose inference rules can be used both for schema
normalization as well as for input minimization).

¢ Cardinality constraintsThe input knowledge may be
further extended by considering other forms of car-
dinality constraints which are typically known to the
experts of the application domain. For instance, while

in this paper we have defined k-dependencies to ex GROO0]

pressboundson the ratio between the cardinalities of
two views, they may also be used to denoteaher-
ageof such ratio; while this kind of knowledge cannot

be used by the bounder, it allows the cardinality esti-[Gup97]

mations to be improved. For instance, knowing that
the average number of transfers for each employee on

P. Ciaccia, M. Golfarelli, S. Rizzi

[CMO5]

[GL97]

[GM83]

new models that can be applied when the data ware-
house has not been loaded yet.
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