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Abstract - This paper describes a layered architecture representing knowledge to be used for navigation in
environments where distinctive places are present. Each knowledge layer defines an abstraction of the environment
aimed at efficiently supporting the execution of specific navigation tasks. Layers are structured in a taxonomy,
each layer being derived from another by applying one of the three abstraction primitives: classification,
generalization, aggregation; in particular, aggregation enables partitioning of the environment map into clusters.
The validity of the architecture proposed is discussed with reference to different application fields, including
autonomous robots and vehicle navigation systems. Some issues related to hierarchical path planning on layered
knowledge are then addressed; a general framework for a more flexible formulation of path-planning problems and
a technique for decomposing problems on the different layers are proposed. An efficient algorithm to solve a
specific navigation problem, named "travelling agent", is presented; the algorithm uses a heuristic criterion to
expand, at each step, a path computed within a layer into a path at the next layer down.
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I. INTRODUCTION

Planning a route to navigate an environment is a primary requirement for several applications

in different domains, ranging from autonomous robots to vehicle navigation systems. The

representation adopted for environmental knowledge has a critical role in enhancing the

formulation flexibility of planning problems and in simplifying their resolution. In this work we

describe an architecture for knowledge representation, specifically oriented to planning

navigational tasks in structured environments. We say an environment is structured if a number

of categories of objects and places that can be encountered in it are described a priori. We call

landmarks the objects and places belonging to a subset of categories which are regarded as

distinctive or significant.

According to many cognitive scientists, a cognitive map is organized into successive layers at

different abstraction levels [22] [34]. The knowledge architecture we propose is organized in

layers determined by the structure of the environment and by the tasks which must be carried

out. Each layer can be thought of as a view of the environment at a specific abstraction level; it

includes only those details of the environment which are significant for a specific family of tasks

or sub-tasks, and represents them in the most suitable formalism [28]. Layers may be abstracted

by classification, aggregation or generalization.

A layered representation of the environment is semantically richer than a "flat" representation,

thus enabling a more flexible formulation of path-planning problems. Consider, for instance, a
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consultant system for planning visits in a city or in a museum. In these applications, the

language for user-machine interaction should allow for constraints to be stated as precisely as

possible (for the museum consultant: "two hours available time, definitely see all Van Gogh and

Monet, a brief stop at Leonardo's Gioconda, overlook English painters"; for the city consultant:

"one-hour shopping in downtown (consider the shop hours), walk in the park before sunset, be

back to airport by 19.00"). These natural-language requirements are formulated at different

levels of abstraction; they can be easily mapped on different knowledge layers to be translated

into formal constraints for path planning.

In most route-planning applications, obtaining the solution in real-time has priority over

obtaining the optimal one. Our knowledge architecture allows for complex path-planning tasks

to be hierarchically decomposed into a number of sequential or parallel sub-tasks, each

supported by a specific layer.

Section II surveys the main approaches to navigation-oriented environment representation

which can be found in the literature. Section III, after introducing the concept of knowledge

layer, defines the operators for layer abstraction. Section IV outlines the functions and structures

of the different knowledge layers, used as building blocks in section V to construct specific

knowledge architectures for different application domains. Section VI discusses how

hierarchical path planning is supported by our architecture by formulating and solving a specific

path-planning problem.

II. RELATED WORK

In this section we survey the literature related to the two main issues discussed in this paper,

namely, representation of environmental knowledge and path planning.

A. Navigation-oriented representation of knowledge

Organizing knowledge of the environment to be used for navigation requires two crucial

points to be investigated:

¥ what is the significant information to be extracted from the environment;

¥ how this information is represented, i.e., by means of what formalisms.

The answer to both questions depends essentially on the nature of the tasks which must be

performed. A detailed knowledge description might add an unnecessary burden to the execution

of high level tasks, whereas a poor description might not be sufficient to establish a connection

between the objects in the environment and their internal representation. Furthermore, since each

representation formalism is characterized by different individual properties, the choice of a

specific formalism could favour certain tasks but penalize some others. For instance, an analogic

representation is easy to operate on real sensors, while symbolic knowledge representation

allows for a more convenient implementation of reasoning and planning algorithms.
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Many approaches to motion planning have been devised in the literature. Symbolic

approaches include connectivity graphs [23], occupancy grids [18] and efficient paths [6]; a

reinforcement-based analogic approach is proposed in [35]. A mixed approach is introduced in

[37], where the navigation problem is generally formulated and a complete algorithm for

operating a real robot in a real world is proposed; the algorithm works on an integrated

symbolic-analogic representation of the environment. Another mixed approach based on

decomposition of motion planning into two levels is described in [19]: at global level a graph

whose nodes represent large cells of the agent's configuration space is built; at local level, sub-

goals for the planner are generated through a minimum-cost path-finding algorithm.

All the approaches mentioned above differ from ours since they do not provide any abstract

representation of the environmental knowledge, so the planning of complex navigational tasks

cannot be supported.

Some interesting multi-layered models have been proposed in the literature. In [13], the

authors describe a hierarchical model for representing a topographic surface at successively finer

levels of detail. In [26], the layered model is called spatial semantic hierarchy and consists of a

control level, a topological level and a geometric level. In these approaches the environment is

represented, at most, at landmark level; in our architecture, higher abstraction levels are defined

to be used for formulating and solving path-planning problems.

In [16] a variety of  abstractions are used for the purpose of problem reduction at different

phases during route planning; the environment representation is solidly grounded to vision data,

but the problem of classification of spatial objects is not addressed. In [36], human navigation in

the highway network is modelled through a cognitive map including three abstraction levels: the

planning level, the instructional level and the driver level. This approach bears some

resemblance with ours, since the three levels coarsely correspond to, respectively, the 1-

clustered layer, the symbolic layer and the sub-symbolic layer of our architecture.

Our approach differs from all those mentioned above mainly since we propose a general

knowledge representation framework which is equally valid in different application fields where

navigational tasks must be carried out.

B. Hierarchical planning

The hierarchical approach to the solution of planning problems consists in first constructing

an abstract plan which achieves the more general goals, and then refining it into detailed

subplans which achieve more concrete goals. The advantage is that the plan is first developed at

a level at which the details are not computationally overwhelming. There have been a number of

attempts to devise hierarchical planning systems, beginning with Sacerdoti's ABSTRIPS in

which a hierarchy of abstract spaces, each dealing with fewer details than the space below it and

with more details than that above it, is defined. By considering details only when a successful

plan in a higher level space gives strong evidence of their importance, a heuristic search process
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will investigate a greatly reduced portion of the search space [33]. In [25], the author shows that

the use of abstraction hierarchies in planning can reduce exponential problems to linear

complexity if the number of abstraction levels and their sizes are properly determined.

The application of abstraction hierarchies to path planning has been specifically treated in the

literature. In [21] the authors propose a cognitive model of path-planning and show how

humans often move between different abstraction levels when planning. In [20] a representation

for hierarchical plans is devised, and a system for planning the journey of a traveller through a

network of rail, sea and air public transport services with time and cost constraints is described.

An architecture that supports hierarchical planning involving deadlines, travel time and resource

considerations is described in [12]; a partially constructed plan is refined into a plan at a lower

level of abstraction by decomposing a complex task into a set of simpler subtasks by applying

routines called task expanders. In [7], a route-finding algorithm working on a hierarchical

representation of the environment based on clustering is outlined.

In all the approaches surveyed, the main issue addressed is the solution of the planning task.

Our work, instead, aims primarily to show how the existence of a hierarchy of abstraction levels

enables a broader formulation of path-planning problems.

III. KNOWLEDGE LAYERS

A knowledge layer is a meaningful abstraction of the environment supporting execution of

one or more tasks. Each layer can be thought of as a "window" on the environment which

contains only the details significant for these tasks and represents them by the most suitable

formalism. Thus, a layer is characterized by knowledge, representation and skill.

The acquisition of the environment description takes place in most cases analogically, for

instance from a set of sensor measures or a map. This view of the environment can hardly be

exploited directly to carry out complex tasks, hence, knowledge must be reorganized and

interpreted by abstracting one or more layers, each suitable for a specific task, from the low-

level analogical description. Each of these layers may in turn generate other layers for other

tasks, through a procedure of progressive abstraction which creates a taxonomy of layers.

The three operators for abstracting a new layer from an existing one correspond to the three

abstraction primitives: the classification, generalization and aggregation operators return layers

whose entities are, respectively, classifications, generalizations and aggregations of the entities

described in the underlying layer.

Consider the structured environment in Figure 1; the prototypes of several categories of

objects that can be found are described a priori, and landmarks are the objects and places which

fit one of those categories. Layer A contains the symbolic representations of landmarks, each

associated with its position and description. Layer B is obtained by classification of A, and

describes landmarks through their categories ("St. Mary" is a church). Layer C is a

generalization of B; its entities are categories of categories described in B (the category
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"monument" includes the categories "church" and "statue"). Layer D is abstracted from A by

aggregation, and describes clusters of landmarks of A ("Broadway" includes "St. Mary" and

"Chez Louis"). Layer E is a classification of D and describes clusters through their categories

("Soho" is a quarter).

St. Mary

Chez Louis

Vito's
Nat.Bank

Broadway Soho
Hyde Park

generalization

aggregationA
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Figure 1. Layers obtained by applying the three abstraction primitives to the set of sensory measures describing
an environment. Landmarks which cannot be identified by their description are tagged in layer A with their
coordinates.

As confirmed by this example, all three abstraction operators require some meta-knowledge

of the environment:

¥ Meta-knowledge for classification describes the categories of objects which may be

encountered in the environment; it enables automated recognition of landmarks and allows

for sets of similar objects to be addressed ("visit all the churches in Broadway").

¥ Meta-knowledge for generalization describes hierarchical relationships between categories,

and adds new semantics to the representation ("go to the nearest restaurant (regardless of

whether it is Italian or French)").

¥ Meta-knowledge for aggregation describes significant clusters of objects; it adds new

semantic ("go to Hyde Park") and helps in referencing objects ("switch on the computer in

room #6").
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IV. A LAYERED ARCHITECTURE TO REPRESENT ENVIRONMENTAL KNOWLEDGE

In [9] we have proposed for knowledge representation in autonomous agents a hybrid

architecture based on the coupling of a symbolic module and a dynamic module, the first

managing explicit knowledge of landmarks and the latter encoding knowledge necessary for

movement among landmarks. In this section we generalize this approach by proposing a multi-

layered navigation-oriented knowledge architecture to represent structured environments. Four

different types of layers are defined, namely sub-symbolic, symbolic, clustered and meta-layers;

they are described, respectively, in subsections A, B, C, and D.

A. Sub-symbolic layer

The sub-symbolic layer supports inter-landmark motion. The formalism adopted to represent

this layer and the degree to which reactive behaviour is accomplished depend heavily on the

application domain. For some applications, reactivity is actually achieved outside the system (for

instance, in vehicle navigation systems, by the driver; in systems for planning visits in cities or

museums, by the visitor); the role of the sub-symbolic layer thus comes down to the effective

presentation of the necessary knowledge (instructions for turning or for keeping the right lane;

printed maps showing the detailed itinerary through city streets or museum rooms). A domain

where reactive behaviour is totally demanded to the sub-symbolic layer, which is entrusted with

direct control of the actuators, is that of autonomous agents; some related issues will be

discussed in section V.A.

B. Symbolic layer

The symbolic layer is the foundation for path planning. The environment is described as a

map of landmarks and feasible inter-landmark paths (routes). A route is an abstraction

corresponding to the straight-line connection between two landmarks, and is described by a cost

expressing, for instance, the length of the corresponding physical path or the average time spent

to cover it. Routes are supposed to be directed, in order to model environments where the cost

of a path may depend upon its direction (for instance, a slope in a country environment or a one-
way street in an urban environment). We denote with [li®lj] the route going from li to lj (li¹lj).

Definition 4.1. Let L(0) and R(0) be the sets of landmarks and routes, respectively,

experienced at a given time during exploration1. We define as symbolic layer the weakly
connected2 directed graph L(0) = (L(0),R(0)), where landmarks are described by a name and a

position and routes are associated with a cost.

1 Apex 0 is used to emphasize that, within the multi-level clustering defined below, the abstraction level of
landmarks and routes is 0.

2 A directed graph is called strongly connected if each vertex can be reached from every other vertex through a
directed path; weakly connected if each vertex can be reached from every other vertex through a non-directed path
(i.e., where the orientations of arcs are ignored).
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C. Clustered layers

A clustered layer is abstracted by aggregation from the symbolic layer or from another

clustered layer. A hierarchy of clustered layers may thus be abstracted starting from the symbolic

layer, to be used for high-level path planning. At the first abstraction level, the environment is

described as a map of clusters of landmarks and inter-cluster passageways (bridges). At

subsequent levels, each cluster includes clusters of the level below. In structured environments,

clustering can be based on the available meta-knowledge for aggregation: for instance, in a

hospital, clusters corresponding to the progressive abstractions of rooms, wards and

departments can be identified. In environments where meta-knowledge for aggregation is not

available, clustering must be based on topological and metric criteria. In [27] we describe a

technique called clustering by discovery for identification of clusters in an unknown

environment; clustering is performed during exploration, by minimizing a measure of scattering

which takes into account structural and functional specifications.

Definition 4.2. Given a directed graph L = (L,R), a (vertex-based) clustering on L is

defined as a partitioning x={L1,...Lm} of L. We call clusters the m sub-graphs C1 =

= (L1,R1),...Cm = (Lm,Rm), where

Ri = { [l®l']ÎR: lÎLi Ù l'ÎLi } , i=1,...m

For each ordered pair of clusters (Ci,Cj), i¹j, we call bridge the (possibly empty) set

[Ci®Cj] = { [l®l']ÎR: lÎLi Ù l'ÎLj} , i,j=1,...m

We denominate with image of L through x the directed graph L* whose vertices and arcs are,

respectively, the clusters and the non-empty bridges induced by x:

L* = ({C1,...Cm}, { [Ci®Cj]: [Ci®Cj]¹Æ, i,j=1,...m, i¹j})

Theorem. Let L = (L, R) be a weakly connected directed graph. The graph L*, image of L

through a clustering x, is weakly connected for each possible x.

Proof: We will prove the theorem by contradiction. If L* is not weakly connected, then its

vertices can be partitioned in (at least) two disjointed sets A and B such that

 "CiÎA ("CjÎB ( [Ci®Cj]=Æ Ù [Cj®Ci]=Æ ))

If A'={lÎL: lÎCi Ù CiÎA} and B'={lÎL: lÎCj Ù CjÎB} are the sets of vertices of L included

in the clusters of A and B, respectively, it follows that

$/   [li®lj]ÎR: ((liÎA'Ù ljÎB') Ú (liÎB'Ù ljÎA'))

Hence, L is not weakly connected.¨

Let a graph L be given. Several clusterings may be defined on L, generating different image

graphs which, in turn, can be clustered. A hierarchical clustering can thus be progressively
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defined, producing a hierarchy of graphs whose root is L. For simplicity, we will consider the

case in which only one clustering is applied to each graph, so that an n-level hierarchical
clustering can be described as a sequence of n progressive clusterings x(0),...x(n-1).

Definition 4.3. Let the symbolic layer L(0) = (L(0),R(0)) and an n-level hierarchical

clustering x(0),...x(n-1) be given. We name k-clustered layer (k=1,...,n) the weakly

connected directed graph L(k) = (L(k),R(k)), image of L(k-1) through x(k-1). We name its

vertices k-clusters, and its arcs k-bridges. A k-cluster is denoted with Ci(k) and is described

by a name and a position; a k-bridge is denoted with [Ci(k)®Cj(k)] and is associated with a

cost.

For analogy, in the remainder of the paper the symbolic layer will equivalently be called a 0-
clustered layer, and landmarks will be considered as 0-clusters (notations li and Ci(0) will be

used indifferently).

Definition 4.4. Let ai be the position of landmark li. The position of k-cluster Ci(k) =

= (Li(k-1),Ri(k-1)) is defined as:

pos(Ci(k)) = 
 î
í
ìa iÊ , ifÊk=0
avg{Cj(k-1)ÎLi(k-1)}Ê( )pos(Cj(k-1)) Ê , ifÊ1£k£n

where avgS(f) denotes the average of function f extended to the set S.

Definition 4.5. Let gij be the cost of route [li®lj], and ecost(C(k),C(w)), k,w=0,...n be a

function which estimates the cost for reaching C(w) from C(k) on the basis of the straight-line

distance between pos(C(k)) and pos(C(w)) (see Figure 2). We define the cost of the k-bridge

[Ci(k)®Cj(k)] as:

C j
(k)

C i
(k)

C i
(k) C j

(k)[ ]®

C v
(k-1)

C z
(k-1)

k-clustered layer (k-1)-clustered layer

pos (      )Ci
(k)

pos (      )C j
(k)

Figure 2. Definition of the cost of a k-bridge. [Cv
(k-1)®Cz

(k-1)] is a generic element of [Ci
(k)®Cj

(k)]. Dashed lines
represent, respectively, ecost(Ci

(k),Cv
(k-1)) and ecost(Cz

(k-1),Cj
(k)), i.e., the estimates of the costs for reaching (k-

1)-clusters from k-clusters.

cost([Ci(k)®Cj(k)]) = 
 î
í
ìg ijÊ , ifÊk=0
avg{[Cv(k-1)®Cz(k-1)]Î[Ci(k)®Cj(k)]}( )ec([Cv(k-1)®Cz(k-1)]) Ê , ifÊ1£k£n
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where

ec([Cv(k-1)®Cz(k-1)]) = ecost(Ci(k),Cv(k-1))+cost([Cv(k-1)®Cz(k-1)])+ecost(Cz(k-1),Cj(k))

As shown in Figure 3, a k-cluster is contemporarily a vertex of the k-clustered layer and a
sub-graph of the (k-1)-clustered layer. Please note that, though L(k-1) is weakly connected, one

or more of the k-clusters induced on L(k-1) by a given clustering x(k-1) may be non-connected

graphs. On the other hand, the path-planning algorithms we will consider attempt to build paths

within clusters; therefore, we will consider only the clusterings that produce clusters which are

at least weakly connected.

k-clusters

k-bridges
(k-1)

(k)x

x
(k-1)

L

L

L

(k)

(k+1)

Figure 3. Structural relationship between subsequent levels of clustering.

Given two clusters Ci(k) and Cj(w) with k<w, we say Ci(k) is included in Cj(w) (Ci(k)ÌCj(w))

when Ci(k) is a vertex of Cj(w) or is included in a vertex of Cj(w).

D. Meta-layers

Meta-layers allow for objects to be referenced based on their category. A meta-layer may be

abstracted by classification from the symbolic layer or from any clustered layer, or by

generalization from another meta-layer; it describes entities in the environment through the
category they belong to. We denote with cat(Ci(k)) the category to which cluster Ci(k) belongs.

Definition 4.6. Let the symbolic layer L (0) = (L(0),R(0)) be given, and an n-level

hierarchical clustering x(0),...x(n-1) generating the clustered layers L(k) = (L(k),R(k)),

k=1,...n. We name meta-layers the sets M(k)={cat(Ci(k)): Ci(k)ÎL(k)}, k=0,...n.

For simplicity, the formalization of meta-layers abstracted by generalization from other meta-

layers is not given.

V. APPLICATION FIELDS

In this section we review some applications, in different fields, sharing motion-planning

capability as a necessary requirement. For each of them, we propose a layered architecture and

discuss how it addresses the domain-specific issues.
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A. Autonomous agents

Autonomous agents are versatile machines capable of interacting coherently with an

environment and executing a variety of tasks in unpredictable conditions [11]. Several control

architectures for mobile robots have been implemented [1] [5] [18] [38].

Most activities for an autonomous agent involve planning the cheapest path which allows for

one or more (possibly inter-related) goals to be achieved while avoiding collisions with

obstacles, other agents or people. A description of the topology and metric of the environment

must be learned on-line by interpreting sensor data as the agent explores the environment; we

assume that the agent's sensors return metric, visual and symbolic information. Metric

information enables the agent to compute its current position; it can be obtained by using satellite

measurements from the Global Positioning System or by the joint use of a compass and an

odometer. Visual information is an "image" of the nearby surroundings obtained through a sonar

or a camera. By symbolic information we mean that the agent can tag some landmarks with a

name, for instance by "reading" a sign.

As a matter of fact, the problem of constructing an accurate perceptual system for landmarks

is very complex. In our approach, recognizing an object as a landmark in a structured

environment means ascribing it into one of the categories described by meta-knowledge for

classification. An analysis of the pattern recognition techniques for classification of objects is

beyond the aim of this paper; see, for instance, [31] where a neurocomputational approach to the

extraction of object features from sensory data is presented, and [8] which demonstrates a

model-driven approach to landmark extraction.

Within the architecture to be used by an autonomous agent to represent knowledge for

navigation, the sub-symbolic layer is responsible for reactive behaviour. To this end, neural

models seem to be more appealing than symbolic ones; in fact, distributed knowledge

representation leads to interesting properties such as immunity to noise, capability of

generalization, etc. which could not be easily obtained with local representation models. We

have simulated the behaviour of an agent whose sub-symbolic layer is supported by a neural

network. Input to the network consists of metric and sonar measures, which identify the state of

the agent in the environment; the output is the action to be executed, i.e., the direction to follow.

A reinforcement algorithm is used to learn an optimal mapping from the set of inputs to the set of

possible actions, using the current goal (the position of the landmark to be reached) as a

contextual input. Specific issues related to the application of reinforcement learning techniques to

inter-landmark navigation are discussed in [10] and [35].

The symbolic section of the knowledge architecture depends on how the environment is

structured. Consider for instance an autonomous agent in a hospital, where landmarks are

associated with serviceable or conceptually relevant entities such as medical equipment,

computers, receptions, etc. The agent should be able to execute a variety of tasks, such as

visiting the in-patients of a department in order to bring them food and medicines, or delivering
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material to wards. These tasks entail path planning, possibly taking into account time, energy or

more complex constraints.

A sample layered architecture for the hospital agent is shown in Figure 4.a. Three clustered

layers are defined on the symbolic layer: they represent, respectively, rooms as clusters of

landmarks, departments as clusters of rooms, hospitals as clusters of departments. A meta-layer

describing landmarks through their category (X-ray, TAC, computer, etc.) is abstracted from the

symbolic layer; one describing rooms through their type (office, laboratory, ward, etc.) is

abstracted from the room layer. Additional meta-layers may be abstracted by generalizing the

categories represented (for instance: category of medical equipment, category of radiation-

monitored rooms).

sensor measures

sub-symb. layer
symbolic layer

lm. categories

room categories room layer

department layer

hospital layer

spatial objects

city categories city layer

sub-symb. layer
symbolic layer

lm. categories

(a) (b)

Figure 4. Knowledge architectures for different application domains. Vertical arrows represent aggregation, oblique
lines classification/generalization; meta-layers are in italics. (a) hospital autonomous agent; (b) vehicle navigation
system.

B. Vehicle navigation systems

Vehicle navigation systems assist drivers in planning trips and selecting routes, by guiding

them through geographic space [17]. In commercial systems, cars are equipped with an on-

board computer, a dash-mounted graphic screen displaying maps and conveying driving

instructions, and sensors that return the car position (for instance, using satellite measurements

from the Global Positioning System).

Spatial objects to be modelled include for instance roads, intersections, monuments, shops,

and on a different scale cities, highway exits, clover-leaf junctions. Our layered architecture

allows for this environmental knowledge to be modelled at multiple resolutions corresponding to

different tasks (see Figure 4.b). Landmarks are defined as distinctive points along the roads,

relevant buildings, serviceable places. At the lowest level, the sub-symbolic layer represents in

detail the roads connecting landmarks; for instance, a crossing between several highways may

be described as a complex 3-dimensional structure. The sub-symbolic layer is primarily used to

give minute driving instructions. At the higher level, the symbolic layer represents landmarks

and their connectivity; queries which can be formulated on this layer include searching for the

shortest path among two or more landmarks, where "shortest" may be interpreted in terms of
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distance, time, fuel consumption, toll, etc. Abstracting one or more meta-layers from the

symbolic layer allows for queries such as "which is the next exit", "which is the closest gas

station", "how long to an Italian restaurant" to be answered. At least one clustered layer should

be defined, representing cities and the connections between them; it could be used, for instance,

to compute the most convenient route between two cities. A meta-layer on the city layer could

classify cities in county seats and capital cities.

C. The personal planner

By "personal planner" we mean an on-line system supporting constrained path planning on

the city map for scheduling the errands of the day. This application requires a smart user

interface allowing insertion of constraints on the path to be planned; in the simplest case,

constraints can be declared by writing statements in a formal language. Real-time communication

with the outside world is necessary in order to acquire on-line information about the traffic

conditions and the social events, the shop and office hours, pictures of places, etc. Output of the

system should be a detailed city map where the optimal itinerary is laid out together with the

expected times for reaching each place.

The issues in knowledge representation are similar to those discussed for vehicle navigation

systems, except that the scale here is mainly sub-urban (see Figure 5.a); strong relevance should

be given to the definition of meta-layers of the symbolic layer. An example of a natural language

sentence expressing some errands for the day is: "take the dog to Hyde Park (cluster constraint);

collect spectacles at the optician (landmark constraint); have lunch at a Chinese restaurant

(category constraint); check out some apartments in residential quarters (constraint on cluster

category)".

D. Personalized tour planners

The most relevant issues in employing computer technology for the enjoyment of the cultural

heritage are: full understanding of the good from the user through a simple, incisive and

comprehensive presentation; guided choice of some aspects to be further investigated; planning

of the enjoyment consistently with the user's main interests; personalization of the fruition mode

according to the user's attitude and to his/her specific needs.

These requirements are equally valid for planning visits to a museum, cultural itineraries

within a city and day-trips to Disneyland. CICERO is a consulting station for assisted planning of

personalized routes for visiting the Ducal Palace in Urbino, Italy, and is based on a layered

knowledge architecture in which landmarks correspond to works of art, information desks,

souvenir shops, etc. [30]. The sub-symbolic layer describes the museum topology by means of

detailed floor plans. Two meta-layers are abstracted from the symbolic layer: the first classifies

landmarks according to their type (painting, sculpture, public service, etc.), the second

according to their author (works by Raffaello, works by Signorelli, etc.). A meta-layer which
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groups the works of art by their historical period (Renaissance, Fourteenth century, etc.) is

abstracted by generalization from the author layer. The complete hierarchy of layers adopted is

shown in Figure 5.b.

city map

quarter categories quarter layer

sub-symb. layer
symbolic layer

lm. categories
block layer

city layer

hall layer

section layer

floor layer

symbolic layer
lm. categories

hall categories

museum layer

section categories

periods
authors

museum map

sub-symb. layer

(a) (b)

Figure 5. Knowledge architectures for different application domains. (a) personal planner; (b) museum planner.

Within CICERO, meta-layers allow for proposing the works in the museum to the users

according to different criteria: by author, by historical period, by type. The user can thus quickly

locate any work he/she is interested to see. As to route planning, CICERO allows for expressing

constraints in terms of both landmarks ("include in the route the Flagellazione"), categories of

landmarks ("include at least one work for each period") and clusters ("visit the Duke's

Apartment).

VI. PATH PLANNING ON LAYERED KNOWLEDGE

Knowledge layering impacts on path planning in two ways: by establishing a general

framework for a more flexible formulation of path-planning problems, and by reducing the

computational effort enabling their solution through hierarchical decomposition techniques [29].

A. Hierarchical formulation of path-planning problems

When enumerating the objects and places to be visited in a path being planned, the new

abstraction levels introduced by hierarchical clustering and by meta-layers can be addressed. To
this end, the k-clustered layer (0£k£n-1), the corresponding meta-layer and the (k+1)-clustered

layer can be viewed as three orthogonal axes defining the space of k-clusters. A k-cluster may

then be univocally referenced through a triplet of coordinates <name, category, (k+1)-cluster>.

As shown in Figure 6, by assigning only one or two of the three coordinates it is possible to

reference sets of k-clusters (for instance: "all the parks in the north-district", "all wastebaskets",

"all banks named National Bank"). Within these sets, one k-cluster may be addressed by

specifying a constraint ("the nearest wastebasket").
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meta-layer

1-clustered layer

sy
mbo

lic
 la

ye
r

Broadway

Hyde Park

Soho

bank

statueSt. Mary
Liberty

Nat. Bank

church
Figure 6. Addressing landmarks. The horizontal plane includes all landmarks in Broadway, the vertical one all
churches in the environment. The intersection of the two planes defines the churches in Broadway.

In this subsection we show how a "flat" path-planning problem (i.e., a problem formulated

on a graph) can be re-formulated on the hierarchy of layers on which our architecture is

founded. Hierarchical formulation is based on the following definition of path:

Definition 6.1. A k-path is a sequence P(k)=(Cz1
(k),...Czp

(k)) of p adjacent k-clusters (p³1).

The cost of P(k) is defined as:

cost(P(k)) = å
v=1

p-1
ÊÊcost([Czv

(k)®Czv+1
(k)])

The elemental instance of path-planning problem consists in finding the cheapest path

between any two places. A hierarchical formulation of the cheapest-path problem can be found

in [28].

A more general instance of this category of problems consists in planning a path which

allows for a set of tasks to be carried out in observance of precedence constraints. Each task

must be executed either on a specific resource or on any resource of a given category,

considering that resources may be accessible only within given time windows. In our approach,

each resource Si to be visited is expressed by specifying one or more coordinates in the space of

clusters; depending on which coordinates are given, Si may correspond to a single cluster
(mono-resource) or to a set of clusters (multi-resource; for instance Si={Cj(w): cat(Cj(w))=ci}).

Definition 6.2. Given the k-path P(k)=(Cz1
(k),...,Czp

(k)) and the resource Si, expressed as a

set of w-clusters (0£k£n, 0£w£n-1), we say that Si is visited in P(k) in position v (1£v£p) if

$ Cj(w)ÎSi: ((k<w)Ù(Czv
(k)ÌCj(w)))Ú((k>w)Ù(Czv

(k)ÉCj(w)))Ú((k=w)Ù(Czv
(k)ºCj(w))).

Given P(k)=(Cz1
(k),...,Czp

(k)), we will denote with tav and tdv, respectively, the planned time

for arrival in cluster Czv
(k) (1<v£p) and the planned time for departure (1£v<p). If

time([Czv
(k)®Czv+1

(k)]) is the time for covering the bridge [Czv
(k)®Czv+1

(k)], it is tav+1 =
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tdv+time([Czv
(k)®Czv+1

(k)]). On these assumptions, we formulate the travelling agent problem

(TAP) on layered knowledge as follows:

Let a start cluster Cstart(k), an end cluster Cend(k) (0£k£n-1), a start time tstart and a maximum

time tend>tstart be given. Let E¹Æ be the set of resources to be visited: E=EcÈEs, where Ec

includes the mono-resources and Es the multi-resources. Each SiÎE is associated with a time

window [wi,w'i], a servicing time Dti£w'i-wi and a (possibly empty) precedence set piÌE.

We assume that the precedence sets are complete, i.e. "SiÎE ("SjÎpi (pjÌpi)), and that ($

SiÎE : pi=Æ). Find the cheapest k-path P(k)=(Cz1
(k),...Czp

(k)) such that:

1. Cz1
(k)ºCstart(k)

2. Czp
(k)ºCend(k)

3. "SiÎE (Si is visited in P(k))

4. "SiÎE visited in position v ("SjÎpi visited in position z (z<v))

5. td1=tstart

6.
 î
í
ì"2£v£p-1:Ê$ÊSiÎEÊvisitedÊinÊpositionÊvÊ(tdv=max{wi,tav}+Dti£w'i)
"2£v£p-1:Ê$/ÊSiÎEÊvisitedÊinÊpositionÊvÊ(tdv=tav)

(if the agent reaches Si before its time window, it waits for service until the time window

starts; the costs for traversing k-clusters are already included in the costs of k-bridges)
7. tap£tend

B. Hierarchical path planning

In [28] we have introduced a divide-and-conquer algorithm which finds a sub-optimal

solution to the hierarchically-formulated cheapest-path problem based on the algorithm which

solves the corresponding flat problem. At the w-th step, a w-path is transformed into a (w-1)-

path by first selecting the (w-1)-bridges to connect adjacent w-clusters and then determining the

cheapest (w-1)-path within each w-cluster involved. Already for n=2 (two levels of clustering),

the complexity of our algorithm is about 4% that of the exact algorithm. Obviously, the solution

yielded may be sub-optimal, especially if some clusters have concave contours; from tests

conducted on a sample of random maps with n ranging between 2 and 5, it appeared that the

average shift from optimality is less than 10%.

Our decomposition technique is based on the following definition:

Definition 6.3. A k-deep path (shortly, k-dpath) corresponding to the k-path
P(k)=(Cz1

(k),...Czp
(k)) (k>0) is a sequence

D(k) = ( ®C'z1
(k-1)], [C"z1

(k-1)®C'z2
(k-1)], ... [C"zp

(k-1)® )

where C'zv
(k-1)ÌCzv

(k) and C"zv
(k-1)ÌCzv

(k) for v=1,...p, and

[C"zv
(k-1)®C'zv+1

(k-1)]Î[Czv
(k)®Czv+1

(k)] for i=v,...p-1
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The notations ®C'z1
(k-1)] and [C"zp

(k-1)® are used to specify the entry and exit (k-1)-

clusters, respectively.

A k-dpath specifies the (k-1)-clusters for entering and leaving each k-cluster in the

corresponding k-path. In general, several k-dpaths correspond to a given k-path; whichever is to

be considered the "best" depends on the context. The method we apply to a k-path
P(k)=(Cz1

(k),...,Czp
(k)) in order to determine the best corresponding k-dpath is expand. Given the

start cluster C'z1
(k-1) and the end cluster C"zp

(k-1), expand builds D(k) incrementally by orderly

considering each subsequence (Czv-1
(k),Czv

(k)), v=2,...,p. As shown in Figure 7, among the (k-

1)-bridges forming the k-bridge [Czv-1
(k)®Czv

(k)], expand chooses the one [C"zv-1
(k-1)®C'zv

(k-1)]

which minimizes

ecost(C'zv-1
(k-1),C"zv-1

(k-1))+cost([C"zv-1
(k-1)®C'zv

(k-1)])+ecost(C'zv
(k-1),Czv+1

(k))  for v<p,

and

ecost(C'zv-1
(k-1),C"zv-1

(k-1))+cost([C"zv-1
(k-1)®C'zv

(k-1)])+ecost(C'zv
(k-1),C"zp

(k-1))  for v=p.

If the start cluster is not specified (i.e, it is NULL), it is implicitly assumed to be C"z1
(k-1);

similarly, if the end cluster is not specified, it is implicitly assumed to be C'zp
(k-1).

C
v

(k)

C
v-1

(k)

C
v

(k) C
v-1

(k)[ ]®

C
v-1
(k-1)"

C
v
(k-1)'

C
v-1
(k-1)'

C
v+1

(k)

k-clustered layer (k-1)-clustered layer

z

z

z

z z

z
z

z

Figure 7. Expansion of a k-path into a k-dpath. The clusters interested by the v-th step of method expand are grey.
Dashed lines show the estimates used for the costs of traversing Czv-1

(k) and Czv
(k).

A divide-and-conquer algorithm for the TAP can be written if an algorithm solving the

corresponding flat problem is devised first. We say a TAP is flat when all the resources are

expressed as sets of k-clusters, so that it can be solved entirely on the k-clustered layer.

A huge work has been done over the years on the Travelling Salesman Problem (TSP), so

that some exact or heuristic algorithms can be found in the literature to solve specific instances of

the flat TAP [4] [14] [15] [32]. For example, the algorithm proposed in [3] uses dynamic

programming to solve classical TSPs with time windows and precedence constraints, that is, flat
TAPs with Es=Æ and Dti=0 for every SiÎEc. Using this algorithm when Es¹Æ would entail

solving a different TSP for each cluster belonging to each resource in Es; the associated



17

computational cost would be very high. The problem of finding the optimal path which, given

some sets of vertices, visits at least one vertex for each set, is known in the literature as clustered

TSP, and can be solved through branch-and-bound techniques provided the branching of states

and sets is not too high [2].

The heuristic algorithm we propose for the flat TAP consists of four sequential phases:

1. choice of the initial k-path.

2. progressive insertion in the k-path of the k-clusters in Ec.

3. progressive insertion in the k-path of a k-cluster for each set in Es.

4. completion of the k-path by adding, for each pair of consequent resources visited, the

cheapest k-path which connects them.

During the first three phases, the algorithm works on a reduced completely connected graph

whose nodes are k-clusters to be visited and whose arcs represent the cheapest k-path between
them. In phase 1, the k-path chosen is the one going from the starting k-cluster Cstart(k) to the

"farthest" k-cluster in Ec. In phase 2, the cheapest insertion criterion is adopted. Cheapest

insertion is a heuristic used for determining a sub-optimal solution to the TSP on graphs [24],

and works as follows. At each step, for each k-cluster not yet in the k-path, the best position for

insertion is determined as the position yielding the minimum extra-mileage. The k-cluster having

minimum extra-mileage is then inserted in the k-path in its best position.

As to phase 3, each set may include several k-clusters. Strictly applying the cheapest

insertion technique would require the extra-mileage to be calculated for each set, for each k-

cluster in that set, for each insertion position in the k-path. In order to limit the complexity of the

algorithm, for each insertion position we restrict the search space by means of a heuristic

criterion based on clustering.

The pseudo-code for the heuristic flat TAP algorithm is listed in the Appendix. The algorithm

is implemented in method flat_TAP whose signature is defined as follows:

L(k)->flat_TAP(Cstart(k),Cend(k),tstart,tend,E,W,T,P,te,En) returns P(k)=(Cz1
(k),...Czp

(k)) :
"v=1,...p (Czv

(k)ÎL(k)) where L(k)=(L(k),R(k))

Ci(k+1)->flat_TAP(Cstart(k),Cend(k),tstart,tend,E,W,T,P,te,En) returns P(k)=(Cz1
(k),...Czp

(k)) :
"v=1,...p (Czv

(k)ÎLi(k)) where Ci(k+1)=(Li(k),Ri(k))

where W, T and P are respectively the sets of time windows, servicing times and precedences
corresponding to the resources in E. Besides the path computed, P(k), the method returns the

arrival time in Cend(k) within the path computed, te (te£tend), and the set EnÌE of resources

which could not be inserted in P(k).

Let n be the maximum level of clustering, and l the number of landmarks in the symbolic

layer. On the simplifying hypothesis that all the k-clusters (k=1,...n) contain the same number m
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of (k-1)-clusters, if the n-clustered layer contains exactly one n-cluster3 it is m=l1/n. The

number of k-clusters in the k-clustered layer may then be assumed to be l1-k/n (k=0,..n). On the

assumption that the number of resources which must be visited is independent of l, the time

complexity of the flat TAP algorithm applied to the k-clustered layer is O(l2-2k/n), where n is the

maximum abstraction level.

In order to estimate how good the solutions yielded by our flat TAP algorithm are, we

compared them with those produced by the exact algorithm proposed in [3]. Since that algorithm

does not permit specifying that at least one vertex in a given set should be visited, we conducted
the tests on a sample of flat TAPs where EºEc. Our algorithm succeeded in finding a solution in

90% of cases. The shift from optimality of the solutions obtained is contained within 20% in

80% of the cases; the average shift is about 12%. As a matter of fact, the solutions yielded by

our algorithm can be further improved by adopting local optimization techniques such as 3-

optimality; a discussion of these techniques is beyond the scope of this paper.

Applying the exact algorithm in [3] to the TAP in its general formulation would lead to
prohibitive computational costs. In fact, for each resource expressed as a w-cluster C(w), it

would be necessary to solve a different problem for each k-cluster included in C(w). Here we

show how the same divide-and-conquer technique used for the cheapest-path problem can be
applied to the TAP: on the generic iteration step, a w-path P(w) is expanded into a (w-1)-path by

solving a flat TAP at level w-1 within each w-cluster belonging to P(w).

Let P be a path or a deep path; we denote with length(P) a function which returns the number

of elements in P, and with P[v] its v-th element. Given a w-dpath D(w) = (®C'z1
(w-1)], [C"z1

(w-

1)®... ...®C'zp
(w-1)], [C"zp

(w-1)®), we denote with D(w)[v]->in and D(w)[v]->out (v=1,...p),
respectively, the clusters C'zv

(w-1) (entry in Czv
(w)) and C"zv

(w-1) (exit from Czv
(w)). With Si(h) we

denote a resource expressed as a set of h-clusters. Assuming that the n-clustered layer contains
exactly one cluster, C(n), the divide-and-conquer algorithm for the TAP can be sketched as

follows:

TAP algorithm
{ P(n) = (C(n));

for w = n downto k+1 do
{ Cs(w-1) = Cstart(k)->ancestor(w-1); // (w-1)-cluster which includes Cstart(k)

Cd(w-1) = Cdest(k)->ancestor(w-1); // (w-1)-cluster which includes Cdest(k)

D(w) = P(w)->expand(Cs(w-1),Cd(w-1));
P(w-1) = Æ;
E' = { Si(hi)ÎE : hi<w }; // resources to be visited in P(w-1) (levels 0 to w-1)
for Si(hi) in E' do // for each resource Si(hi) in E, determine a corresponding

// resource Ai(w-1) at level w-1
Ai(w-1) = { Cj(hi)->ancestor(w-1): Cj(hi)ÎSi };

for v = 1 to length(D(w)) do

3 This assumption can always be satisfied by adding a "dummy" layer on top of the hierarchy.
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{ if (v=1)
ts=tstart;

else
ts=te+time( [(D(w)[v-1]->out )®(D(w)[v]->in)] );

Ev = { Ai(w-1) : (Ai(w-1)Ç(P(w)[v]->descendants(w-1)) ¹Æ ) };
// Ev is the set of the resources which have not yet been visited in P(w-1) and are totally
// or partially included in P(w)[v]; P(w)[v]->descendants(w-1) returns the (w-1)-clusters
// contained in P(w)[v]
Pv = { {Aj(w-1) : Sj(hj)Îpi Ù Aj(w-1)ÎEv } : piÎP Ù Ai(w-1)ÎEv };
// Pv is the set of the precedence sets for the resources in Ev
append P(w)[v]->flat_TAP(D(w)[v]->in,D(w)[v]->out,ts,tend,Ev,W,T,Pv,te,En) to P(w-1);
E' = E'- (Ev - En); // resources not yet visited in P(w-1)

}
}

}

Please note that, in the implementation of the algorithm, the resources to be visited are stored in

sequences rather than in sets, in order to deal properly with the cases in which time windows

and/or precedence constraints force the planned path to include the same cluster two or more

times in different positions. The set notation is used here in order to simplify formulation.

The TAP can be considered a peculiar version of the TSP, formulated on a hierarchy of

graphs and made more complex by the definition of additional constraints strictly related to the

nature of the tasks to be executed (time windows, precedence constraints, category constraints,

cluster constraints). This makes a significant comparison with other approaches impossible. For

this reason, the experimental results we give concern only the decrease in complexity and the

shift from optimality yielded by the divide-and-conquer approach.
The time complexity of the divide-and-conquer algorithm can be proved to be O(l(n+3-k)/2n);

the decrease in time complexity obtained by decomposing the problem is the same as that

obtained in [29] for the cheapest-path problem (see Figure 8).
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Figure 8. Relative complexity of the divide-and-conquer approach (TAP algorithm) as compared to that of the flat
approach (flat_TAP algorithm); the problems considered are flat TAPs with k=0.
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The experimental tests we conducted on this algorithm aim at estimating how much the

divide-and-conquer approach affects the performance of the flat algorithm. More specifically, we

generated a random set of flat TAPs (k=0) and compared the solutions yielded by the flat TAP

algorithm with those yielded by the TAP algorithm. The results are summarized in Figure 9.
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Figure 9. Average shift from optimality introduced by the divide-and-conquer approach. The tests have been
conducted on randomly-generated maps whose maximum clustering level, n, ranges from 1 to 5. For each map, a
set of flat TAP problems has been generated; the vertical axis measures the relative increase in path length as
determined by the comparison between the TAP and the flat TAP algorithms.

VII. CONCLUSION

In this paper a layered architecture to represent knowledge of the environment for navigation

has been presented. Each layer is abstracted from another by means of one of three abstraction

primitives: classification, generalization, aggregation. The incidence of layering on path planning

has been discussed; we have shown that our semantically richer representation of environmental

knowledge allows for classical path-planning problems to be re-formulated in a more general

fashion. As an alternative to writing ad-hoc algorithms to solve the hierarchically-formulated

problems, we have demonstrated how a decomposition technique may be adopted to find a sub-

optimal solution based on the solution to the corresponding "flat" problem.

Further research topics to be addressed include:

¥ representation of dynamic environments;

¥ algorithms for hierarchical topological clustering of unstructured environments;

¥ algorithms for multi-agent planning;

¥ definition of ad hoc strategies for the exploration of unknown environments.
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APPENDIX

The pseudo-code for the heuristic flat TAP algorithm is listed below. Apex (k) is dropped

from all k-paths and k-clusters in order to make the code more readable. Also, we assume that:

¥ length(P) denotes the number of clusters in the path P, and P[v] its v-th cluster;

¥ L->flat_CPP(Ci,Cj) returns the cheapest k-path between Ci and Cj, and d(Ci,Cj) denotes its

cost: d(Ci,Cj) = cost(L->flat_CPP(Ci,Cj)) 4;

¥ emv(Ci) denotes the extra-mileage due to insertion of cluster Ci in position v:

emv(Ci) = 
 î
í
ìÊd(P[v],Ci)+d(Ci,P[v+1])-d(P[v],P[v+1]) ifÊv<length(P)
Êd(P[v],Ci) ifÊv=length(P)

¥ constraints_ok(Ci,v*) is a function which re-calculates tav and tdv for each position v in P

if Ci is inserted in position v*, and returns true if the time window and precedence

constraints are not violated, false otherwise;
¥ candidates(v,Si), where SiÎEs, is a function which heuristically selects, from the set of

clusters belonging to Si, those to be considered for insertion in position v.

flat_TAP algorithm
{ En = Æ; // set of resources which cannot be visited within the path

P = (Cstart,Cend);
if Ec¹Æ then
{ find SfirstÎEc, Sfirst={Cfirst} : pfirstÇEc=Æ Ù (d(Cstart,Cfirst)+d(Cfirst,Cend) is maximum)

insert Cfirst in P ; Ec=Ec-{Sfirst};
}
while Ec¹Æ do // cheapest insertion for mono-resources
{ for Si in Ec, Si={Ci}: "SjÎpiÇEc (Sj is visited in P) do

find v*i: constraints_ok(Ci,v*i) Ù (emv*i(Ci) is minimum);
// v*i is the best position after which Ci may be inserted in P

find SnextÎEc, Snext={Cnext} : (emv*next(Cnext) is minimum);
if emv*next(Cnext)=¥ then  En=En+{Snext}; // resource cannot be visited
else  insert Cnext in P after position v*next;
Ec=Ec-{Snext};

}
for Si in Es do // find the best clusters for each multi-resource

for v = 1 to length(P) do
{ find C*i,vÎcandidates(v,Si) : (emv(C*i,v) is minimum);

// C*i,v is the best cluster of Si to be inserted in P after position v
}

while Es¹Æ do // cheapest insertion for multi-resource
{ for Si in Es: "SjÎpiÇEs (Sj is visited in P) do

find v*i: constraints_ok(C*i,v*i,v*i) Ù (emv*i(C*i,v*i) is minimum);
// v*i is the best position after which a cluster of Si may be inserted in P

4 Following the object-oriented notation, writing oÊ->m(p1,...pn) denotes applying method m to object o
with parameters p1,...pn.
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find SnextÎEs : (emv*next(C*next,v*next) is minimum);
if emv*next(C*next,v*next)=¥ then  En=En+{Snext}; // resource cannot be visited
else  { insert C*next,v*next in P after position v*next;

for Si in Es do // locally update best clusters for each set
for v = v*next to v*next+1 do

find C*i,vÎcandidates(v,Si) : (emv(C*i,v) is minimum);
}

Es=Es-{Snext};
}
for v=1 to length(P)-1 do

insert L->flat_CPP(P[v],P[v+1]) in P after position v; // L is the k-clustered layer
}


