
1

VISIONARY: a Viewpoint-Based Visual Language
for Querying Relational Databases

FRANCESCA BENZI, DARIO MAIO, STEFANO RIZZI

DEIS, Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
e-mail: {dmaio|srizzi}@deis.unibo.it

Abstract

The adoption of a visual interface can simplify the query formulation process in DBMSs by

enabling naive users to interact with a friendly environment. In this work we propose a visual

query language based on a diagrammatic paradigm, used for both data and query representation.

The external data model is called vision and is made up of the visual primitives of concept and

association. The external query model is based on the definition of a viewpoint, which is a

perspective for accessing data defined dynamically by selecting a concept of primary interest.

Internally, the data model is relational and the query language is SQL. An intermediate graph-based

model ensures consistent mapping between the visual and the relational worlds. Our language has

been implemented within a tool which can be mounted on top of any relational DBMS supporting

ODBC. The system has been tested with naive users; the results of the experiment are reported and

compared with those obtained with other visual languages.

Keywords and phrases: VPL-II.B.1: Diagrammatic languages, VPL-V.B: Database languages

1 . Introduction

Visual styling for user interfaces is aimed at improving usability. In this direction the graphic

presentation of the information is essential, since an effective drawing often conveys a concept

more immediately and more clearly than a long written explanation [1]. Good usability results have

been achieved by applications such as word processors, drawing tools and, in general, by those

applications which do not require specific theoretical knowledge to be used.

Query languages for database management systems (DBMSs) often lack both intuitive

understanding and visual aid; this prevents inexperienced users from taking full advantage of them.

In fact, an inexperienced user willing to query a DBMS by means of a traditional query language

must face a number of problems:

• Learning: mastering even the basic principles of the relational theory requires a lot of time

and study.

Copyright © 1999 by Academic Press

2

• Difficult use: a user querying a DBMS is subjected to syntax that is rigid and hard-to-

remember.

• Poor feedback: the user receives little feedback about the semantics of the query (s)he is

formulating.

• Little interaction: the query-building process does not usually contemplate any form of

dialogue with the user.

A visual interface can effectively support the query design process: although the difficulty of the

subject cannot be completely overcome, users can interact with a friendly and helpful environment,

and query formulation becomes easier.

In this paper we propose a visual query language called VISIONARY, based on a diagrammatic

paradigm used for both data and query representation. In particular, the external data model is

called vision and is made up of the visual primitives of concept (represented by the combination of

a text and an icon) and association (represented, for each possible orientation, by a name and a

multiplicity); the external query model is based on the definition of a viewpoint, that is, a dynamic

and adaptive perspective for accessing data. The internal data model is relational, and the internal

query model is SQL. The mapping between the visual and the relational worlds is established

through an intermediate graph-based level [2].

VISIONARY is mainly directed to naive and occasional users, who have no experience with data

models and only have a general idea about the contents of the database; for this reason, the

expressive power of VISIONARY is limited to restricted join queries.

We have implemented VISIONARY within a tool which can be mounted on top of any relational

DBMS supporting ODBC. The tool acquires an existing database scheme from the DBMS and

assists an expert user in building a vision by allowing the proper definition of the logical and visual

aspects of the different entities. Finally, a naive user can access and query the vision; the visual

queries are translated into SQL queries and handed on to the DBMS, which executes them and

returns the results to the visual tool. The architecture of the system and its use by expert and naive

users are sketched in Figure 1.

logical and
visual aspects

expert
user

database
scheme

VISUAL
TOOL

DBMS RELAT.
DATABASE

VISUAL
LEVEL

GRAPH
LEVEL

visual
query

naive
user

query
results

VISUAL
TOOL

DBMS

VISUAL
LEVEL

GRAPH
LEVELSQL

query

RELAT.
DATABASE

Figure 1. Expert and naive users interacting with the VISIONARY tool. Grey and black arrows denote different
flows of data.

3

Section 2 briefly surveys some approaches to visual query languages in the literature. Section 3

introduces the working example which will be used throughout the paper. In Sections 4 and 5 we

describe, respectively, the data and the query models. Section 6 gives some examples of query

formulation, while Section 7 reports the results of an experiment made with naive users and

compares them with those obtained with other visual languages.

2 . Visual query systems in the literature

A classification of Visual Query Systems (VQSs) based only on their graphic appearance would be

poor; three classification parameters have been proposed in [3]: the visual metaphor the VQS uses

to represent and query the database, its expressive power and the classes of users it is intended for.

A comprehensive survey of VQSs is proposed in [4].

2 . 1 . Visual metaphor

Four visual paradigms can be followed in building a visual interface for a DBMS: tabular,

diagrammatic, iconic and hybrid.

Among tabular approaches we recall QBE [5], the first successful attempt to build a graphical

user interface for a relational DBMS. Data are presented as tables, and queries are formulated by

compiling them; the main drawback is that a satisfactory global view of the database cannot easily

be produced.

In a diagrammatic approach, simple geometric figures are connected to build a global vision of

the database. Most VQSs in this category, for instance GUIDE [6], SUPER [7] and QBD* [8],

follow the Entity/Relationship formalism and enable the user to formulate queries by navigating on

the conceptual scheme. Some diagrammatic languages adopt a 3-D representation for data and

results (see AMAZE [9]). In general, the diagrammatic metaphor generates a good global view of

the data, but its dominant symbolic nature may be difficult to understand.

In the iconic approaches, queries are composed by selecting and combining icons, and by

creating new ones (see for instance [10] and [11]). The iconic paradigm is very intuitive and has

great expressive power. Nevertheless, the ability to distinguish one icon from the other decreases

with the increase of the total number of icons; besides, icons which represent actions or abstract

concepts are very difficult to design.

Hybrid paradigms attempt to overcome this problem by uniting the immediacy of icons with the

expressive power of diagrams and text. A multiparadigmatic VQS is proposed in [12]; the user is

provided with an adaptive interface supporting different visual representations of data and queries.

VISIONARY offers a diagrammatic global view, but uses icons to achieve better understanding

of concepts; query results are represented in tabular form.

4

2 . 2 . Expressive power

The expressive power of a VQS is its ability to extract consistent information from a database; in

[3], its definition is based on a classification of the queries. The expressive power of most VQSs is

limited to first order queries, that is, all queries which can be expressed in relational algebra. There

have been some attempts to further extend the expressive power by including recursive queries [8]

[13].

The expressive power of VISIONARY is limited to restricted join queries enriched with special

purpose operators (aggregation functions).

2 . 3 . Users

A VQS may be used by different kinds of users. Currently, few languages are versatile from this

point of view, while most are specifically intended for a given class of users. The non-professional

users of a VQS can be classified according to their experience, how frequently they use the VQS,

their knowledge of the database and the predictability of their queries.

The users VISIONARY is mainly aimed at are naive (they generally do not need to formulate

complex queries), casual (they do not access the database frequently) and uninformed (they only

have a superficial knowledge of the database).

3 . Working example: the "Order Database"

The Order Database models the employees, the clients, the suppliers, the products and the price-

lists of a small firm. The database scheme is represented below (primary keys are underlined;

foreign keys are followed by ":" and by the relation they refer to).

LIST(codList,areaName)

PRODUCT(codProd,description)

CURRENCY(currName,country)

QUOTES(codProd:PRODUCT, codList:LIST, currName:CURRENCY,price)

STORE(codStore,address,inArea:LIST)

PROD_IN_STORE(codProd:PRODUCT, codStore:STORE,quantity)

EMPLOYEE(codEmpl,name,salary)

VENDOR(codEmpl,supervises:LIST)

SOLD_BY(codProd:PRODUCT, codEmpl:VENDOR)

CLIENT(codCli,name,address,firmOrCustomer,belongsTo:LIST)

ORDER(codOrder,date,signedBy:VENDOR,madeBy:CLIENT,expressedIn:CURRENCY,

 amount,ifCarriedOut)
PROD_IN_ORD(codProd:PRODUCT, codOrder:ORDER,quantity)

SUPPLIER(codSupplier,name,address)

SUPPLIES(codSupplier:SUPPLIER, codProd:PRODUCT,quantity)

5

In order to better understand this simple logical scheme it may be useful to consider its conceptual

representation, sketched in Figure 2 using the Entity/Relationship formalism.

amount

qty

(t,e)

CLIENT

SUPPLIER

CURRENCY

ORDER

quotes

supplied in

by

signed

FIRM CUSTOMER

(1,1)

(1,n) (1,1)

(1,1)

(0,n)

(1,n)(0,n)

(0,n)

(1,n)

(0,n)

(1,n)

(1,1)

(1,1)

(0,n)

(0,n)

price

qty qty

pays

(0,n)

(1,1)

EMPLOYEE

VENDOR

(1,1)

PRODUCT

LIST

AREA

for

supervised

includes

STOREstored in

includes

(1,n)
(1,n)

(1,1)
(0,n)

sold by
(1,n) (1,n)

(1,n)

by

by

by

Figure 2. Entity/Relationship conceptual scheme of the Order Database.

4 . The data model

VISIONARY enables users to access a relational database through an effective diagrammatic

representation similar to an Entity/Relationship scheme. An intermediate graph-based level

establishes the mapping between the internal data model, which is relational, and the visual

metaphor adopted as the external data model.

4 . 1 . Internal data model

A database scheme includes a set of relations and a set of integrity constraints. Each relation has a

name and a set of attributes. Among integrity constraints, entity integrity and referential integrity

constraints specify, respectively, the primary key and the foreign keys (if any) of each relation.

The primary key of relation ri is a subset of the attributes of ri whose values exactly identify one

tuple of ri. A foreign key of ri is a subset of the attributes of ri whose values either occur as a value

of the primary key of a relation rj (not necessarily distinct from ri) or are null.

A comprehensive explanation of the relational theory can be found in [14].

6

4 . 2 . Intermediate data model

Let D be a relational database scheme including a set of relations R and a set of integrity

constraints. Each referential integrity constraint in D determines a relationship between the relations

involved; we call this relationship potential link. For instance, the foreign key signedBy in relation

ORDER determines a potential link between attribute signedBy in ORDER and attribute codEmpl in

VENDOR. Other potential links may be defined explicitly by the database designer when the

comparison between two attributes is expected to be relevant. We call L the set of all the potential

links defined on D.

In the following we will assume, for notational simplicity but without loss of generality, that all

the primary and foreign keys in D consist of a single attribute.

A relation r∈ R is defined by its name name(r) and by the set of its attributes Attr(r). Relation

names are unique within a database scheme; attribute names are unique within a relation.

A potential link l∈ L is defined by its two directions, called directed links (see Figure 3), and by

a strength. The strength of a potential link l, strength(l)∈ {'strong','weak'}, expresses its expected

relevance in query formulation; it may be explicitly defined by the designer or implicitly determined

by means of a default rule. For each directed link dli, i = 1, 2:

• rel(dli)∈ R and attr(dli)∈ Attr(rel(dli)) denote, respectively, the starting relation and the

starting attribute;

• mult(dli)∈ {1,N} denotes the multiplicity of the relationship represented by l when traversed

starting from rel(dli);

• freq(dli) denotes the frequency with which the user has selected l so far starting from rel(dli)

when formulating his/her queries.

l

dl1 = (l,r1)

dl2 = (l,r2)

r1 r2

Figure 3. Directed links corresponding to a potential link.

Given a potential link l, the two corresponding opposite directed links dl1 and dl2 may be

identified as (l,r1) and (l,r2), respectively, where ri = rel(dli). We call DL the set of all the directed

links corresponding to the potential links in L; obviously, DL has double cardinality with respect to

L.

An example of potential link in the Order Database is the one defined by the directed links dl1
and dl2 such that:

7

rel(dl1) = ORDER, attr(dl1) = expressedIn , multi(dl1) = 1,

rel(dl2) = CURRENCY, attr(dl2) = codCurr , multi(dl2) = N

We represent D by a non-directed graph G = (R,L), called database graph, where each vertex

corresponds to a relation and each edge to a potential link. Figure 4 shows the database graph

representing the Order Database.

LIST

EMPLOYEE

VENDOR

ORDER

QUOTES

CURRENCY

SUPPLIER

SUPPLIES

PROD_IN_ORD

PRODUCT

CLIENT

STORE

PROD_IN_STORE

SOLD_BY

Figure 4. Database graph for the Order Database.

4 . 3 . External data model

In this section we describe the visual metaphor adopted in VISIONARY, by defining different kinds

of visual objects. Each visual object is defined at two levels: at the first one, by listing its visual

components; at the second one, by establishing a mapping between the visual object and its

representation at the graph level. The visual objects and their properties, as well as the graphic

layout of the vision, are completely defined by the expert user.

4.3.1. Visions

A vision is a visual object aimed at conveying a high-level, clear and expressive representation of a

relational database, largely independent of the structuring of data within the database schema. A

vision is built by an expert user taking into account both the semantics of the database scheme and

the needs of the inexperienced users who will access the database through the vision itself; if a

conceptual scheme for the database is known, it may be helpful in defining the most effective

representation for data. Several visions may be built on the same database, in order to address

different classes of users and/or different application requirements.

Let G = (R,L) be a database graph. A vision on G is defined as a graph V = (C,A), where C is

a set of concepts and A a set of associations. Concepts represent relations, while associations

express relationships between two or more concepts. It should be noted that not every relation

needs to be represented by a visual object, nor does every attribute of a relation represented by a

8

visual object need to be included in the object itself; thus, a vision may be used to hide a part of the

database from the inexperienced user.

An example of a vision on the Order Database is shown in Figure 5.

Figure 5. A vision on the Order Database.

4.3.2. Concepts

A concept c is defined by an icon icon(c), a name name(c), a set of attributes Attr(c) and by the

mapping

cm : C → R

where Attr(c)⊆ Attr(cm(c)). Function cm associates each concept to a relation from which the

concept's attributes are drawn.

A concept is represented visually by displaying its icon and its name (an example is Employee

in Figure 5); the attributes of the concept may be viewed by double-clicking the icon.

In some cases a given relation r may be associated to different concepts, among which the

attributes of r can be distributed in order to:

9

1. partition r vertically, with the aim of emphasizing conceptually distinct aspects. For instance,

a relation PERSON may be associated with two concepts: one defining each person from the

private point of view (attributes name, address , etc.), the other from the work point of view

(attributes salary , duties , etc.).

2. partition r vertically and horizontally, with the aim of emphasizing two concepts related by an

is-a relationship. This may happen when, during the logical project, in order to translate a

generalization hierarchy from the Entity/Relationship scheme, the attributes of the sub-entities

and those of the super-entity have been brought together into one relation. Thus, for

instance, relation CLIENT may be associated with three concepts: one defining all clients

(with their general attributes), the others defining firm and customers (each with its specific

attributes), respectively.

3. partition r vertically, with the aim of emphasizing two concepts related by a relationship. This

may happen when a one-to-one relationship in the Entity/Relationship scheme has been

translated by one relation where the attributes of the two entities involved are brought

together. Thus, for instance, relation LIST may be associated with two concepts: one

defining the price-lists, the other the sale areas.

Table 1 contains the definitions of all the concepts belonging to the vision represented in Figure

5.

name(c) name(cm(c)) Attr(c)

Price-List LIST {code}
Area LIST {areaName}
Product PRODUCT {code, description}
Currency CURRENCY {name, country}
Store STORE {address}
Employee EMPLOYEE {name, salary}
Vendor VENDOR {}
Client CLIENT {name, address}
Firm CLIENT {}
Customer CLIENT {}
Order ORDER {code, date, ifCarriedOut}
Supplier SUPPLIER {name, address}

Table 1. The concepts in the Order Database.

4.3.3. Associations

An n-ary association a is defined by a set of n≥2 directed associations and by a set of attributes

Attr(a). For each directed association dai, i = 1,...n:

• conc(dai)∈ C denotes the i-th concept involved in a;

• name(dai) denotes the name given to a when traversed starting from conc(dai);

10

• min(dai)∈ {0,1} and max(dai)∈ {1,N} denote, respectively, the minimum and the maximum

number of instances of the other n−1 concepts associated to one instance of conc(dai).

Given an association a, the n corresponding directed associations da1,...dan may be identified

as (a,c1),...(a,cn), respectively, where ci = conc(dai). We call DA the set of all the directed

associations corresponding to the associations in A.

The correspondence between each directed association and one or more directed links is defined

by the mapping

Am : DA → 2DL

explained in detail in the following.

Binary associations

A binary association a involves two distinct concepts c1 and c2. Let r1 and r2 be, respectively, the

relations into which c1 and c2 map.

• Binary association a may correspond to one potential link l that has ends r1 and r2:

Am((a,c1)) = {(l,r1)}

Am((a,c2)) = {(l,r2)}

In this case, the attributes of a may belong to one or both the relations involved:

Attr(a) ⊆ Attr(r1)∪ Attr(r2)

An example is the association between Order and Currency.

• Binary association a may correspond to two potential links l1 and l2 that have ends r1 and rz

and r2 and rz, respectively, where rz is a relation not associated to any concept (ghost

relation):

Am((a,c1)) = {(l1,r1),(l2,rz)}

Am((a,c2)) = {(l2,r2),(l1,rz)}

In this case, the attributes of a must belong to the ghost relation:

Attr(a) ⊆ Attr(rz)

This form is generally used when rz is the relation modelling the many-to-many binary

relationship between r1 and r2 and is not considered worth being represented as a concept.

An example is the association between Product and Store (the ghost relation is

PROD_IN_STORE).

• If r1 ≡ r2, it must be

Am((a,c1)) = Am((a,c2)) = ∅

11

(empty associations). In this case, the attributes of a must belong to the relation involved:

Attr(a) ⊆ Attr(r1)

This case occurs when two or more concepts have been defined on the same relation aimed,

as explained in Section 5.1.2, at partitioning the relation itself. Normally, the partitioning is

accompanied by the definition of an association which does not correspond to any potential

link. An example is the association between Area and Price-List.

Tables 2 to 4 contain the definitions of all the binary associations belonging to the vision

represented in Figure 5; each association is described by 2 rows, one for each corresponding

directed association.

name(conc(da)) name(da) min(da) max(da) Am((a,conc(da))) Attr(a)

Store is in 1 1 {(STORE.inArea ,LIST .codList)} {}
Area includes 0 N {(LIST .codList ,STORE.inArea)}
Employee is a 0 1 {(EMPLOYEE.codEmpl ,VENDOR.codEmpl)} {}
Vendor is a 1 1 {(VENDOR.codEmpl ,EMPLOYEE.codEmpl)}
Vendor supervises 1 1 {(VENDOR.supervises ,LIST .codList)} {}
Area is supervised by 1 N {(LIST .codList ,VENDOR.supervises)}
Client belongs to 1 1 {(CLIENT.belongsTo ,LIST .codList)} {}
Area includes 1 N {(LIST .codList ,CLIENT.belongsTo)}
Order is signed by 1 1 {(ORDER.signedBy ,VENDOR.codEmpl)} {}
Vendor signs 0 N {(VENDOR.codEmpl ,ORDER.signedBy)}
Order is made by 1 1 {(ORDER.madeBy,CLIENT.codCli)} {}
Client makes 0 N {(CLIENT.codCli ,ORDER.madeBy)}
Order is expressed in 1 1 {(ORDER.expressedIn ,CURRENCY.codCurr)} {amount}
Currency expresses 0 N {(CURRENCY.codCurr ,ORDER.expressedIn)}

Table 2. The non-empty binary associations without ghost relation in the Order Database.

name(conc(da)) name(da) min(da) max(da) Am((a,conc(da))) Attr(a)

Product is stored in 1 N {(PRODUCT.codProd ,PROD_IN_STORE.codProd),
(PROD_IN_STORE.codStore ,STORE.codStore)} {quantity}

Store stores 1 N {(STORE.codStore ,PROD_IN_STORE.codStore),
(PROD_IN_STORE.codProd ,PRODUCT.codProd)}

Product is sold by 1 N {(PRODUCT.codProd ,SOLD_BY.codProd),
(SOLD_BY.codEmpl ,VENDOR.codEmpl)} {}

Vendor sells 1 N {(VENDOR.codEmpl ,SOLD_BY.codEmpl),
(SOLD_BY.codProd ,PRODUCT.codProd)}

Order includes 1 N {(ORDER.codOrder ,PROD_IN_ORD.codOrder),
(PROD_IN_ORD.codProd ,PRODUCT.codProd)} {quantity}

Product belongs to 1 N {(PRODUCT.codProd ,PROD_IN_ORD.codProd),
(PROD_IN_ORD.codOrder ,ORDER.codOrder)}

Supplier supplies 0 N {(SUPPLIER.codSupplier ,SUPPLIES.codSupplie

r),(SUPPLIES.codProd ,PRODUCT.codProd)} {quantity}
Product is supplied by 0 N {(PRODUCT.codProd ,SUPPLIES.codProd),

(SUPPLIES.codSupplier ,SUPPLIER.codSupplier)}

Table 3. The binary associations with ghost relation in the Order Database.

12

name(conc(da)) name(da) min(da) max(da) Am((a,conc(da))) Attr(a)

Price-List is for 1 1 {} {}
Area ruled by 1 1 {}
Client is a 0 1 {} {}
Firm is a 1 1 {}
Client is a 0 1 {} {}
Customer is a 1 1 {}

Table 4. The empty binary associations in the Order Database.

Self-associations

A self-association a is a binary association involving the same concept c twice. The same holds as

above, with c1 = c2 = c. A self-association may or may not have a ghost relation, but it cannot be

empty.

N-ary associations

An n-ary association a involves n distinct concepts c1,...cn (n≥3). Let r1,...rn be the relations into

which c1,...cn map, respectively.

• n-ary association a always corresponds to n potential links l1,...ln that have ends r1 and rz,...

rn and rz, respectively, where rz is a relation not associated to any concept (ghost relation):

Am((a,c1)) = {(l1,r1),(l2,rz),(l3,rz),...(ln,rz)}

.

Am((a,cn)) = {(ln,rn),(l1,rz),(l2,rz),...(ln-1,rz)}

(see Figure 6). The attributes of a must belong to the ghost relation:

Attr(a) ⊆ Attr(rz)

This form is used when rz is the relation modelling the many-to-many n-ary relationship

between r1,...rn and is not considered worth being represented as a concept. On the other

hand, should the designer choose to represent the ghost relation as a concept c* , the n-ary

relationship would be represented by defining n binary associations (without the ghost

relation) between c* and c1,...cn.

l1r1

rz
r3

r2

l2

l3

Figure 6. Three sets of directed links (in black, dark grey and light grey) corresponding to the three directed
associations defining a ternary association.

13

Table 5 contains the definitions of the ternary association belonging to the vision in Figure 5; it is

described by 3 rows, one for each direction.

name(conc(da)) name(da) min(da) max(da) Am((a,conc(da))) Attr(a)

Price-List quotes 1 N {(LIST .codList ,QUOTES.codList),
(QUOTES.codProd ,PRODUCT.codProd),
(QUOTES.currName ,CURRENCY.currName)}

Product is quoted in 1 N {(PRODUCT.codProd ,QUOTES.codProd),
(QUOTES.codList ,LIST .codList),
(QUOTES.currName ,CURRENCY.currName)}

{price}

Currency expresses 0 N {(CURRENCY.currName ,QUOTES.currName)
(QUOTES.codProd ,PRODUCT.codProd),
(QUOTES.codList ,LIST .codList)}

Table 5. The ternary associations in the Order Database.

The maximum multiplicity of a directed association is determined by the multiplicity of the

corresponding directed links as follows:

max(da) =
 

 maximum{mult(dl) | dl∈ Am(da)}, if Am(da)≠∅
1, if Am(da)=∅

Associations are used to convey an expressive and accurate picture of the relationships between

concepts. Each association is always represented visually in one of its directions, by displaying a

grey arrow connecting one end to the others, tagged with the name of the association when read in

the direction of the arrow; the direction in which an association is displayed within a vision can be

changed by right-clicking on the association. The attributes of the association may be viewed by

double-clicking the association name; the user can further "explore" the association by left-clicking

on it, which leads to visualizing the association multiplicity (Figure 7 shows some examples).

 (a)

 (b)

 (c)

Figure 7. Visual representation of associations with multiplicity 1-1 (a), 0-n (b), 1-n (c).

Two types of binary associations are treated differently from the others within the vision: those

modelling relationships with semantics PART-OF and IS-A.

14

PART-OF associations express the aggregation between a concept and one or more component

concepts. A PART-OF association may or may not have a ghost relation, or be empty; an example

is the association between ORDER and PRODUCT. Visually, PART-OF associations are emphasized

by framing them within a triangle. Names are predefined in the two directions (includes, belongs

to) and cardinalities may have any values.

IS-A associations express the specialization of a concept into one or more derived concepts. An

IS-A association may either correspond to one potential link (when a hierarchy in the

Entity/Relationship scheme has been translated by creating a different relation for each sub-entity

and one relation for the super-entity) or be empty (when the hierarchy has been translated by

creating only one schema for the super-entity, on which two or more distinct concepts have been

defined); when defining an empty IS-A association, a Boolean predicate (flag) capable of selecting

the instances of the derived concept must be specified. Examples of the two kinds are the

associations between, respectively, EMPLOYEE and VENDOR and CLIENT and FIRM (with associated

flag firmOrCustomer ='F'). Visually, IS-A associations are emphasized by framing them within

an ellipse. Names are predefined (is a in both directions); minimum and maximum cardinalities

must be, respectively: 1 and 1 towards the base concept, 0 and 1 towards the derived concept.

5 . The query model

Naive users access the database through the visions previously defined by expert users. The

intuitiveness and expressivity of visions help them understand the database semantics, and assist

them in formulating queries without knowing the relational theory.

The external query model is based on the definition of perspectives for accessing data; the

internal query model is SQL.

5 . 1 . Intermediate query model

When conceiving a query on a database, the user of a DBMS has in mind a set of attributes,

belonging to one or more relations, whose values (s)he is interested in obtaining. Among these

relations, one has a primary role since it embodies the point of view from which the user wants to

access data in the database. For instance, suppose the user querying the Order Database is

interested in knowing, for each order, the stores where the products included in the order are kept.

Since the products of an order and the stores of the products of that order are required, the primary

role is played by the entity order; in other words, the attributes of the products can be considered as

"extended" attributes of the order, and those of the stores as "extended" attributes of the products

of the orders.

In our approach to query inference the user, when formulating a query, can specify a primary

relation (PR) which defines an inference tree, i.e., a perspective for accessing data. Within an

15

inference tree, the PR is connected to every other relation through exactly one path of relationships;

thus, in a query interpreted on a tree, it is possible to reference attributes belonging to any relation

without explicitly formulating the necessary joins. The inference tree for each given PR is

adaptively built by privileging the query interpretations more frequently adopted by the user so far.

Choosing a PR bears some similarities with defining a root for the query tree in SUPER [7]. On

the other hand, while in VISIONARY the choice of the PR leads to the automatic building of a tree

on the database graph, in SUPER the choice of the root is made after the tree has been manually

built by the user. In QBI [10], the user selects a concept which acts as the viewpoint for the current

query and browses the set of the generalized attributes. Generalized attributes correspond to our

extended attributes; while QBI provides all the different interpretations, which may be confusing to

the user, VISIONARY gives one default interpretation and allows the user to modify it

progressively.

5.1.1. Inference trees

Let G = (R,L) be a database graph; an inference tree associated to the PR rp∈ R is a directed subtree

of G with root in rp: T = (R',DL') where R' is a multiseta whose elements belong to R, DL'⊆ DL.

Note that, since T is a tree, each of its vertices (except the root) is entered by exactly one arc.

Besides, since R' is a multiset, the same relation may appear twice or more within T; in this case,

the copies are discriminated by using aliases.

In our approach, a default inference tree is built automatically for each choice of the PR. The

user may then modify this tree by means of the visual language; in particular, (s)he may add some

arcs, drop some others, and duplicate some vertices. In this section we briefly explain how the

default tree is built; further details can be found in [15]. Modifications of the inference tree are

discussed in Section 5.3.2.

The default tree associated to the database graph G and to the PR rp is denoted with Dt(G,rp) =

(R',DL') and is represented by a spanning tree on G:

R' ≡ R

If the database graph is acyclic, exactly one spanning tree exists for each PR; it can be obtained

by giving each potential link in the database graph a direction in such a way that no arc enters the

PR and all other vertices are entered by exactly one arc. In this case the default tree is univocally

determined, and only one interpretation is possible for each query sentence.

If, on the other hand, the database graph is cyclic, a number of different spanning trees may

correspond to each PR; in order to give exactly one interpretation of each query sentence, a

a A multiset is an unordered collection of elements; it differs from a set since the same element may appear
several times. We will denote multisets with double braces: {{...}}.

16

criterion must be used to select, for each PR, one spanning tree so that the resulting interpretations

are the most reasonable, that is, those which the user most probably expects. For this purpose, we

estimate the soundness of the possible query interpretations by considering the properties of the

potential links involved; the default tree associated to a PR is then defined as the spanning tree

which maximizes the soundness for the queries formulated from that PR. The three potential link

properties taken into account to estimate the soundness are: the strength of the potential link (strong

links are sounder than weak links), its multiplicity (to-one links are sounder than to-many links)

and its frequency (frequent links are sounder than infrequent links). Details on the mathematical

definition of soundness, together with the algorithm which determines the spanning tree with

maximum soundness, can be found in [15].

Figure 8 shows the default inference trees associated to PRs PRODUCT and CLIENT.

LIST

EMPLOYEE

VENDOR

ORDER

QUOTES

CURRENCY

SUPPLIER

SUPPLIES

PROD_IN_ORD

PRODUCT CLIENT

STORE

PROD_IN_STORE

SOLD_BY

LIST

EMPLOYEE

VENDOR

QUOTES

CURRENCY

SUPPLIER

SUPPLIES

PROD_IN_ORD

PRODUCT

CLIENT

STORE

PROD_IN_STORE

SOLD_BY

ORDER

Figure 8. Default inference trees associated to PRs PRODUCT (left) and CLIENT (right).

5.1.2. Query interpretation

On the intermediate model, a query is defined as

q = (T,SC,JP,RA,GA,SA)

where T = (R',DL') is an inference tree, SC a set of selection conditions (local Boolean predicates

on the attributes of the relation), JP a set of additional join predicates (those not corresponding to

any potential link), RA a set of attributes (or aggregate functions applied to attributes) to be

retrieved, GA a set of grouping attributes and SA a list of sorting attributesb. The multiset M of the

relations mentioned in q includes all the relations r∈ R' such that at least one of the attributes of r

appears in at least one of the sets SC, JP, RA, GA, SA. We call active links for q the directed links

belonging to the directed paths which, within T, connect its root rp to every other relation

b All attributes are assumed to be referenced with the name of the relation scheme they belong to. If the same
relation scheme appears twice or more within the inference tree, its aliases are used.

17

belonging to M (within a tree, the root is connected with each other vertex through exactly one

directed path).

Query q is translated into an SQL formulation in which:

1. the select-list includes all the attributes in RA;

2. the WHERE clause includes:

2.1 for each active link dl (if any), an equi-join predicate between the two attributes involved

in dl;

2.2 all the join predicates in JP (if any);

2.3 all the Boolean predicates in SC (if any), connected by and/or operators;

3. the GROUP BY clause includes all the attributes in GA (if any);

4. the ORDER BY clause includes all the attributes in SA (if any).

For instance, consider a query formulated on the default inference tree with PR PRODUCT (see

Figure 8) and mentioning the following attributes:

SC = {STORE.address ='1 Wall St.',PROD_IN_ORD.quantity >10}, JP = ∅ , GA = ∅

RA = {PRODUCT.description ,CLIENT.name}, SA = ∅

The active links (briefly denoted with their two relation.attribute ends) are:

(PRODUCT.codProd ,PROD_IN_STORE.codProd),

(PROD_IN_STORE.codStore ,STORE.codStore),

(PRODUCT.codProd ,PROD_IN_ORD.codProd),

(PROD_IN_ORD.codOrder ,ORDER.codOrder),

(ORDER.madeBy,CLIENT.codCli)

The interpretation adopted for this query can be expressed in SQL as follows:

se lec t PRODUCT.description, CLIENT.name

f r om PRODUCT, PROD_IN_ORD, ORDER, CLIENT, PROD_IN_STORE, STORE

where PRODUCT.codProd = PROD_IN_ORD.codProd

a n d PROD_IN_ORD.codOrder = ORDER.codOrder

a n d ORDER.madeBy = CLIENT.codCli

a n d PRODUCT.codProd = PROD_IN_STORE.codProd

a n d PROD_IN_STORE.codStore = STORE.codStore

a n d STORE.address='1 Wall St.'

a n d PROD_IN_ORD.quantity>10

For each product, CLIENT is interpreted as the clients who have ordered the product, and STORE as

the stores where the product is kept. Thus, the query returns the products stored at the address '1

Wall St.' and the clients who ordered more than 10 pieces of them.

18

It should be noted that, owing to the query model adopted, formulating joins in VISIONARY

typically requires defining the corresponding potential links. This forces the expert user to predict

all the reasonable possibilities for joining relations while designing the database graph underlying

the vision; on the other hand we assume that, even if supported by visual facilities, a naive user

would hardly be capable of understanding the meaning of a join and of formulating it explicitly.

5.1.3. Query inference in the literature

Several approaches for simplifying query formulation can be found in the literature. Among those

based on the building of derived relations, we mention relational views and the universal relation.

Relational views are derived relations defined by the user in terms of one or more physical

relations or other views, and show advantages both in terms of logical independence and data

security. Query formulation on an inference tree is not equivalent to query formulation on a

relational view; in fact:

• Defining a relational view requires several joins to be explicitly formulated, while defining a

default inference tree only requires choosing a PR.

• One default inference tree for each relation in the database scheme is made available; a

different relational view should be written for each viewpoint.

• Adopting an inference tree may not be equivalent to defining one relational view. Consider

for instance the association between clients and orders, which is optional. When a query is

formulated with PR CLIENT, the clients who did not make any orders will appear in the

resulting relation if ORDER is not mentioned, but will not if ORDER is mentioned. This

behaviour can be reproduced only by creating two distinct relational views.

• If the database scheme is changed (a relation is added, dropped or modified), all the relational

views involved must be rewritten, while all the default inference trees will be automatically

generated based on the new scheme.

In the universal relation, query inference is approached by building a view which combines all

the relations in the database through natural joins [16]. On the other hand, the universal relation

calls for requirements that are not always satisfied in practical applications [17]. A basic

assumption is that each attribute plays only one role, so that an attribute like "address" can only

stand for the address of either the supplier, the department or the employee; the database designer

is thus forced to differentiate names of attributes which are defined on the same domain but play

different roles. Besides, the universal relation generates a fixed sight of the database, on whose

structure the user cannot intervene. Our approach does not require the attributes to be unique;

besides, distinct inference trees are created for the different PRs.

In [18], ambiguous sentences of the query language are interpreted by determining, on the

database graph, the minimum directed cost Steiner tree; the cost of a query depends only on the

19

cardinalities of the relationships involved. In [19], query disambiguation is carried out by

considering the relatedness of the relations involved and the existence of directed paths between

them. In [20], disambiguation is carried out by choosing the interpretation which contains fewer

similarity arcs (arcs connecting attributes defined on the same domain) and, possibly, by starting a

clarification dialogue with the user. All these approaches differ from ours, since they do not

consider the possibility of accessing data through multiple perspectives.

5 . 2 . External query model

In the same way as a vision is the visual representation of a database graph, a viewpoint is the

visual representation of an inference tree. A default viewpoint is automatically built by selecting a

primary concept, and may then be edited visually by the user.

5.2.1. Viewpoints

Given a vision V and a primary concept cp, a viewpoint is a directed subtree of V rooted in cp: P =

(C',DA'), where C' is a multiset whose elements belong to C, and DA'⊆ DA.

The definition of a viewpoint partitions the associations of a vision into enabled and disabled.

We call enabled all the associations a∈ A such that ∃ c∈ C' | (a,c)∈ DA' (one of the directed

associations corresponding to a is included in the viewpoint); the others are disabled.

A viewpoint on a vision is represented visually by

1. highlighting the primary concept;

2. orientating each enabled association according to the direction in which it appears in DA';

3. drawing in black each enabled association;

4. drawing in grey each disabled association.

A viewpoint P = (C',DA') determines univocally on the database graph an inference tree T(P) =

(R',DL') whose vertices are all the relations corresponding to the concepts in the viewpoint and all

the ghost relations of the associations enabled, and whose arcs are all the directed links

corresponding to the directed associations enabled:

R' = {{ r∈ R | r = cm(c), c∈ C'}} ∪ { r∈ R | (∃ da∈ DA' | r is the ghost relation for da)}

DL' = {dl∈ DL | (∃ da∈ DA' | dl ∈ Am(da))}

Duplicate concepts in P determine duplicate vertices in T(P). If P includes two distinct concepts c1

and c2 corresponding to the same relation r, two cases may occur:

1. If the empty association between c1 and c2 is enabled, r appears in T(P) only once; in fact,

duplicating r would require the formulation of a useless self-join.

20

2. If the empty association between c1 and c2 is disabled, r is duplicated within T(P). In this

case, the user is willing to access c1 and c2 separately, hence, r must appear twice within the

inference tree.

Similarly, an inference tree T = (R',DL') determines univocally a viewpoint P(T) = (C',DA')

such that:

C' = {{ c∈ C | (∃ r∈ R' | r = cm(c))}}

DA' = {da∈ DA | ∀ dl∈ Am(da) (dl∈ DL')}

Note that an association is enabled only if all the corresponding directed links appear within the

inference tree.

Figure 9 shows the viewpoint corresponding to the default inference tree with PR PRODUCT in

Figure 8.

Figure 9. Viewpoint corresponding to the default inference tree with PR PRODUCT.

5.2.2. Visual formulation of queries

A visual query is defined as

21

q' = (P,SC',JP',RA',GA',SA')

where P is a viewpoint, SC' is a set of selection conditions, JP' is a set of additional join

predicates, RA' is a set of attributes to be retrieved, GA' is a set of grouping attributes and SA' is

an ordered list of sorting attributes.

The formulation of a visual query consists of five steps:

1. Choose a primary concept (implicit formulation of default joins).

2. Edit the viewpoint (implicit formulation of overridden joins - optional).

3. Choose attributes to be retrieved (projection).

4. Formulate selections on attributes (selection - optional).

5. Order and/or group the results (optional).

The order in which the five steps are presented is essentially conceptual; in fact, steps 2. to 5. may

be interleaved (but step #1 must be carried out first).

The first two steps are aimed at building P, that is, at determining an inference tree in order to

define which joins will be potentially part of the query; these steps are sketched in Figure 10. The

remaining steps, besides their specific functions, all go towards determining a multiset of concepts

"mentioned" within the query, which includes all the concepts c∈ C such that at least one of the

attributes of c appears in at least one of the sets SC', JP', RA', GA', SA'. The associations

belonging to the paths connecting the primary concept to each concept mentioned are called active

associations and displayed in red within the viewpoint, to emphasize the fact that they determine

which joins will be actually formulated for the current query.

naive
user

DB
GRAPH

VISION

DEFAULT
INF. TREE

DEFAULT
VIEWPOINT

PRIM.
RELATION

PRIM.
CONCEPT

visual level

relational level

choose enable/disable
associations

INFERENCE
TREE

VIEWPOINT

Figure 10. Query formulation in VISIONARY.

Query formulation may be carried out in "preview mode": in this case the inexperienced user

can see, at each step, the results of the query (s)he is formulating and verify its correctness. Since

execution of a complex query on a large database may take a long time, preview mode can be

disabled in order to avoid slowing down the formulation phase too much.

In the following we describe in detail the five formulation steps.

22

Choosing the primary concept

This step, which starts the query formulation session, is executed visually by right-clicking on a

concept cp, whose corresponding relation rp = cm(cp) becomes the PR. The default inference tree

associated to rp, Dt(G,rp), is calculated and the corresponding viewpoint, P(Dt(G,rp)), is displayed

(see Figure 10, solid arrows).

The associations enabled within the viewpoint determine the interpretation given to each concept

in the vision. Consider for instance the viewpoint in Figure 9, obtained by choosing Product as the

primary concept. The default interpretations given to concepts are, for each product P:

the vendors who sell P; the orders made for P;

the stores stocking P; the price-lists where P is quoted;

the clients who made orders for P; the currencies in which P is quoted;

the suppliers of P; the areas of the price-lists where P is quoted.

Editing the viewpoint

This step must be executed if the enabled associations contained in the default viewpoint are not

those the user is interested in. Suppose that the user wants to know, for each product, the orders

signed by the vendors who sell the product. In the default interpretation proposed by the system

with primary concept Product, Order denotes the orders made for a product; thus, the user must

disable the association belongs to from Product to Order and enable the association signs from

Vendor to Order. This action changes the interpretation given to queries by forcing the formulation

of paths of joins different from those provided by the default viewpoint.

Within viewpoint P, clicking on an enabled association leads to disabling it, that is, to removing

the corresponding directed association from P. Clicking on a disabled association leads to enabling

it, that is, to adding a directed association to P (see Figure 10, dashed arrows); the direction is the

one currently displayed, which can be changed with a right-click.

Enabling a disabled association may lead to an attempt to form a cycle, that is, to having two

enabled associations enter the same concept c. This happens in general when the user is interested

in considering contemporarily different interpretations of c. In this case, in order to make the

viewpoint remain a tree, concept c is duplicated within the viewpoint. Suppose the user wants to

retrieve, for each product, the vendors who sell the product and those who signed the orders for

the product. If, with primary concept Product, association is signed by is enabled without

disabling association is sold by, concept Vendor is duplicated. Thus, the user may access

contemporarily both interpretations of Vendor (see Figure 11). If the user is interested in the areas

of the vendors who have signed the orders, (s)he can drag association supervises on the instance

of Vendor corresponding to this interpretation. The association is graphically duplicated, and the

23

user can enable one or both interpretations; in the latter case, also concept Area is duplicated.

Another example of concept duplication can be found in Section 6 (example #3).

Figure 11. Duplicating concept Vendor.

A viewpoint is inherently acyclic; on the other hand, most useful cyclic queries can be

formulated simply by writing a natural join between two instances of a duplicate concept. This can

be done graphically by dragging and dropping one instance of the duplicate concept on the other,

and leads to adding the natural join between the two instances to JP'.

Choosing the attributes to be retrieved

This step is carried out by double-clicking on concepts and associations and by dragging one or

more attributes inside the projection window. Every attribute selected is added to RA'.

Aggregate functions (sum, max, min, average) may be picked up from a list to be applied to

numerical attributes; function count may be applied to numerical and non-numerical attributes.

The user may want to mention a concept even without retrieving any of its attributes. For

instance (s)he may want to retrieve, for each product, the names of the customers who made orders

for it. Attribute name belongs to concept Client; thus, the association between Client and Customer

must be explicitly activated. This can be done by dragging the whole concept inside the projection

window, and leads to adding a dummy attribute to RA'.

Formulating selections on the attributes

A selection condition can be formulated by double-clicking on a concept or an association,

dragging an attribute within the selection window and writing a Boolean predicate involving an

24

operator (picked from a list including all the standard SQL operators) and one or more values

(typed by the user). Every condition formulated is added to SC'.

Grouping and sorting

The last step may be performed on a group-and-sort window showing a preview of the results in

tabular form. When choosing to order or group data according to a specific attribute, the user will

see the results of his/her action on a sample set of data. Grouping and sorting attributes are added,

respectively, to GA' and SA'.

5.2.3. Query interpretation

Query interpretation is based on the associations which are active within the current viewpoint P at

the time the query is executed; it is carried out by mapping from the visual level to the graph level.

Given a visual query q' = (P,SC',JP',RA',GA',SA'), the corresponding graph-level query is q

= (T(P),SC,JP,RA,GA,SA); the sets in q are obtained from the corresponding ones in q' by

mapping each concept/association attribute into the corresponding relation attribute. The SQL

interpretation of q is then built on the inference tree T(P) as shown in Section 4.3, and handed on

to the DBMS. Once the query has been executed, its results are shown to the user in tabular form.

Two particular situations which may occur deserve further attention:

• An enabled empty association does not correspond to any link in the inference tree.

However, if an empty association has IS-A semantics, activating it within the viewpoint

leads to adding the corresponding flag to the set of selection conditions SC'. This

corresponds to selecting only the instances of the super-concept which are also instances of

the sub-concept.

• Editing the viewpoint may lead to splitting it into two or more trees. Consider for instance the

default viewpoint Product, and suppose that association belongs to from Product to Order is

disabled. In this case, the resulting viewpoint is non-connected. The inference tree is still

generated as shown in Section 5.2, and turns out to be non-connected, too. Within a non-

connected inference tree, queries are interpreted by formulating an equi-join for each directed

link belonging to the paths which, within each connected sub-tree, connect the root to each

other relation mentioned; from a conceptual point of view, since no joins connecting the

different sub-trees are provided, the query returns the Cartesian product between the

interpretations given to the connected portions of the viewpoint.

6 . Examples

1. For each product supplied by John, retrieve its description and the address of the stores

where it is kept.

25

This query is formulated visually by choosing Product as the primary concept; the default

viewpoint need not be edited. The projection is carried out by double-clicking on Product and

Store, and selecting attributes description and address, respectively. The selection is carried out by

formulating predicate name equal John on Supplier.

2. Retrieve the names and areas of the vendors who signed the orders dated 1996 for client

Marylin.

This query is formulated visually by choosing Client as the primary concept. According to the

default viewpoint shown in Figure 12, the interpretation given to concept Area is the area to which

the client belongs. Since the interpretation required is "the areas supervised by the vendors who

signed the orders", the user must edit the viewpoint by disabling the association belongs to and

enabling the association supervises.

Figure 12. Default viewpoint with primary concept Client.

3. For each client belonging to the area supervised by vendor Lewis, retrieve the name of the

client and that of the vendors who signed the orders made by the client for at least 100

hammers.

26

This query may be formulated by choosing Client as the primary concept. The concept Vendor is

used twice, with different interpretations: the vendor signing the orders made by the client (this

interpretation is the one implicitly given within the default viewpoint), and the vendor supervising

the area of the client. If the association is supervised by is enabled (without disabling the

association is signed by), the concept Vendor is duplicated. Thus, the projection is carried out by

choosing attribute name from Client and from Vendor (the one associated to Order); the selection is

carried out by formulating the predicates name equal Lewis on Vendor (the one associated to Area),

description equal hammer on Product and quantity greater or equal 100 on includes.

4. Retrieve the names of the clients who made orders signed by the same vendor supervising

their area.

This is a cyclic query. Like query #3, it can be expressed by duplicating concept Vendor; the join

necessary to create the cycle is formulated by dragging one instance of Vendor on the other.

7 . Experimental tests

Query formulation in VISIONARY shares some ideas with QBD* [8]: in fact, it is carried out by

selecting nodes and arcs from a graph-like representation of the database. QBD* enables

formulation of recursive queries, which at present cannot be formulated with VISIONARY. On the

other hand, the selection of a subscheme and the choice of the paths of joins in VISIONARY can in

most cases be made implicitly by selecting a viewpoint. VISIONARY also presents some similarities

with QBI [10], an iconic language which builds completely encapsulated objects by allowing all the

attributes in the scheme to be viewed as generalized attributes of a single concept.

In [21], an experiment aimed at comparing QBI and QBD* in terms of their usability is

described. The experiment consists in proposing six queries with different degrees of complexity

to a set of users after briefly training them on the use of the visual language. Users are

distinguished into skilled and unskilled. Queries are formulated on a small database describing the

university domain and are classified according to their semantic distance (essentially a function of

the length of the path of joins and of the number of printable attributes crossed) and on whether

they are cyclic or not. Usability is measured by both the time needed to formulate each query and

the accuracy in query completion.

We have reproduced the same experiment with VISIONARY; in this section we report and

comment on the results. In our experiment, unskilled users were first-year Computer Science

students who had no knowledge of information sytems and query languages but were familiar with

Windows environments; skilled users were fourth-year Computer Science students. The training

session lasted about 20 minutes for each user and was carried out on the Order database. Accuracy

was evaluated qualitatively by recording if the primary concept was chosen correctly and if useless

27

associations were enabled. Tables 6 and 7 summarize the results obtained with VISIONARY and

those obtained with QBD* and QBI, reported in [21].

The analysis of variance (ANOVA) technique yielded significant difference on the average

formulation time between the three systems (F(2,45)=6.28>f0.95,2,45=3.20); the results in Table 7

(last row) suggest that the users spent on the average less time formulating queries using

VISIONARY. As to skill level, ANOVA yielded significant difference only for skilled users

(F(2,21)=11.19>f0.95,2,21=3.47); the results in Table 7 (first row) suggest that, for skilled users,

the VISIONARY approach works better than the others.

QBD* QBI VISIONARY

time accur. time accur. time accur.

Query Q1 80 exc. 134 exc. 58 exc.

Q2 84 fair 27 exc. 57 exc.

Q3 111 exc. 156 exc. 83 good

Q4 179 exc. 599 fair 229 fair

Q5 187 fair 55 exc. 76 good

Q6 134 good 298 fair 193 fair

Table 6. Formulation time (in seconds) and accuracy for 6 queries with QBD*, QBI and VISIONARY. Each
language was tested with 8 skilled and 8 unskilled users.

QBD* QBI VISIONARY

Users skilled 104 218 91

unskilled 154 205 141

all 129 211 116

Table 7. Formulation time as a function of skill level.

The tests pointed out that the hardest operation for unskilled users is viewpoint editing,

especially when concept duplication is needed; in particular, some users forgot to disable useless

associations and were confused by the resultant proliferation of concepts on the screen. On the

other hand, skilled users are more familiar with graph-like representations and they better

understood the semantics of enabling/disabling associations on the screen. We believe that the main

reason why the formulation time with VISIONARY is slightly better than with QBD* is that, while

with the latter users must select the useful paths of associations by themselves, with the former

they can, in most cases, formulate their query on the tree automatically built by the system.

28

8 . Conclusions

In this work we have described a visual query language based on an iconic-diagrammatic

paradigm. The user perceives the database through a metaphor called vision, which is made up of

concepts and associations. Queries are formulated by choosing a primary concept, deciding the

attributes to be retrieved and expressing selection predicates. If the interpretation given to a query is

not the one the user had in mind, the user can force a different interpretation by disabling some

associations and enabling others.

Currently we are working on improving the visual metaphor which models the database and on

extending the expressive power of the visual query language. As to the first issue, we will study

how to give an effective visual representation to time as involved in concepts or associations. As to

expressive power, in [22] we have shown an SQL extension where multiple viewpoints could be

adopted for query formulation; in VISIONARY, the user selecting two or more viewpoints within a

single query will be abled to choose between as many different interpretations for the concepts

included in the vision. Finally, we are investigating the possibility of using VISIONARY as a design

tool for databases.

References

[1] E. Tufte (1983) The visual display of quantitative information. Graphic Press.

[2] F. Benzi, D. Maio & S. Rizzi (1996) VISIONARY: a visual query language based on the user

viewpoint approach. In: Electronic Series Workshop in Computing, Springer, London,

http://www.springer.co.uk/eWiC/Workshops/IDS3.html .

[3] C. Batini, T. Catarci, M.F. Costabile & S. Levialdi (1992) Visual query systems: a

taxonomy. In: Visual Database System II, Elsevier Science Publishers B.V, North-Holland,

pp. 153-168.

[4] T. Catarci, M.F. Costabile, S. Levialdi & C. Batini (1997) Visual query systems for

databases: a survey. Journal of Visual Languages and Computing 8, 215-260.

[5] M.M. Zloof (1975) Query-by-example. In: Proceedings AFIPS Conference, National

Computer Conference, 44, pp. 431-438.

[6] H.K.T. Wong & I. Kuo (1982) GUIDE: Graphical User Interface for Database Exploration.

In: Proceedings 8th VLDB Conference, Mexico City, pp. 22-31.

[7] Y. Dennebouy, M. Andersson, A. Auddino, Y. Dudont, E. Fontana, M. Gentile & S.

Spaccapietra (1995) SUPER: visual interfaces for object + relationship data models. Journal

of Visual Languages and Computing 5, 73-99.

29

[8] M. Angelaccio, T. Catarci & G. Santucci (1990) QBD*: a graphical query language with

recursion. IEEE Transactions on Software Engineering 16(10), 1150-1163.

[9] J. Boyle, S. Leishman, J. Fothergill & P. Gray (1994) Design of a visual language for a

database. Technical Report University of Aberdeen.

[10] A. Massari & P.K. Chrysanthis (1995) Visual query of completely incapsulated objects. In:

Proceedings 5th International Workshop on Research Issues on Data Engineering, Taipei,

Taiwan, pp. 18-25.

[11] A. Del Bimbo, M. Campanei & P. Nesi (1992) A 3D visual environment for querying image

databases. In: Proceedings International Workshop of Advanced Visual Interfaces, World

Scientific Publishing Co. Ltd., Singapore, pp. 12-25.

[12] T. Catarci, S. Chang, M.F. Costabile, S. Levialdi & G. Santucci (1996) A graph-based

framework for multiparadigmatic visual access to databases. IEEE Transactions on

Knowledge and Data Engineering 8(3), 455-475.

[13] M. Consens & A.O. Mendelzon (1990) Graphlog: a visual formalism for real life recursion.

In: Proceedings ACM Symposium on Principles of Database Systems, pp. 404-416.

[14] E.F. Codd (1970) A relational model of data for large shared data banks. Communications of

the ACM 13(6), 377-387.

[15] G. Bellavia, D. Maio & S. Rizzi (1994) Minimizing the cost of query formulation through

user viewpoint Relations. In: Proceedings Secondo Convegno Nazionale su Sistemi Evoluti

Per Basi Di Dati, Rimini, Italy, pp. 141-159.

[16] R. Fagin, A.O. Mendelzon and J.D. Ullman (1982) A simplified universal relation

assumption and its properties, ACM Trans. Database Syst. 7(3), 343-360.

[17] W. Kent (1981) Consequences of assuming a universal relation, ACM Trans. Database Syst.

6(4), 539-556.

[18] J.A. Wald and P.G. Sorenson (1984) Resolving the query inference problem using Steiner

trees, ACM Trans. Database Syst. 9(3), 348-368.

[19] E. Sciore (1994) Query abbreviation in the entity-relationship data model, Information Syst.

19(6), 491-511.

[20] A. Motro (1986) Constructing queries from tokens. In: Proc. ACM SIGMOD Int. Conf.

Management of Data, Washington D.C., pp. 120-131.

30

[21] A.N. Badre, T. Catarci, A. Massari & G. Santucci (1996) Comparative ease of use of a

diagrammatic vs. an iconic query language. In: Electronic Series Workshop in Computing,

Springer, London, http://www.springer.co.uk/eWiC/Workshops/IDS3.html .

[22] G. Bellavia, D. Maio & S. Rizzi (1995) An SQL extension supporting user viewpoints. In:

Proceedings 6th International Conference on Database and Expert Systems Applications,

London, pp. 334-343.

