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DATA WAREHOUSE

INTRODUCTION

For a fewdecades, the role played by database technology in
companies and enterprises has only been that of storing
operational data, that is data generated by daily, routine
operations carried out within business processes (such as
selling, purchasing, and billing). On the other hand,
managers need to access quickly and reliably the strategic
information that supports decision making. Such informa-
tion is extractedmainly from the vast amount of operational
data stored in corporate databases, through a complex
selection and summarization process.

Very quickly, the exponential growth in data volumes
made computers the only suitable support for thedecisional
process run by managers. Thus, starting from the late
1980s, the role of databases began to change, which led
to the rise of decision support systems that were meant as
the suite of tools and techniques capable of extracting
relevant information from a set of electronically recorded
data. Among decision support systems, data warehousing
systems are probably those that captured the most
attention from both the industrial and the academic world.

A typical decision-making scenario is that of a large
enterprise, with several branches, whose managers wish
toquantifyandevaluate the contributiongiven fromeachof
them to the global commercial return of the enterprise.
Because elemental commercial data are stored in the enter-
prise database, the traditional approach taken by the
manager consists in asking the database administrators
to write an ad hoc query that can aggregate properly the
availabledata to produce the result.Unfortunately,writing
such a query is commonly very difficult, because different,
heterogeneous data sources will be involved. In addition,
the querywill probably take a very long time to be executed,
because itwill involve a huge volume of data, and itwill run
together with the application queries that are part of the
operational workload of the enterprise. Eventually, the
manager will get on his desk a report in the form of a either
summary table, a diagram, or a spreadsheet, on which he
will base his decision.

This approach leads to a useless waste of time and
resources, and often it produces poor results. By the way,
mixing theseadhoc, analytical querieswith the operational
ones required by the daily routine causes the system to slow
down, which makes all users unhappy. Thus, the core idea
of data warehousing is to separate analytical queries,
which are commonly called OLAP (On-Line Analytical
Processing) queries, from the operational ones, called
OLTP (On-Line Transactional Processing) queries, by
building a new information repository that integrates the
elemental data coming from different sources, organizes
them into an appropriate structure, andmakes them avail-
able for analyses and evaluations aimed at planning and
decision making.

Among the areas where data warehousing technologies
are employed successfully, we mention but a few: trade,
manufacturing, financial services, telecommunications,
and health care. On the other hand, the applications of
data warehousing are not restricted to enterprises: They
also range from epidemiology to demography, from natural
sciences to didactics. The common trait for all these fields is
the need for tools that enable the user to obtain summary
information easily and quickly out of a vast amount of data,
to use it for studying a phenomenon and discovering sig-
nificant trends and correlations—in short, for acquiring
useful knowledge for decision support.

BASIC DEFINITIONS

A data warehousing system can be defined as a collection of
methods, techniques, and tools that support the so-called
knowledge worker (one who works primarily with informa-
tion or develops and uses knowledge in the workplace: for
instance, a corporatemanager or a data analyst) in decision
making by transforming data into information. The main
features of data warehousing can be summarized as fol-
lows:

� Easy access to nonskilled computer users.

� Data integration based on a model of the enterprise.

� Flexible querying capabilities to take advantage of the
information assets.

� Synthesis, to enable targeted and effective analysis.

� Multidimensional representation to give the user an
intuitive and handy view of information.

� Correctness, completeness, and freshness of informa-
tion.

At the core of this process, the data warehouse is a
repository that responds to the above requirements.
According to the classic definition by Bill Inmon (see
Further Reading), a data warehouse is a collection of
data that exhibits the following characteristics:

1. Subject-oriented,whichmeans that all the data items
related to the same business object are connected.

2. Time-variant, which means that the history of busi-
ness is tracked and recorded to enable temporal
reports.

3. Nonvolatile, which means that data are read-only
and never updated or deleted.

4. Integrated, which means that data from different
enterprise applications are collected and made con-
sistent.

Although operational data commonly span a limited
time interval, because most business transactions only
involve recent data, the data warehouse must support
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analyses that cover some years. Thus, the data warehouse
is refreshed periodically starting from operational data.
According to a common metaphor, we can imagine that
photographs of operational data are periodically taken; the
sequence of photos is then stored in the data warehouse,
wherea sort ofmovie is generated that depicts thehistory of
business up to the current time.

Because in principle data are never deleted, and
refreshes are made when the system is offline, a data
warehouse can be considered basically as a read-only data-
base. This feature, together with the importance given to
achieving good querying performances, has two main con-
sequences. First, the database management systems
(DBMSs) used to manage the data warehouse do not
need sophisticated techniques for supporting transactions.
Second, thedesign techniquesused for datawarehousesare
completely different from those adopted for operational
databases.

As mentioned, another relevant difference between
operational databases and data warehouses is related to
the types of queries supported. OLTP queries on opera-
tional databases typically read and write a relatively small
number of records from some tables related by simple
relationships (e.g., search for customers’ data to insert
new orders). Conversely, OLAP queries on data ware-
houses commonly read a huge number of records to com-
pute a few pices of summary information. Most
importantly, although the OLTP workload is ‘‘frozen’’
within applications and only occasionally ad hoc queries
are formulated, the OLAP workload is intrinsically inter-
active and dynamic.

ARCHITECTURES

To preserve the separation between transactional and
analytical processing, most data warehousing architec-
tures are based on at least two data levels: the data sources
and the data warehouse.

Data sources are heterogeneous; they may be part of
the corporate information system (operational databases,
legacy systems, spreadsheets, flat files, etc.). or even
reside outside the company (Web databases, streams,
etc.). These data are extracted, cleaned, completed, vali-
dated, integrated into a single schema, and loaded into the
data warehouse by the so-called ETL (Extraction, Trans-
formation, and Loading) tools.

The data warehouse is the centralized repository for the
integrated information. Here, different from the sources,
data are stored in multidimensional form, and their struc-
ture is optimized to guarantee good performance for OLAP
queries. In practice, most often, the data warehouse is
replaced physically by a set of data marts that include
the portion of information that is relevant to a specific
area of business, division of the enterprise, and category
of users. Note the presence of a metadata repository that
contains the ‘‘data about data,’’ for example, a description of
the logical organization of datawithin the sources, the data
warehouse, and the data marts.

Finally, the information in the data warehouse is
accessed by users by means of different types of tools:

reporting tools, OLAP tools, data-mining tools, and what-
if analysis tools.

Somearchitectures include anadditional level called the
reconciled level or operational data-store. It materializes
the operational data obtained by extracting and cleaning
source data: Thus, it contains integrated, consistent, cor-
rect, detailed, and current data. These reconciled data are
thenused to feed the datawarehouse directly. Although the
reconciled level introduces a significant redundancy, it also
bears some notable benefits. In fact, it defines a reference
datamodel for the whole company, and at the same time, it
introduces a clear separation between the issues related to
data extraction, cleaning and integration and those related
to data warehouse loading. Remarkably, in some cases, the
reconciled level is also used to better accomplish some
operational tasks (such as producing daily reports that
cannot be prepared satisfactorily using the corporate appli-
cations).

In the practice, these ingredients are blended differently
to give origin to the five basic architectures commonly
recognized in the literature:

� Independent data marts architecture

� Bus architecture

� Hub-and-spoke architecture

� Centralized data warehouse architecture

� Federated architecture

In the independent data mart architecture, different
data marts are designed separately and built in a noninte-
grated fashion (Fig. 1). This architecture, although some-
times initially adopted in the absence of a strong
sponsorship toward an enterprise-wide warehousing
project or when the organizational divisions that make
up the company are coupled loosely, tends to be soon
replaced by other architectures that better achieve data
integration and cross-reporting.

Thebusarchitecture is apparently similar to theprevious
one, with one important difference: A basic set of conformed
dimension and facts, derived by a careful analysis of the
main enterprise processes, is adopted and shared as a
common design guideline to ensure logical integration of
data marts and an enterprise-wide view of information.

In the hub-and-spoke architecture, much attention is
given to scalability and extensibility and to achieving an
enterprise-wide view of information. Atomic, normalized
data are stored in a reconciled level that feeds a set of data
marts containing summarized data in multidimensional
form (Fig. 2). Users mainly access the data marts, but they
occasionally may query the reconciled level.

The centralizedarchitecture canbeviewedasaparticular
implementation of the hub-and-spoke architecture where
the reconciled level and the data marts are collapsed into a
single physical repository.

Finally, the federated architecture is sometimes adopted
in contexts where preexisting data warehouses/data marts
are to be integratednoninvasively to provide a single, cross-
organizationdecision support environment (e.g., in the case
of mergers and acquisitions). Each data warehouse/data
mart is either virtually or physically integrated with the
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others by leaning on a variety of advanced techniques such
as distributed querying, ontologies, and metadata inter-
operability.

ACCESSING THE DATA WAREHOUSE

This section discusses how users can exploit information
stored in the data warehouse for decision making. In the
following subsection, after introducing the particular
features of the multidimensional model, we will survey
the two main approaches for analyzing information:
reporting and OLAP.

The Multidimensional Model

The reasons why the multidimensional model is adopted
universally as the paradigm for representing data in data
warehouses are its simplicity, its suitability for business
analyses, and its intuitiveness for nonskilled computer
users, which are also caused by the widespread use of
spreadsheets as tools for individual productivity. Unfortu-
nately, although some attempts have been made in the
literature to formalize the multidimensional model (e.g.,
Ref. 1), none of them has emerged as a standard so far.

The multidimensional model originates from the obser-
vation that the decisional process is ruled by the facts of the
business world, such as sales, shipments, bank transac-
tions, and purchases. The occurrences of a fact correspond
to events that occur dynamically: For example, every sale or
shipment made is an event. For each fact, it is important to
know the values of a set of measures that quantitatively
describe the events: the revenue of a sale, the quantity
shipped, the amount of a bank transaction, and the dis-
count on a purchase.

The events that happen in the enterprise world are
obviously too many to be analyzed one by one. Thus, to
make them easily selectable and groupable, we imagine

arranging themwithin ann-dimensional spacewhose axes,
called dimensions of analysis, define different perspectives
for their identification. Dimensions commonly are discrete,
alphanumeric attributes that determine the minimum
granularity for analyzing facts. For instance, the sales in
a chain of stores can be represented within a three-dimen-
sional spacewhose dimensions are the products, the stores,
and the dates.

The concepts of dimension gave birth to the well-known
cube metaphor for representing multidimensional data.
According to this metaphor, events correspond to cells of
a cube whose edges represents the dimensions of analysis.
A cell of the cube is determined uniquely by assigning a
value to every dimension, and it contains a value for each
measure. Figure 3 shows an intuitive graphical represen-
tation of a cube centered on the sale fact. The dimensions
areproduct, store, anddate. An event corresponds to the
selling of a givenproduct in agiven store onagivenday, and
it is described by two measures: the quantity sold and the
revenue. The figure emphasizes that the cube is sparse, i.e.,
that several events did not happen at all: Obviously, not all
products are sold every day in every store.

Normally, each dimension is structured into a hierarchy
of dimension levels (sometimes called roll-up hierarchy)
that group its values in different ways. For instance, pro-
ducts may be grouped according to their type and their
brand, and types may be grouped additionally into cate-
gories. Stores are grouped into cities, which in turn are
grouped into regions and nations. Dates are grouped into
months and years. On top of each hierarchy, a final level
exists that groups together all possible values of ahierarchy
(all products, all stores, andall dates).Eachdimension level
may be described even more by one or more descriptive
attributes (e.g., a product may be described by its name, its
color, and its weight).

A brief mention to some alternative terminology used
either in the literature or in the commercial tools is useful.

Figure 1. Independent data marts and bus
architectures (without and with conformed
dimensions and facts).
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Althoughwith the term dimensionwe refer to the attribute
that determines the minimum fact granularity, sometimes
the whole hierarchies are named as dimensions. Measures
are sometimes called variables, metrics, categories, proper-
ties, or indicators. Finally, dimension levels are sometimes
called parameters or attributes.

We now observe that the cube cells and the data they
contain, although summarizing the elemental data stored
within operational sources, are still very difficult to analyze
because of their huge number: Two basic techniques are
used, possibly together, to reduce the quantity of data and
thus obtain useful information: restriction and aggrega-
tion. For both, hierarchies play a fundamental role because
they determine how events may be aggregated and
selected.

Restricting data means cutting out a portion of the cube
to limit the scope of analysis. The simplest form of restric-
tion is slicing, where the cube dimensionality is reduced by
focusing onone single value for one ormoredimensions. For
instance, as depicted in Fig. 4, by deciding that only sales of
store ‘‘S-Mart’’ are of interest, the decision maker actually
cuts a slice of the cube obtaining a two-dimensional sub-
cube. Dicing is a generalization of slicing in which a sub-
cube is determined by posing Boolean conditions on
hierarchy levels. For instance, the user may be interested
in sales of products of type ‘‘Hi-Fi’’ for the stores in Rome
during the days of January 2007 (see Fig. 4).

Although restriction is used widely, aggregation plays
themost relevant role in analyzingmultidimensional data.
In fact, most often users are not interested in analyzing
events at the maximum level of detail. For instance, it may
be interesting to analyze sale events not on a daily basis but

bymonth. In the cubemetaphor, this processmeans group-
ing, for each product and each store, all cells corresponding
to the days of the same month into one macro-cell. In the
aggregated cube obtained, each macro-cell represents a
synthesis of the data stored in the cells it aggregates: in
our example, the total number of items sold in each month
and the total monthly revenue, which are calculated by
summing the values of Quantity and Revenue through the
corresponding cells. Eventually, by aggregating along the
time hierarchy, an aggregated cube is obtained in which
each macro-cell represents the total sales over the whole
time period for each product and store. Aggregation can
also be operated along two or more hierarchies. For
instance, as shown in Fig. 5, sales can be aggregated by
month, product type, and city.

Noticeably, not every measure can be aggregated con-
sistently along all dimensions using the sum operator. In
some cases, other operators (such as average or minimum)
can be used instead, whereas in other cases, aggregation is
not possible at all. For details on the two related problems of
additivity and summarizability, the reader is referred to
Ref. 2.

Reporting

Reporting is oriented to users who need to access periodi-
cally information structured in a fixed way. For instance, a
hospital must send monthly reports of the costs of patient
stays to a regional office. These reports always have the
same form, so the designer can write the query that gen-
erates the report and ‘‘freeze’’ it within an application so
that it can be executed at the users’ needs.

A report is associated with a query and a presentation.
The query typically entails selecting and aggregating
multidimensional data stored in one or more facts. The
presentation can be in tabular or graphical form (a dia-
gram, a histogram, a cake, etc.). Most reporting tools also
allow for automatically distributing periodic reports to
interested users by e-mail on a subscription basis or for
posting reports in the corporate intranet server for down-
loading.

OLAP

OLAP, which is probably the best known technique for
querying data warehouses, enables users to explore inter-
actively and analyze information based on themultidimen-
sional model. Although the users of reporting tools
essentially play a passive role, OLAP users can define
actively a complex analysis session where each step taken
follows from the results obtained at previous steps. The
impromptu character of OLAP sessions, the deep knowl-
edge of data required, the complexity of the possible
queries, and the orientation toward users not skilled in
computer sciencemaximize the importance of the employed
tool, whose interface necessarily has to exhibit excellent
features of flexibility and friendliness.

An OLAP session consists in a ‘‘navigation path’’ that
reflects the course of analysis of one or more facts from
different points of view and at different detail levels. Such a
path is realized into a sequence of queries, with each
differentially expressed with reference to the previous

Figure 2. Hub-and-spoke architecture; ODS stands for opera-
tional data store.
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query. Query results are multidimensional; like for
reporting, OLAP tools typically represent data in either
tabular or graphical form.

Each step in the analysis session is marked by the
application of an OLAP operator that transforms the pre-
vious query into a new one. The most common OLAP
operators are as follows:

� Roll-up, which aggregates data even more (e.g., from
sales by product, nation, and month to sales by cate-
gory, nation, and year).

� Drill-down, which adds detail to data (e.g., from sales
by category, nation, and year to sales by category, city,
and year).

� Slice-and-dice, which selects data by fixing values or
intervals for one or more dimensions (e.g., sales of
products of type ‘‘Hi-Fi’’ for stores in Italy).

� Pivoting, which changes the way of visualizing the
results by rotating the cube (e.g., swaps rows with
columns).

� Drill-across, which joins two or more correlated cubes
to compare their data (e.g., join the sales and the
promotions cubes to compare revenues with dis-
counts).

We close this section by observing that, in several appli-
cations, much use is made of an intermediate approach
commonly called semistatic reporting, in which only a

reduced set of OLAP navigation paths are enabled to avoid
obtaining inconsistent orwrong results by incorrectlyusing
aggregation, while allowing for some flexibility in manip-
ulating data.

IMPLEMENTATIONS OF THE MULTIDIMENSIONAL MODEL

Two main approaches exist for implementing a data ware-
house: ROLAP, which stands for relational OLAP, and
MOLAP, which stands for multidimensional OLAP.
Recently a third, intermediate approach has been adopted
in some commercial tools: HOLAP, that is, hybrid OLAP.

Relational OLAP

On a ROLAP platform, the relational technology is
employed to store data in multidimensional form. This
approach is motivated by the huge research work made
on the relational model, by the widespread knowledge of
relational databases and their administration, and by the
excellent level of performance and flexibility achieved by
relationalDBMSs.Of course, because the expressiveness of
the relational model does not include the basic concepts of
the multidimensional model, it is necessary to adopt spe-
cific schema structures that allow the multidimensional
model to be mapped onto the relational model. Two main
such structures are commonly adopted: the star schema
and the snowflake schema.

Thestarschemaisarelationalschemacomposedofasetof
relations called dimension tables and one relation called a
fact table. Each dimension table models a hierarchy; it
includes a surrogate key (i.e., a unique progressive number
generated by the DBMS) and one column for each level and
descriptiveattributeof thehierarchy.The fact table includes
a set of foreign keys, one that references each dimension
table, which together define the primary key, plus one col-
umn for eachmeasure. Figure 6 shows a star schema for the
sales example. Noticeably, dimension tables are denorma-
lized (they are not in the third normal form); this is aimed at
reducing thenumberof relational joins tobe computedwhen
executing OLAP queries, so as to improve performance.

A snowflake schema is a star schema in which one or
more dimension tables have been partially or totally nor-
malized to reduce redundancy. Thus, a dimension table can
be split into one primary dimension table (whose surrogate
key is references by the fact table) and one or more

Figure 3. The three-dimensional cube that models the sales in
a chain of shops. In the S-Mart store, on 5/1/2007, three LE32M
TVs were sold, for a total revenue of $2500.

Figure 4. Slicing (left) and dicing (right) on the sales cube.
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secondarydimension tables (each including a surrogate key
and referencing thekey of another dimension table). Figure
7 shows an example for the sale schema, in which the
product dimension has been normalized partially.

Multidimensional OLAP

Differently from ROLAP, a MOLAP system is based on a
native logical model that directly supports multidimen-
sional data and operations. Data are stored physically
into multidimensional arrays, and positional techniques
are used to access them.

The great advantage of MOLAP platforms is that OLAP
queries can be executed with optimal performances, with-
out resorting to complex and costly join operations. On the
otherhand, they fall shortwhendealingwith large volumes
of data, mainly because of the problem of sparseness: In
fact, when a large percentage of the cube cells are empty, a
lot of memory space is wasted uselessly unless ad hoc
compression techniques are adopted.

Hybrid OLAP

HOLAP can be viewed as an intermediate approach
between ROLAP and MOLAP, because it tries to put
together their advantages into a single platform. Two basic
strategies are pursued in commercial tools to achieve this
goal. In the first strategy, detailed data are stored in a
relational database, where as a set of useful preaggregates
are stored on proprietary multidimensional structures. In
the second strategy, cubes are partitioned into dense and
sparse subcubes, with the former being stored in multi-
dimensional form, and the latter in relational form.

DESIGN TECHNIQUES

Despite the basic role played by a well-structured metho-
dological framework in ensuring that the data warehouse
designed fully meets the user expectations, a very few
comprehensive design methods have been devised so far
(e.g.,Refs.3and4).Noneof themhasemergedasastandard,
but all agree on one point: A bottom-up approach is prefer-
able toa top-downapproach, because it significantly reduces
the risk of project failure. Although in a top-down approach
the data warehouse is planned and designed initially in its
entirety, in a bottom-up approach, it is built incrementally
by designing and prototyping one data mart at a time,
starting from the one that plays themost strategic business
role. In general terms, the macro-phases for designing a
data warehouse can be stated as follows:

� Planning, based ona feasibility study that assesses the
project goals, estimates the system borders and size,
evaluates costs and benefits, and analyzes risks and
users’ expectations.

� Infrastructure design, aimed at comparing the differ-
ent architectural solutions, at surveying the available
technologies and tools, and at preparing a draft design
of the whole system.

� Data mart development, which iteratively designs,
develops, tests and deploys each data mart and the
related applications.

As concerns the design of each data mart, the methodol-
ogy proposed in Ref. 3 encompasses eight closely related,
but not necessarily strictly sequential, phases:

1. Data source analysis. The source schemata are
analyzed and integrated to produce a reconciled
schema describing the available operational data.

2. Requirement analysis. Business users are inter-
viewed to understand and collect their goals and
needs, so as to generate requirement glossaries and
a preliminary specification of the core workload.

3. Conceptual design. Starting from the user require-
ments and from the reconciled schema, a conceptual
schema that describes the datamart in an implemen-
tation-independent manner is derived.

4. Schema validation. The preliminary workload is bet-
ter specified and tested against the conceptual
schema to validate it.

Figure 5. Aggregation on the sales cube.

Figure 6. Star schema for the sales example (primary keys are
underlined).
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5. Logical design. The conceptual schema is translated
into a logical schema according to the target logical
model (relational or multidimensional), considering
the expected workload and possible additional
constraints related to space occupation and querying
performances.

6. ETL design. The ETL procedures used to feed the
data mart starting from the data sources via the
reconciled level are designed.

7. Physical design. Physical optimization of the logical
schema is done, depending on the specific character-
istic of the platform chosen for implementing the data
mart.

8. Implementation. The physical schema of the data
mart is deployed, ETL procedures are implemented,
and the applications for data analysis are built and
tested.

Several techniques for supporting single phases of
design have been proposed in the literature; a brief survey
of themost relevant approaches is reported in the following
subsections.

Data Source Analysis

A huge literature about schema integration has been
accumulating over the last two decades. Integration
methodologies have been proposed (e.g., Ref. 5), together
with formalisms to code the relevant information (e.g.,
Ref. 6). However, the integration tools developed so far
[such as TSIMMIS (7) and MOMIS (8)] should still be
considered research prototypes rather than industrial
tools, with the notable exception of Clio (9), which is sup-
ported by IBM.

Requirement Analysis

A careful requirement analysis is one of the keys to reduce
dramatically the risk of failure for warehousing projects.
From this point of view, the approaches to data warehouse
design usually are classified in two categories:

� Supply-driven (or data-driven) approaches design the
datawarehouse starting fromadetailed analysis of the
data sources (e.g., Ref. 10). User requirements impact
design by allowing the designer to select which chunks
of data are relevant for the decision-making process
and by determining their structuring according to the
multidimensional model.

� Demand-driven (or requirement-driven) approaches
start from determining the information requirements
of business users (like in Ref. 11). The problem of
mapping these requirements onto the available data
sources is faced only a posteriori, by designing proper
ETL routines, and possibly by accommodating data
sources to accomplish the information needs.

A fewmixedapproacheswerealsodevised (12,13),where
requirement analysis and source inspection are carried out
in parallel, and user requirements are exploited to reduce
the complexity of conceptual design.

Conceptual Design

Although no agreement exists on a standard conceptual
model for data warehouses, most authors agree on the
importance of a conceptual design phase providing a
high level of abstraction in describing the multidimen-
sional schema of the data warehouse aimed at achieving
independence of implementation issues. To this end, con-
ceptual models typically rely on a graphical notation that
facilitates writing, understanding, and managing concep-
tual schemata by designers and users.

The existing approaches may be framed into three cate-
gories: extensions to the entity-relationshipmodel (e.g, Ref.
14), extensions to UML (e.g., Ref. 15), and ad hoc models
(e.g., Ref. 16). Although all models have the same core
expressivity, in that they all allow the basic concepts of
the multidimensional model to be represented graphically,
they significantly differ as to the possibility of representing
more advanced concepts such as irregular hierarchies,
many-to-many associations, and additivity.

Logical design

The goal of logical design is to translate a conceptual
schema into a logical schema for the data mart. Although
onMOLAPplatforms this task is relatively simple, because
the target logicalmodel ismultidimensional like the source
conceptual one, on ROLAP platforms, two different models
(multidimensional and relational) have to bematched. This
is probably the area of data warehousing where research
has focused the most during the last decade (see, for
instance, Ref. 17); in particular, a lot has been written
about the so-called view materialization problem.

View materialization is a well-known technique for
optimizing the querying performance of data warehouses
by physically materializing a set of (redundant) tables,
called views, that store data at different aggregation
levels. In the presence of materialized views, an ad hoc
component of the underlying DBMS (often called aggre-
gate navigator) is entrusted with the task of choosing, for
each query formulated by the user, the view(s) on which

Figure 7. Snowflake schema for the sales example.
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the query can be answered most cheaply. Because the
number of potential views is exponential in the number
of hierarchy levels, materializing all views would be pro-
hibitive. Thus, research has focused mainly on effective
techniques for determining the optimal subset of views to
be materialized under different kinds of constraints (e.g.,
Ref. 18).

Another optimization technique that is sometimes
adopted to improve the querying performance is fragmen-
tation (also called partitioning or striping). In particular, in
vertical fragmentation, the fact tables are partitioned into
smaller tables that contain the key and a subset of mea-
sures that are often accessed together by the workload
queries (19).

ETL Design

This topic has earned some research interest only in the last
few years. The focus here is tomodel theETLprocess either
from the functional, the dynamic, or the static point of view.
In particular, besides techniques for conceptual design of
ETL (20), some approaches are aimed at automating (21)
and optimizing (22) the logical design of ETL. Although the
research on ETL modeling is probably less mature than
that onmultidimensional modeling, it will probably have a
very relevant impact on improving the overall reliability of
the design process and on reducing its duration.

Physical Design

Physical design is aimed at filling the gap between the
logical schema and its implementation on the specific
target platform. As such, it is concerned mainly with
the problem of choosing which types of indexes should
be created on which columns of which tables. Like the
problem of view selection, this problem has exponential
complexity. A few papers on the topic can be found in the
literature: For instance, Ref. 23 proposes a technique that
jointly optimizes view and index selection, where as Ref.
24 selects the optimal set of indexes for a given set of views
in the presence of space constraints. The problem is made
even more complex by the fact that ROLAP platforms
typically offer, besides classic B-trees, other types of
indexes, such as star indexes, projection indexes, and
bitmap indexes (25).

Note that, although some authors consider both view
selection and fragmentation as part of physical design, we
prefer to include them into logical design for similaritywith
the design of operational databases (26).

ADVANCED TOPICS

Several other topics besides those discussed so far have
been addressed by the data warehouse literature. Among
them we mention:

� Query processing. OLAP queries are intrinsically dif-
ferent from OLTP queries: They are read-only queries
requiring avery large amount of data, taken froma few
tables, to be accessed and aggregated. In addition,
DBMSs oriented to data warehousing commonly sup-

port different types of specialized indexes besides B-
trees.Finally, differently fromtheOLTPworkload, the
OLAP workload is very dynamical and subject to
change, and very fast response times are needed.
For all these reasons, the query processing techniques
required by data warehousing systems are signifi-
cantly different from those traditionally implemented
in relational DBMSs.

� Security. Among the different aspects of security, con-
fidentiality (i.e., ensuring that users can only access
the information they have privileges for) is particu-
larly relevant in data warehousing, because business
information is very sensitive. Although the classic
security models developed for operational databases
are used widely by data warehousing tools, the parti-
cularities of OLAP applications ask for more specific
models centered on the main concepts of multidimen-
sional modeling—facts, dimensions, and measures.

� Evolution. The continuous evolution of the application
domains is bringing to the forefront the dynamic
aspects related to describing how the information
stored in the data warehouse changes over time.
As concerns changes in values of hierarchy data
(the so-called slowly changing dimensions), several
approaches have been devised, and some commercial
systems allow us to track changes and to query cubes
effectively based on different temporal scenarios. Con-
versely, the problem of managing changes on the
schema level has only been explored partially, and
no dedicated commercial tools or restructuring meth-
ods are available to the designer yet.

� Quality. Because of the strategic importance of data
warehouses, it is absolutely crucial to guarantee their
quality (in terms of data, design, technology, business,
etc.) from the early stages of a project. Although some
relevant work on the quality of data has been carried
out, no agreement still exists on the quality of the
design process and its impact on decision making.

� Interoperability. Thewide variety of tools and software
products available on the market has lead to a broad
diversity in metadata modeling for data warehouses.
In practice, tools with dissimilar metadata are inte-
grated by building complex metadata bridges, but
some information is lost when translating from one
form of metadata to another. Thus, a need exists for a
standard definition of metadata in order to better
support data warehouse interoperability and integra-
tion, which is particularly relevant in the recurrent
case of mergers and acquisitions. Two industry stan-
dards developed by multivendor organizations have
originated in this context: theOpen InformationModel
(OIM) by the Meta Data Coalition (MDC) and the
Common Warehouse Metamodel (CWM) by the OMG.

� New architectures and applications. Advanced archi-
tectures for business intelligence are emerging to sup-
port new kinds of applications, possibly involving new
andmore complex data types.Herewe cite spatial data
warehousing, web warehousing, real-time data ware-
housing, distributed data warehousing, and scientific
datawarehousing. Thus, it becomesnecessary toadapt
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and specialize the existing design and optimization
techniques to cope with these new applications.

See Ref. 26 for an up-to-date survey of open research
themes.
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