VISIONARY: a Viewpoint-Based Visual Language
for Querying Relational Databases

FRANCESCABENZzI, DARIO MAIO, STEFANO RIZZI

DEIS, Universita di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
e-mail: {dmaio|srizzi}@deis.unibo.it

Abstract
The adoption of a visual interface can simplify the query formulation process in DBMSs by
enabling naive users to interact with a friendly environment. In this work we propose a visual
guery language based on a diagrammatic paradigm, used for both data and query representation.
The external data model is called vision and is made up of the visual primitives of concept and
association. The external query model is based on the definition of a viewpoint, which is a
perspective for accessing data defined dynamically by selecting a concept of primary interest.
Internally, the data model is relational and the query language is SQL. An intermediate graph-based
model ensures consistent mapping between the visual and the relational worlds. Our language has
been implemented within a tool which can be mounted on top of any relational DBMS supporting
ODBC. The system has been tested with naive users; the results of the experiment are reported and
compared with those obtained with other visual languages.

Keywords and phrasesVPL-II.B.1: Diagrammatic languages, VPL-V.B: Database languages

1. Introduction

Visual styling for user interfaces is aimed at improving usability. In this direction the graphic
presentation of the information is essential, since an effective drawing often conveys a concept
more immediately and more clearly than a long written explanation [1]. Good usability results have
been achieved by applications such as word processors, drawing tools and, in general, by those
applications which do not require specific theoretical knowledge to be used.

Query languages for database management systems (DBMSs) often lack both intuitive
understanding and visual aid; this prevents inexperienced users from taking full advantage of them.
In fact, an inexperienced user willing to query a DBMS by means of a traditional query language
must face a number of problems:

. Learning mastering even the basic principles of the relational theory requires a lot of time
and study.

Copyright © 1999 by Academic Press

. Difficult use a user querying a DBMS is subjected to syntax that is rigid and hard-to-
remember.

. Poor feedbackthe user receives little feedback about the semantics of the query (s)he is
formulating.

. Little interaction the query-building process does not usually contemplate any form of
dialogue with the user.

A visual interface can effectively support the query design process: although the difficulty of the
subject cannot be completely overcome, users can interact with a friendly and helpful environment,
and query formulation becomes easier.

In this paper we propose a visual query language cal@®dNVARY, based on a diagrammatic
paradigm used for both data and query representation. In particular, the external data model is
calledvisionand is made up of the visual primitivescohcept(represented by the combination of
a text and an icon) arabsociation(represented, for each possible orientation, by a name and a
multiplicity); the external query model is based on the definition of a viewpoint, that is, a dynamic
and adaptive perspective for accessing data. The internal data model is relational, and the internal
guery model is SQL. The mapping between the visual and the relational worlds is established
through an intermediate graph-based level [2].

VISIONARY is mainly directed to naive and occasional users, who have no experience with data
models and only have a general idea about the contents of the database; for this reason, the
expressive power of BIONARY is limited to restricted join queries.

We have implementedI®IONARY within a tool which can be mounted on top of any relational
DBMS supporting ODBC. The tool acquires an existing database scheme from the DBMS and
assists an expert user in building a vision by allowing the proper definition of the logical and visual
aspects of the different entities. Finally, a naive user can access and query the vision; the visual
gueries are translated into SQL queries and handed on to the DBMS, which executes them and
returns the results to the visual tool. The architecture of the system and its use by expert and naive
users are sketched in Figure 1.

Y
"

VISUAL . VISUAL
expert —} VISUAL / LEVEL naive —' VISUAL \L%
user 3 TOOL \‘ user O LTO% |~ .
SQL* LEVEL

quer query

databas results e
scheme)
DBMS RELAT. DBMS _} RELAT.

DATABAS DATABAS

Figure 1. Expert and naive users interacting with th&€I®dNARY tool. Grey and black arrows denote different
flows of data.

I\

pue [ea160|
Aianb
fensin

s10adse [ens

Section 2 briefly surveys some approaches to visual query languages in the literature. Section 3
introduces the working example which will be used throughout the paper. In Sections 4 and 5 we
describe, respectively, the data and the query models. Section 6 gives some examples of query
formulation, while Section 7 reports the results of an experiment made with naive users and
compares them with those obtained with other visual languages.

2. Visual query systems in the literature

A classification of Visual Query Systems (VQSs) based only on their graphic appearance would be
poor; three classification parameters have been proposed in [3]: the visual metaphor the VQS uses
to represent and query the database, its expressive power and the classes of users it is intended for.
A comprehensive survey of VQSs is proposed in [4].

2.1. Visual metaphor

Four visual paradigms can be followed in building a visual interface for a DBabSiar,
diagrammati¢iconic andhybrid.

Among tabular approaches we recall QBE [5], the first successful attempt to build a graphical
user interface for a relational DBMS. Data are presented as tables, and queries are formulated by
compiling them; the main drawback is that a satisfactory global view of the database cannot easily
be produced.

In a diagrammatic approach, simple geometric figures are connected to build a global vision of
the database. Most VQSs in this category, for instance GUIDE [6], SUPER [7] and QBD* [8],
follow the Entity/Relationship formalism and enable the user to formulate queries by navigating on
the conceptual scheme. Some diagrammatic languages adopt a 3-D representation for data and
results (see AMAZE [9]). In general, the diagrammatic metaphor generates a good global view of
the data, but its dominant symbolic nature may be difficult to understand.

In the iconic approaches, queries are composed by selecting and combining icons, and by
creating new ones (see for instance [10] and [11]). The iconic paradigm is very intuitive and has
great expressive power. Nevertheless, the ability to distinguish one icon from the other decreases
with the increase of the total number of icons; besides, icons which represent actions or abstract
concepts are very difficult to design.

Hybrid paradigms attempt to overcome this problem by uniting the immediacy of icons with the
expressive power of diagrams and text. A multiparadigmatic VQS is proposed in [12]; the user is
provided with an adaptive interface supporting different visual representations of data and queries.

VISIONARY offers a diagrammatic global view, but uses icons to achieve better understanding
of concepts; query results are represented in tabular form.

2.2. Expressive power

The expressive power of a VQS is its ability to extract consistent information from a database; in
[3], its definition is based on a classification of the queries. The expressive power of most VQSs is
limited to first order queries, that is, all queries which can be expressed in relational algebra. There
have been some attempts to further extend the expressive power by including recursive queries [8]
[13].

The expressive power ofiSIONARY is limited to restricted join queries enriched with special
purpose operators (aggregation functions).

2.3. Users

A VQS may be used by different kinds of users. Currently, few languages are versatile from this
point of view, while most are specifically intended for a given class of users. The non-professional
users of a VQS can be classified according to their experience, how frequently they use the VQS,
their knowledge of the database and the predictability of their queries.

The users VBIONARY is mainly aimed at aneaive (they generally do not need to formulate
complex queries)xasual(they do not access the database frequentlyuaimdormed(they only
have a superficial knowledge of the database).

3. Working example: the "Order Database"

The Order Database models the employees, the clients, the suppliers, the products and the price-
lists of a small firm. The database scheme is represented below (primary keys are underlined;
foreign keys are followed by ":" and by the relation they refer to).

LIST(codList,areaName)

PRODUCT¢odProd,description)

CURRENCYdurrName,country)

QUOTES¢0dProd:PRODUCT, codList:LIST, currName:CURRENCY,price)

STORE(odStore,address,inArea:LIST)

PROD_IN_STORE¢odProd:PRODUCT, codStore:STORE,quantity)

EMPLOYEEf€odEmpl,name,salary)

VENDOR¢odEmpl,supervises:LIST)

SOLD_BY(codProd:PRODUCT, codEmpl:VENDOR)

CLIENT(codCli,name,address,firmOrCustomer,belongsTo:LIST)

ORDER¢odOrder.date,signedBy:VENDOR,madeBy:CLIENT,expressedin:CURRENCY,
amount,ifCarriedOut)

PROD_IN_ORD¢odProd:PRODUCT, codOrder:ORDER,quantity)

SUPPLIER(codSupplier,name,address)

SUPPLIES(codSupplier:SUPPLIER, codProd:PRODUCT,quantity)

In order to better understand this simple logical scheme it may be useful to consider its conceptual
representation, sketched in Figure 2 using the Entity/Relationship formalism.

up%rvis

(1,n
)

|
1.1) AREA 1 <mCIUd>e 1.1

w.1) EMPLOYEE
(1,1) ?

(L.1)
VENDOR
CLIENT
A o
1
CURRENCY
CUSTOMER
(0,n)
©.,n)| amount | SUPPLIER

@) @
pays b

(11)

Figure 2. Entity/Relationship conceptual scheme of the Order Database.

4. The data model

VISIONARY enables users to access a relational database through an effective diagrammatic
representation similar to an Entity/Relationship scheme. An intermediate graph-based level
establishes the mapping between the internal data model, which is relational, and the visual
metaphor adopted as the external data model.

4.1. Internal data model

A database scheme includes a set of relations and a set of integrity constraints. Each relation has a
name and a set of attributes. Among integrity constraints, entity integrity and referential integrity
constraints specify, respectively, the primary key and the foreign keys (if any) of each relation.
The primary keyof relationr; is a subset of the attributesrpfwvhose values exactly identify one
tuple ofrj. A foreign keyof rj is a subset of the attributesrpfvhose values either occur as a value
of the primary key of a relatiar (not necessarily distinct from) or are null.

A comprehensive explanation of the relational theory can be found in [14].

4 .2. Intermediate data model

Let » be a relational database scheme including a set of reld®iamsl a set of integrity
constraints. Each referential integrity constrainbidetermines a relationship between the relations
involved; we call this relationshipotential link For instance, the foreign keignedBy in relation
ORDERJetermines a potential link between attrilgigeedBy in ORDERand attributeodEmpl in
VENDOR Other potential links may be defined explicitly by the database designer when the
comparison between two attributes is expected to be relevant. Wetlealket of all the potential
links defined om.

In the following we will assume, for notational simplicity but without loss of generality, that all
the primary and foreign keys #m consist of a single attribute.

A relationrJR is defined by its nameamedr) and by the set of its attribut@str(r). Relation
names are unique within a database scheme; attribute names are unique within a relation.

A potential linkI[IL is defined by its two directions, calledected links (see Figure 3), and by
a strength. Thetrengthof a potential linK, strengttfl)C){'strong’,'weak’}, expresses its expected
relevance in query formulation; it may be explicitly defined by the designer or implicitly determined
by means of a default rule. For each directeddiipk = 1, 2:

. rel(dlj) R andattr(dl;)DAttr(rel(dl;)) denote, respectively, the starting relation and the
starting attribute;

. mult(dlj)J{1,N} denotes the multiplicity of the relationship represented Wwijen traversed
starting frormrel(dl;);

. freq(dl;) denotes the frequency with which the user has selkstethr starting fromel(dl;)
when formulating his/her queries.

no—-~—o

Figure 3. Directed links corresponding to a potential link.

Given a potential link, the two corresponding opposite directed links anddl> may be
identified asl(r1) and (,r2), respectively, wherg =rel(dl;). We callDL the set of all the directed
links corresponding to the potential linksLinobviously,DL has double cardinality with respect to
L.

An example of potential link in the Order Database is the one defined by the directetl;links
anddl, such that:

rel(dly) = ORDERattr(dl) = expressedin , multi(dly) = 1,
rel(dlo) = CURRENGCYattr(dlz) = codCurr , multi(dlp) =N

We represenp by a non-directed graph = (RL), calleddatabase graphwhere each vertex
corresponds to a relation and each edge to a potential link. Figure 4 shows the database graph
representing the Order Database.

PROD_IN_STORE
) O QL LIST
STORE
PRODUCT soLD BY
QUOTEL) Q O
VENDOR | CLIENT
SUPPLIES

EMPLOYEE

cURRENCC) @)

) ORDER

SUPPLIER
PROD_IN_ORD

Figure 4. Database graph for the Order Database.

4 .3. External data model

In this section we describe the visual metaphor adopteBioNARY, by defining different kinds

of visual objects. Each visual object is defined at two levels: at the first one, by listing its visual
components; at the second one, by establishing a mapping between the visual object and its
representation at the graph level. The visual objects and their properties, as well as the graphic
layout of the vision, are completely defined by the expert user.

4.3.1. Visions

A vision is a visual object aimed at conveying a high-level, clear and expressive representation of a
relational database, largely independent of the structuring of data within the database schema. A
vision is built by an expert user taking into account both the semantics of the database scheme and
the needs of the inexperienced users who will access the database through the vision itself; if a
conceptual scheme for the database is known, it may be helpful in defining the most effective
representation for data. Several visions may be built on the same database, in order to address
different classes of users and/or different application requirements.

Let G = (RL) be a database graph.vfsiononG is defined as a graph= (C,A), whereC is
a set of concepts aml a set of associations. Concepts represent relations, while associations
express relationships between two or more concepts. It should be noted that not every relation
needs to be represented by a visual object, nor does every attribute of a relation represented by a

visual object need to be included in the object itself; thus, a vision may be used to hide a part of the
database from the inexperienced user.

An example of a vision on the Order Database is shown in Figure 5.

/ helohigs o ﬂ .
%’]‘ \ W s |
tnakas

Area a

Ew.lp‘logee

Iz a Iz a

® i

A2y PR 5T

SUpEises

% a

Cirder

is signed by

zells

Price- List

T passende 5T

%

Product

quikes

iz stored %

Store

supplies

Currehicy

it

Supplier

Figure 5. A vision on the Order Database.
4.3.2. Concepts

A conceptc is defined by an icoiton(c), a namenaméc), a set of attributeAttr(c) and by the
mapping

cm:C - R

whereAttr(c)JAttr(cm(c)). Functioncm associates each concept to a relation from which the
concept's attributes are drawn.

A concept is represented visually by displaying its icon and its name (an exaBpiplayee
in Figure 5); the attributes of the concept may be viewed by double-clicking the icon.

In some cases a given relatiommay be associated to different concepts, among which the
attributes of can be distributed in order to:

partitionr vertically, with the aim of emphasizing conceptually distinct aspects. For instance,
a relationPERSONMay be associated with two concepts: one defining each person from the
private point of view (attributesame, address , etc.), the other from the work point of view
(attributessalary , duties , etc.).

partitionr vertically and horizontally, with the aim of emphasizing two concepts related by an
is-a relationship. This may happen when, during the logical project, in order to translate a
generalization hierarchy from the Entity/Relationship scheme, the attributes of the sub-entities
and those of the super-entity have been brought together into one relation. Thus, for
instance, relatioLIENT may be associated with three concepts: one defining all clients
(with their general attributes), the others defining firm and customers (each with its specific
attributes), respectively.

partitionr vertically, with the aim of emphasizing two concepts related by a relationship. This
may happen when a one-to-one relationship in the Entity/Relationship scheme has been
translated by one relation where the attributes of the two entities involved are brought
together. Thus, for instance, relatiarsT may be associated with two concepts: one
defining the price-lists, the other the sale areas.

Table 1 contains the definitions of all the concepts belonging to the vision represented in Figure

5.
namec) namécnc)) Attr(c)
Price-List LIST {code}
Area LIST {areaName}
Product PRODUCT {code, description}
Currency CURRENCY {name, country}
Store STORE {address}
Employee EMPLOYEE {name, salary}
Vendor VENDOR 4
Client CLIENT {name, address}
Firm CLIENT 4
Customer CLIENT 4
Order ORDER {code, date, ifCarriedOut}
Supplier SUPPLIER {name, address}

Table 1L The concepts in the Order Database.

4.3.3. Associations

An n-ary association ds defined by a set @2 directed associationand by a set of attributes
Attr(a). For each directed associatid®, i = 1,..n:

. conddg)IC denotes theth concept involved ig;
. namédag) denotes the name givenaavhen traversed starting frooonddg);

. min(dg){0,1} and maxda)[J{1,N} denote, respectively, the minimum and the maximum
number of instances of the othrerl concepts associated to one instanc®o{dg).

Given an associatios, then corresponding directed associatiaias,...da, may be identified
as @,c1),...(a,cn), respectively, wherej = condqda). We callDA the set of all the directed
associations corresponding to the associatioAs in

The correspondence between each directed association and one or more directed links is defined
by the mapping

Am:DA - 2DL
explained in detail in the following.

Binary associations

A binary associatioa involves two distinct conceptg andcy. Letr1 andrs be, respectively, the
relations into whiclec, andcy map.

. Binary associatioa may correspond to one potential linthat has ends andro:
Am((a,c1)) = {(l,r1)}
Am((a,c2)) = {(l.r2)}
In this case, the attributes@fnay belong to one or both the relations involved:

Attr(a) O Attr(r1) JAttr(ro)

An example is the association betwéader andCurrency

. Binary associatiom may correspond to two potential linksandl, that have ends, andr;,
andro andrg, respectively, where; is a relation not associated to any concegjptobt
relation):

Am((a,c1)) = {(Iz.r1).(2,r)}
Am((a,c2)) = {(12,r2).(I.,r2)}
In this case, the attributesa@must belong to the ghost relation:
Attr(a) O Attr(ry)
This form is generally used wheng is the relation modelling the many-to-many binary
relationship betweem andro and is not considered worth being represented as a concept.
An example is the association betweBnoduct and Store (the ghost relation is

PROD_IN_STORE
. If r1 =ro, it must be

Am((a,cy)) = Am((a,c2)) = O

10

(empty associationsln this case, the attributes@fmust belong to the relation involved:

Attr(a) O Attr(ry)

This case occurs when two or more concepts have been defined on the same relation aimed,
as explained in Section 5.1.2, at partitioning the relation itself. Normally, the partitioning is
accompanied by the definition of an association which does not correspond to any potential
link. An example is the association betwdeaaandPrice-List

Tables 2 to 4 contain the definitions of all the binary associations belonging to the vision
represented in Figure 5; each association is described by 2 rows, one for each corresponding
directed association.

namé¢condda)) |naméda) min(da) | maxda) | Am((a,condda))) Attr(a)
Store is in 1 1 {6TOREiInArea ,LIST .codList)} th
Area includes 0 N {(LIST .codList ,STOREnArea)}

Employee is a 0 1 HEMPLOYEEodEmpl ,VENDORodEmpl)} th
\endor is a 1 1 {{ENDOR0dEmMp| ,EMPLOYEE0dEmMpI)}

Vendor supervises 1 1 MENDOBuUpervises ,LIST .codList)} th
Area issupervised by | 1 N {(LIST .codList ,VENDORupervises)}

Client belongs to 1 1 ffLIENT .belongsTo ,LIST .codList)} i
Area includes 1 N {(LIST .codList ,CLIENT.belongsTo)}

Order issigned by 1 1 {ORDERsignedBy ,VENDORodEmpl)} th
Vendor signs 0 N {(VENDORodEmp! ,ORDERsignedBy)}

Order ismade by 1 1 {ORDERmadeBy,CLIENT.codCli)} h
Client makes 0 N {(CLIENT.codCli ,ORDERnadeBy)}

Order isexpressed in 1 1 {{RDERexpressedin ,CURRENCXodCurr)} {amount}
Currency expresses 0 N {(CURRENCXodCurr ,ORDERexpressedin)}

Table 2 The non-empty binary associations without ghost relation in the Order Database.

namé¢condda)) |naméda) min(da) [maxda) | Am((a,condda))) Attr(a)
Product isstored in 1 N {(PRODUCE0dProd ,PROD_IN_STOREo0dProd),
(PROD_IN_STOREo0dStore ,STOREcodStore)} {quantity}
Store stores 1 N {(STOREcodStore ,PROD_IN_STOREodStore),
(PROD_IN_STOREo0dProd ,PRODUCEodProd)}
Product issold by 1 N {(PRODUCEo0dProd ,SOLD_BYcodProd),
(soLD_BYcodEmpl ,VENDORodEmpl)} i
Vendor sells 1 N {(VENDORodEmpl ,SOLD_BYcodEmpl),
(SOLD _BYcodProd ,PRODUCEo0dProd)}
Order includes 1 N {(ORDER0dOrder ,PROD_IN_ORL:0dOrder),
(PROD_IN_ORDxodProd ,PRODUCTEo0dProd)} {quantity}
Product belongs to 1 N {(PRODUCEo0dProd ,PROD_IN_ORxodProd),
(PROD_IN_ORX0dOrder ,ORDERcodOrder)}
Supplier supplies 0 N {(SUPPLIER.codSupplier ,SUPPLIES.codSupplie
r),(SUPPLIES.codProd ,PRODUCEo0dProd)} {quantity}
Product issupplied by 0 N {(PRODUCTEo0dProd ,SUPPLIES.codProd),

(SUPPLIES.codSupplier ,SUPPLIER.codSupplier)}

Table 3 The binary associations with ghost relation in the Order Database.

11

namé¢condda)) |naméda) min(da) | maxda) | Am((a,condda))) Attr(a)
Price-List is for 1 1 ¢ ¢
Area ruled by 1 1 {

Client is a 0 1 ¢ ¢
Firm is a 1 1 ¢

Client is a 0 1 ¢ ¢
Customer is a 1 1 4

Table 4. The empty binary associations in the Order Database.

Self-associations

A self-associatiom is a binary association involving the same concépice. The same holds as
above, withcy = cp =c. A self-association may or may not have a ghost relation, but it cannot be
empty.

N-ary associations

An n-ary associatiom involvesn distinct conceptsy,...Cp (n=3). Letry,..ry be the relations into
which cy,...cn map, respectively.

. n-ary associatiom always corresponds topotential linkd,.. I, that have ends, andr,...
rn andry respectively, wherg is a relation not associated to any concgpbs$t relation:

Am((a,c1)) = {(Iz.r1),(2,r2),(3.r2),...0n,r2)}

An((aacn)) = {(In!rn)i(ll!rZ)!(IZ!raa"'(In'larZ)}
(see Figure 6). The attributesaomust belong to the ghost relation:
Attr(a) O Attr(rp)

This form is used whery is the relation modelling the many-to-mamgary relationship
betweenr,..rn and is not considered worth being represented as a concept. On the other
hand, should the designer choose to represent the ghost relation as a@omiceptary
relationship would be represented by definmdinary associations (without the ghost
relation) betweew* andcy,...Cn.

rno - O
%{l

Figure 6. Three sets of directed links (in black, dark grey and light grey) corresponding to the three directed
associations defining a ternary association.

|1 rZ ;O r
3
P |3
r2

12

Table 5 contains the definitions of the ternary association belonging to the vision in Figure 5; it is
described by 3 rows, one for each direction.

namécondda)) | naméda) min(da) | maxda) | Am((a,condda))) Attr(a)
Price-List guotes 1 N {(LIST .codList ,QUOTESodList),
(QUOTES0dProd ,PRODUCE0dProd),
(QUOTESurrName ,CURRENCXurrName)}

Product isquoted in 1 N {(PRODUCEo0dProd ,QUOTES0dProd), {price}
(QUOTESoodList ,LIST .codList),
(QUOTESurrName ,CURRENCXurrName)}

Currency expresses 0 N {(CURRENCXurrName ,QUOTESurrName)
(QUOTES0dProd ,PRODUCTE0dProd),
(QUOTESodList ,LIST .codList)}

Table 5. The ternary associations in the Order Database.

The maximum multiplicity of a directed association is determined by the multiplicity of the

corresponding directed links as follows:
maxda) = g’ammum{mult(dl) | dIDAM(da)}, |iff ﬁnﬂ(ggg:g

Associations are used to convey an expressive and accurate picture of the relationships between
concepts. Each association is always represented visually in one of its directions, by displaying a
grey arrow connecting one end to the others, tagged with the name of the association when read in
the direction of the arrow; the direction in which an association is displayed within a vision can be
changed by right-clicking on the association. The attributes of the association may be viewed by
double-clicking the association name; the user can further "explore" the association by left-clicking
on it, which leads to visualizing the association multiplicity (Figure 7 shows some examples).

2 I < |

Clietit Oider
}‘
|% trakes b 2 g
Client Order (b)

% sells %

Wendor Froduct

(©

Figure 7. Visual representation of associations with multiplicity 1-1 (a), 0-n (b), 1-n (c).

Two types of binary associations are treated differently from the others within the vision: those
modelling relationships with semantics PART-OF and IS-A.

13

PART-OF associations express the aggregation between a concept and one or more component
concepts. A PART-OF association may or may not have a ghost relation, or be empty; an example
is the association betweerDERandPRODUCTVisually, PART-OF associations are emphasized
by framing them within a triangle. Names are predefined in the two directmmhsdes belongs
to) and cardinalities may have any values.

IS-A associations express the specialization of a concept into one or more derived concepts. An
IS-A association may either correspond to one potential link (when a hierarchy in the
Entity/Relationship scheme has been translated by creating a different relation for each sub-entity
and one relation for the super-entity) or be empty (when the hierarchy has been translated by
creating only one schema for the super-entity, on which two or more distinct concepts have been
defined); when defining an empty IS-A association, a Boolean predilzafedapable of selecting
the instances of the derived concept must be specified. Examples of the two kinds are the
associations between, respectivelyPLOYERNdVENDORINACLIENT andFIRM (with associated
flag firmorCustomer ='F'). Visually, IS-A associations are emphasized by framing them within
an ellipse. Names are predefinésld in both directions); minimum and maximum cardinalities
must be, respectively: 1 and 1 towards the base concept, 0 and 1 towards the derived concept.

5. The query model

Naive users access the database through the visions previously defined by expert users. The
intuitiveness and expressivity of visions help them understand the database semantics, and assist
them in formulating queries without knowing the relational theory.

The external query model is based on the definition of perspectives for accessing data; the
internal query model is SQL.

5.1. Intermediate query model

When conceiving a query on a database, the user of a DBMS has in mind a set of attributes,
belonging to one or more relations, whose values (s)he is interested in obtaining. Among these
relations, one has a primary role since it embodies the point of view from which the user wants to
access data in the database. For instance, suppose the user querying the Order Database is
interested in knowing, for each order, the stores where the products included in the order are kept.
Since the productsf an order and the storebthe product®f that order are required, the primary
role is played by the entityrder, in other words, the attributes of the products can be considered as
"extended" attributes of the order, and those of the stores as "extended" attributes of the products
of the orders.

In our approach to query inference the user, when formulating a query, can sgetiigry
relation (PR) which defines amference tregei.e., a perspective for accessing data. Within an

14

inference tree, the PR is connected to every other relation through exactly one path of relationships;
thus, in a query interpreted on a tree, it is possible to reference attributes belonging to any relation
without explicitly formulating the necessary joins. The inference tree for each given PR is
adaptively built by privileging the query interpretations more frequently adopted by the user so far.
Choosing a PR bears some similarities with defining a root for the query tree in SUPER [7]. On
the other hand, while in[8IONARY the choice of the PR leads to the automatic building of a tree
on the database graph, in SUPER the choice of the root is made after the tree has been manually
built by the user. In QBI [10], the user selects a concept which acts as the viewpoint for the current
guery and browses the set of the generalized attributes. Generalized attributes correspond to our
extended attributes; while QBI provides all the different interpretations, which may be confusing to
the user, VSIONARY gives one default interpretation and allows the user to modify it
progressively.

5.1.1. Inference trees

LetG = (RL) be a database graph;iaference tre@ssociated to the RgLIR is a directed subtree

of G with root inrp: T = (R',DL’) whereR'is a multiseét whose elements belong R DL'IDL.

Note that, sincd is a tree, each of its vertices (except the root) is entered by exactly one arc.
Besides, sinc®'is a multiset, the same relation may appear twice or more Withmthis case,

the copies are discriminated by using aliases.

In our approach, default inference trees built automatically for each choice of the PR. The
user may then modify this tree by means of the visual language; in particular, (s)he may add some
arcs, drop some others, and duplicate some vertices. In this section we briefly explain how the
default tree is built; further details can be found in [15]. Modifications of the inference tree are
discussed in Section 5.3.2.

The default tree associated to the database @aptu to the PRy is denoted witlt(G,rp) =
(R',DL") and is represented by a spanning tre&on

R'=R

If the database graph is acyclic, exactly one spanning tree exists for each PR; it can be obtained
by giving each potential link in the database graph a direction in such a way that no arc enters the
PR and all other vertices are entered by exactly one arc. In this case the default tree is univocally
determined, and only one interpretation is possible for each query sentence.

If, on the other hand, the database graph is cyclic, a number of different spanning trees may
correspond to each PR; in order to give exactly one interpretation of each query sentence, a

a A multisetis an unordered collection of elements; it differs from a set since the same element may appear
several times. We will denote multisets with double braces: {{...}}.

15

criterion must be used to select, for each PR, one spanning tree so that the resulting interpretations
are the most reasonable, that is, those which the user most probably expects. For this purpose, we
estimate thesoundnes®f the possible query interpretations by considering the properties of the
potential links involved; the default tree associated to a PR is then defined as the spanning tree
which maximizes the soundness for the queries formulated from that PR. The three potential link
properties taken into account to estimate the soundness are: the strength of the potential link (strong
links are sounder than weak links), its multiplicitg-onelinks are sounder than-manylinks)
and its frequency (frequent links are sounder than infrequent links). Details on the mathematical
definition of soundness, together with the algorithm which determines the spanning tree with
maximum soundness, can be found in [15].

Figure 8 shows the default inference trees associated tBRRIR&JCBNACLIENT.

PROD IN_STORE PROD_IN_STORE
O~ LIST @ | IST
STORE STORE
QUOTESPRODUCT %EE?_BY CLIENT PRODUCT SOLD_BY VENDOR
O« Q »O
VENDOR QUOTES CLIENT
SUPPLIE
EMPLOYE CURRENCY

CURRENC'SUPPLIES

SUPPLIE%

Figure 8. Default inference trees associated to PRODUCTleft) andCLIENT (right).

ORDER ORDER
SUPPLIER

PROD_IN_ORD 5 PROD_IN_ORD

5.1.2. Query interpretation

On the intermediate model, a query is defined as
q = (T,SCIJP,RAGASA

whereT = (R',DL") is an inference tre&Ca set of selection conditions (local Boolean predicates
on the attributes of the relatiod a set of additional join predicates (those not corresponding to
any potential link),RA a set of attributes (or aggregate functions applied to attributes) to be
retrieved,GA a set of grouping attributes aBéa list of sorting attributés The multiset of the
relationsmentionedn q includes all the relationsR' such that at least one of the attributes of
appears in at least one of the @& JP, RA GA, SA We callactive linksfor g the directed links
belonging to the directed paths which, witflinconnect its rootp to every other relation

b All attributes are assumed to be referenced with the name of the relation scheme they belong to. If the same
relation scheme appears twice or more within the inference tree, its aliases are used.

16

belonging toM (within a tree, the root is connected with each other vertex through exactly one
directed path).
Queryq is translated into an SQL formulation in which:

1. the select-list includes all the attribute&ify
2. thewHERElause includes:
2.1 for each active linHl (if any), an equi-join predicate between the two attributes involved
in dl;
2.2 all the join predicates P (if any);
2.3 all the Boolean predicatesSi€(if any), connected by and/or operators;
3. theGRoOUP BYclause includes all the attributesGr (if any);
4. theORDER BYclause includes all the attributes3A(if any).

For instance, consider a query formulated on the default inference tree withdPRCTsee
Figure 8) and mentioning the following attributes:

SC= {STOREaddress ='1 Wall St."PROD_IN_ORMuantity >10}, JP=0, GA=0
RA = {PRODUCTescription ,CLIENT.name}, SA=0

The active links (briefly denoted with their twalation.attribute ends) are:

(PRODUCTo0dProd ,PROD_IN_STOREodProd),
(PROD_IN_STOREodStore ,STOREcodStore),
(PRODUCTodProd ,PROD_IN_ORxodProd),
(PROD_IN_ORodOrder ,ORDERcodOrder),
(ORDERNadeBy,CLIENT.codCli)

The interpretation adopted for this query can be expressed in SQL as follows:

select PRODUCT.description, CLIENT.name
from PRODUCT, PROD_IN_ORD, ORDER, CLIENT, PROD_IN_STORE, STORE
where PRODUCT.codProd = PROD_IN_ORD.codProd

and PROD_IN_ORD.codOrder = ORDER.codOrder
and ORDER.madeBy = CLIENT.codCli

and PRODUCT.codProd = PROD_IN_STORE.codProd
and PROD_IN_STORE.codStore = STORE.codStore
and STORE.address="1 Wall St.'

and PROD_IN_ORD.quantity>10

For each productGLIENT is interpreted as the clients who have ordered the productyTemtas
the stores where the product is kept. Thus, the query returns the products stored at the address '1
Wall St." and the clients who ordered more than 10 pieces of them.

17

It should be noted that, owing to the query model adopted, formulating joinSIDNARY
typically requires defining the corresponding potential links. This forces the expert user to predict
all the reasonable possibilities for joining relations while designing the database graph underlying
the vision; on the other hand we assume that, even if supported by visual facilities, a naive user
would hardly be capable of understanding the meaning of a join and of formulating it explicitly.

5.1.3. Query inference in the literature

Several approaches for simplifying query formulation can be found in the literature. Among those
based on the building of derived relations, we mention relational views and the universal relation.

Relational views are derived relations defined by the user in terms of one or more physical
relations or other views, and show advantages both in terms of logical independence and data
security. Query formulation on an inference tree is not equivalent to query formulation on a
relational view; in fact:

. Defining a relational view requires several joins to be explicitly formulated, while defining a
default inference tree only requires choosing a PR.

. One default inference tree for each relation in the database scheme is made available; a
different relational view should be written for each viewpoint.

. Adopting an inference tree may not be equivalent to defining one relational view. Consider
for instance the association between clients and orders, which is optional. When a query is
formulated with PRCLIENT, the clients who did not make any orders will appear in the
resulting relation ifORDERIS not mentioned, but will not bRDERIs mentioned. This
behaviour can be reproduced only by creating two distinct relational views.

. If the database scheme is changed (a relation is added, dropped or modified), all the relational
views involved must be rewritten, while all the default inference trees will be automatically
generated based on the new scheme.

In the universal relation, query inference is approached by building a view which combines all
the relations in the database through natural joins [16]. On the other hand, the universal relation
calls for requirements that are not always satisfied in practical applications [17]. A basic
assumption is that each attribute plays only one role, so that an attribute like "address" can only
stand for the address of either the supplier, the department or the employee; the database designer
is thus forced to differentiate names of attributes which are defined on the same domain but play
different roles. Besides, the universal relation generates a fixed sight of the database, on whose
structure the user cannot intervene. Our approach does not require the attributes to be unique;
besides, distinct inference trees are created for the different PRs.

In [18], ambiguous sentences of the query language are interpreted by determining, on the
database graph, the minimum directed cost Steiner tree; the cost of a query depends only on the

18

cardinalities of the relationships involved. In [19], query disambiguation is carried out by
considering theelatednes®f the relations involved and the existence of directed paths between
them. In [20], disambiguation is carried out by choosing the interpretation which contains fewer
similarity arcs(arcs connecting attributes defined on the same domain) and, possibly, by starting a
clarification dialogue with the user. All these approaches differ from ours, since they do not
consider the possibility of accessing data through multiple perspectives.

5.2. External query model

In the same way as a vision is the visual representation of a database graph, a viewpoint is the
visual representation of an inference tree. A default viewpoint is automatically built by selecting a
primary concept, and may then be edited visually by the user.

5.2.1. Viewpoints

Given a visiorV and aprimary conceptp, aviewpointis a directed subtree wfrooted incp: P =
(C',DA"), whereC' is a multiset whose elements belon@tandDA'CIDA.

The definition of a viewpoint partitions the associations of a vision into enabled and disabled.
We callenabledall the associationalJA such thatdcl[IC' | (a,c)[0DA' (one of the directed
associations correspondingaas included in the viewpoint); the others digabled

A viewpoint on a vision is represented visually by

1 highlighting the primary concept;

2 orientating each enabled association according to the direction in which it apf®ars in
3. drawing in black each enabled association;

4 drawing in grey each disabled association.

A viewpointP = (C',DA") determines univocally on the database graph an inferencg(Ree
(R',DL") whose vertices are all the relations corresponding to the concepts in the viewpoint and all
the ghost relations of the associations enabled, and whose arcs are all the directed links
corresponding to the directed associations enabled:

R'={{rOR|r =cm(c), cC}} O {rOR| ([JdalIDA'|r is the ghost relation fata)}
DL' = {dIODL | (OdaDA' | dI O Am(da))}

Duplicate concepts IR determine duplicate verticesTifP). If P includes two distinct concepts
andcy corresponding to the same relatigitwo cases may occur:

1. If the empty association betweenandcy is enabledr appears ifT(P) only once; in fact,
duplicatingr would require the formulation of a useless self-join.

19

2. If the empty association betweenandc; is disabledr is duplicated withifil (P). In this
case, the user is willing to accegsandcy separately, hencemust appear twice within the

inference tree.

Similarly, an inference tre€ = (R',DL') determines univocally a viewpoiR(T) = (C',DA")

such that:

Note that an association is enabled only if all the corresponding directed links appear within the

inference tree.

Figure 9 shows the viewpoint corresponding to the default inference tree WRAtRICTn

Figure 8.

C'={cOC|@rOR"|r=cm(c)}}
DA' = {dalIDA | OdIDAmM(da) (dICODL")}

belohgs bo

— e}
\ iz trijde by

1ol
Firm Cuztorner

Frize- List

R

iz quaoted

1 phssendie o

g

ﬁfr‘q

Area

Order

\
o

5
B
=
I

7

l

%

Currency

l—l

Froduct

iz supplied hp—l

I\

lier

20

1

SUPErises

SHpLIT

iz sigried by

iz zold Ty

Ew'lp‘loyee

r — v —
Q@

=i
3
Cu
o

\

|

—if SRR [Fife

i

Skore

Figure 9. Viewpoint corresponding to the default inference tree wittPRRDUCT

5.2.2. Visual formulation of queries

A visual query is defined as

20

q' = (P,SC,JP',RA'GA'SA)

where P is a viewpoint,SC'is a set of selection condition3P' is a set of additional join
predicatesRA'is a set of attributes to be retriev€&h' is a set of grouping attributes a8éd\'is
an ordered list of sorting attributes.

The formulation of a visual query consists of five steps:

Choose a primary concept (implicit formulation of default joins).

Edit the viewpoint (implicit formulation of overridden joins - optional).
Choose attributes to be retrieved (projection).

Formulate selections on attributes (selection - optional).

Order and/or group the results (optional).

a M wnh e

The order in which the five steps are presented is essentially conceptual; in fact, steps 2. to 5. may
be interleaved (but step #1 must be carried out first).

The first two steps are aimed at buildingthat is, at determining an inference tree in order to
define which joins will bgotentiallypart of the query; these steps are sketched in Figure 10. The
remaining steps, besides their specific functions, all go towards determining a multiset of concepts
"mentioned"” within the query, which includes all the conceft€ such that at least one of the
attributes ofc appears in at least one of the s&€, JP', RA', GA', SA. The associations
belonging to the paths connecting the primary concept to each concept mentioned ametoadled
associationsand displayed in red within the viewpoint, to emphasize the fact that they determine
which joins will be actually formulated for the current query.

naive
choos user ., enable{dl_sable
*.associations

DEFAULT .
V|S|0N>\r viewpomnt PLVIEWPOINT,

<:PMMC;
. CONCEP
visual level T

relational level *
PRIM. DB DEFAULT INFERENCH
ELATIO GRAPH INF. TREE TREE
~ N

Figure 10. Query formulation in VSIONARY.

Query formulation may be carried out in "preview mode": in this case the inexperienced user
can see, at each step, the results of the query (s)he is formulating and verify its correctness. Since
execution of a complex query on a large database may take a long time, preview mode can be
disabled in order to avoid slowing down the formulation phase too much.

In the following we describe in detail the five formulation steps.

21

Choosing the primary concept

This step, which starts the query formulation session, is executed visually by right-clicking on a
conceptcp, whose corresponding relatiop= cm(cp) becomes the PR. The default inference tree
associated to,, Dt(G,rp), is calculated and the corresponding viewpddt(G,rp)), is displayed
(see Figure 10, solid arrows).

The associations enabled within the viewpoint determine the interpretation given to each concept
in the vision. Consider for instance the viewpoint in Figure 9, obtained by ch&usitgctas the
primary concept. The default interpretations given to concepts are, for each product P:

the vendors who sell P; the orders made for P;

the stores stocking P; the price-lists where P is quoted;

the clients who made orders for P; the currencies in which P is quoted;

the suppliers of P; the areas of the price-lists where P is quoted.

Editing the viewpoint

This step must be executed if the enabled associations contained in the default viewpoint are not
those the user is interested in. Suppose that the user wants to know, for each product, the orders
signed by the vendors who sell the product. In the default interpretation proposed by the system
with primary concepProduct Order denotes the orders made for a product; thus, the user must
disable the associatidselongs tdrom Productto Order and enable the associatisignsfrom
Vendorto Order. This action changes the interpretation given to queries by forcing the formulation
of paths of joins different from those provided by the default viewpoint.

Within viewpointP, clicking on an enabled association leads to disabling it, that is, to removing
the corresponding directed association filan€licking on a disabled association leads to enabling
it, that is, to adding a directed associatioR {@ee Figure 10, dashed arrows); the direction is the
one currently displayed, which can be changed with a right-click.

Enabling a disabled association may lead to an attempt to form a cycle, that is, to having two
enabled associations enter the same comcdjtis happens in general when the user is interested
in considering contemporarily different interpretations of c. In this case, in order to make the
viewpoint remain a tree, concepis duplicated within the viewpoint. Suppose the user wants to
retrieve, for each product, the vendors who sell the product and those who signed the orders for
the product. If, with primary concefroduct associations signed byis enabled without
disabling associatioms sold by conceptVendoris duplicated. Thus, the user may access
contemporarily both interpretations\ééndor(see Figure 11). If the user is interested in the areas
of the vendors who have signed the orders, (s)he can drag assaiggomiseon the instance
of Vendorcorresponding to this interpretation. The association is graphically duplicated, and the

22

user can enable one or both interpretations; in the latter case, also dareaejst duplicated.
Another example of concept duplication can be found in Section 6 (example #3).

Lk
'v -~
—_— Area %
Erraloyee
SUpEiMises |

=T —b

% =iz giigted B —y % g
-nd’;r
[|
L
]
2
I

iz zold by

7*

Froduct
—i EhOTE] iy @

Figure 11 Duplicating concepYendot

A viewpoint is inherently acyclic; on the other hand, most useful cyclic queries can be
formulated simply by writing a natural join between two instances of a duplicate concept. This can
be done graphically by dragging and dropping one instance of the duplicate concept on the other,
and leads to adding the natural join between the two instandBs to

Choosing the attributes to be retrieved

This step is carried out by double-clicking on concepts and associations and by dragging one or
more attributes inside therojection windowEvery attribute selected is addedriA.

Aggregate functionss(im max min, averagg may be picked up from a list to be applied to
numerical attributes; functiccountmay be applied to numerical and non-numerical attributes.

The user may want to mention a concept even without retrieving any of its attributes. For
instance (s)he may want to retrieve, for each product, the names of the customers who made orders
for it. Attribute name belongs to concefilient thus, the association betweghent andCustomer
must be explicitly activated. This can be done by dragging the whole concept inside the projection
window, and leads to adding a dummy attributB£Q

Formulating selections on the attributes

A selection condition can be formulated by double-clicking on a concept or an association,
dragging an attribute within theelection windovand writing a Boolean predicate involving an

23

operator (picked from a list including all the standard SQL operators) and one or more values
(typed by the user). Every condition formulated is addeiGo

Grouping and sorting

The last step may be performed ograup-and-sort windovghowing a preview of the results in
tabular form. When choosing to order or group data according to a specific attribute, the user will
see the results of his/her action on a sample set of data. Grouping and sorting attributes are added,
respectively, tadGA' andSA!

5.2.3. Query interpretation

Query interpretation is based on the associations which are active within the current vivapoint

the time the query is executed,; it is carried out by mapping from the visual level to the graph level.
Given a visual queryg' = (P,SC}JP',RA'GA',SA), the corresponding graph-level quenyis

= (T(P),SCJP,RAGA,SA); the sets img are obtained from the corresponding oneg|'iby

mapping each concept/association attribute into the corresponding relation attribute. The SQL

interpretation ofj is then built on the inference tr&éP) as shown in Section 4.3, and handed on

to the DBMS. Once the query has been executed, its results are shown to the user in tabular form.
Two particular situations which may occur deserve further attention:

. An enabled empty association does not correspond to any link in the inference tree.
However, if an empty association has I1S-A semantics, activating it within the viewpoint
leads to adding the corresponding flag to the set of selection cond&@hsThis
corresponds to selecting only the instances of the super-concept which are also instances of
the sub-concept.

. Editing the viewpoint may lead to splitting it into two or more trees. Consider for instance the
default viewpoinfroduct and suppose that associatimiongs tdrom Productto Order is
disabled. In this case, the resulting viewpoint is non-connected. The inference tree is still
generated as shown in Section 5.2, and turns out to be non-connected, too. Within a non-
connected inference tree, queries are interpreted by formulating an equi-join for each directed
link belonging to the paths which, within each connected sub-tree, connect the root to each
other relation mentioned; from a conceptual point of view, since no joins connecting the
different sub-trees are provided, the query returns the Cartesian product between the
interpretations given to the connected portions of the viewpoint.

6. Examples

1. For each product supplied by John, retrieve its description and the address of the stores
where it is kept.

24

This query is formulated visually by choosiRgoduct as the primary concept; the default
viewpoint need not be edited. The projection is carried out by double-clickiRgoatuctand

Store and selecting attributescriptionandaddressrespectively. The selection is carried out by
formulating predicateame equal Johan Supplier

2. Retrieve the names and areas of the vendors who signed the orders dated 1996 for client
Marylin.

This query is formulated visually by choosifigjent as the primary concept. According to the

default viewpoint shown in Figure 12, the interpretation given to coeptis the area to which

the client belongs. Since the interpretation required is "the areas supervised by the vendors who

signed the orders", the user must edit the viewpoint by disabling the assoe&togs toand
enabling the associati@upervises

BRI 1) ey o
/ %] ﬂ; b - ‘
Cliemt — Area %

trizke: Em.p‘loyee

IsuhsumesJ Lsubswnesl

o

5yl
Firm Cuztarrer

A PRI

SUpENizes

> :

Order

W e
."._ i

sellz

Price-Lizt

- T phaReEcn A

7*

Froduct

quates

stores @
Store
is supplied b

% I

Curreticy

B

Supplier

Figure 12 Default viewpoint with primary conce@lient

3. For each client belonging to the area supervised by vendor Lewis, retrieve the name of the

client and that of the vendors who signed the orders made by the client for at least 100
hammers.

25

This query may be formulated by choosf@igent as the primary concept. The conc¥pndoris

used twice, with different interpretations: the vendor signing the orders made by the client (this
interpretation is the one implicitly given within the default viewpoint), and the vendor supervising
the area of the client. If the associatisnsupervised bys enabled (without disabling the
associations signed by, the concepYendoris duplicated. Thus, the projection is carried out by
choosing attributeamefrom Client and fromVendor(the one associated @rder); the selection is
carried out by formulating the predicatesme equal LewisnVendor(the one associated Avea),
description equal hammen Productandquantity greater or equal 10@nincludes

4. Retrieve the names of the clients who made orders signed by the same vendor supervising
their area.

This is a cyclic query. Like query #3, it can be expressed by duplicating cofexagdr the join

necessary to create the cycle is formulated by dragging one instareedofon the other.

7. Experimental tests

Query formulation in VSIONARY shares some ideas with QBD* [8]: in fact, it is carried out by
selecting nodes and arcs from a graph-like representation of the database. QBD* enables
formulation of recursive queries, which at present cannot be formulated \8ithn\RY. On the

other hand, the selection of a subscheme and the choice of the paths of jeineNARY can in

most cases be made implicitly by selecting a viewpoiltOXARY also presents some similarities

with QBI [10], an iconic language which builds completely encapsulated objects by allowing all the
attributes in the scheme to be viewed as generalized attributes of a single concept.

In [21], an experiment aimed at comparing QBI and QBD* in terms of their usability is
described. The experiment consists in proposing six queries with different degrees of complexity
to a set of users after briefly training them on the use of the visual language. Users are
distinguished into skilled and unskilled. Queries are formulated on a small database describing the
university domain and are classified according to themantic distancgssentially a function of
the length of the path of joins and of the number of printable attributes crossed) and on whether
they are cyclic or not. Usability is measured by both the time needed to formulate each query and
the accuracy in query completion.

We have reproduced the same experiment wWiliONARY; in this section we report and
comment on the results. In our experiment, unskilled users were first-year Computer Science
students who had no knowledge of information sytems and query languages but were familiar with
Windows environments; skilled users were fourth-year Computer Science students. The training
session lasted about 20 minutes for each user and was carried out on the Order database. Accuracy
was evaluated qualitatively by recording if the primary concept was chosen correctly and if useless

26

associations were enabled. Tables 6 and 7 summarize the results obtainegsmitiaRY and
those obtained with QBD* and QBI, reported in [21].

The analysis of variance (ANOVA) technique yielded significant difference on the average
formulation time between the three systems (F(2,45)=628> 453.20); the results in Table 7
(last row) suggest that the users spent on the average less time formulating queries using
VISIONARY. As to skill level, ANOVA yielded significant difference only for skilled users
(F(2,21)=11.19%) 95,2 2F3.47); the results in Table 7 (first row) suggest that, for skilled users,
the VISIONARY approach works better than the others.

QBD* QBI VISIONARY
time | accur.| time | accur.[time | accur.
Query | Q1 80 exc. 134 exc. 58 exc.
Q2 84 fair 27 exc. 57 exc.
Q3| 111 | exc. | 156 exc. 83 good
Q4| 179 | exc. | 599 fair 229 fair
Q5| 187 fair 55 exc. 76 good
Q6| 134 | good | 298 fair 193 fair

Table 6. Formulation time (in seconds) and accuracy for 6 queries with QBD*, QBI &®NARY. Each
language was tested with 8 skilled and 8 unskilled users.

QBD* QB VISIONARY
Users | skilled 104 218 91
unskilled 154 205 141
all 129 211 116

Table 7. Formulation time as a function of skill level.

The tests pointed out that the hardest operation for unskilled users is viewpoint editing,
especially when concept duplication is needed; in particular, some users forgot to disable useless
associations and were confused by the resultant proliferation of concepts on the screen. On the
other hand, skilled users are more familiar with graph-like representations and they better
understood the semantics of enabling/disabling associations on the screen. We believe that the main
reason why the formulation time withS/ONARY is slightly better than with QBD* is that, while
with the latter users must select the useful paths of associations by themselves, with the former
they can, in most cases, formulate their query on the tree automatically built by the system.

27

8. Conclusions

In this work we have described a visual query language based on an iconic-diagrammatic
paradigm. The user perceives the database through a metaphor called vision, which is made up of
concepts and associations. Queries are formulated by choosing a primary concept, deciding the
attributes to be retrieved and expressing selection predicates. If the interpretation given to a query is
not the one the user had in mind, the user can force a different interpretation by disabling some
associations and enabling others.

Currently we are working on improving the visual metaphor which models the database and on
extending the expressive power of the visual query language. As to the first issue, we will study
how to give an effective visual representation to time as involved in concepts or associations. As to
expressive power, in [22] we have shown an SQL extension where multiple viewpoints could be
adopted for query formulation; iNISIONARY, the user selecting two or more viewpoints within a
single query will be abled to choose between as many different interpretations for the concepts
included in the vision. Finally, we are investigating the possibility of usisgOMARY as a design
tool for databases.

References
[1] E. Tufte (1983)The visual display of quantitative informatidaraphic Press.

[2] F.Benzi, D. Maio & S. Rizzi (1996) I$IONARY: a visual query language based on the user
viewpoint approach. InElectronic Series Workshop in Computir§pringer, London,
http://www.springer.co.uk/eWiC/Workshops/IDS3.html

[3] C. Batini, T. Catarci, M.F. Costabile & S. Levialdi (1992) Visual query systems: a
taxonomy. InVisual Database System Hisevier Science Publishers B.V, North-Holland,
pp. 153-168.

[4] T. Catarci, M.F. Costabile, S. Levialdi & C. Batini (1997) Visual query systems for
databases: a surveJournal of Visual Languages and Comput)@15-260.

[5] M.M. Zloof (1975) Query-by-example. IrProceedings AFIPS ConferencHational
Computer Conference, 44, pp. 431-438.

[6] H.K.T. Wong & I. Kuo (1982) GUIDE: Graphical User Interface for Database Exploration.
In: Proceedings 8th VLDB Conferendéexico City, pp. 22-31.

[7] Y. Dennebouy, M. Andersson, A. Auddino, Y. Dudont, E. Fontana, M. Gentile & S.
Spaccapietra (1995) SUPER: visual interfaces for object + relationship data rdodeisl
of Visual Languages and Computifigr73-99.

28

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Angelaccio, T. Catarci & G. Santucci (1990) QBD*: a graphical query language with
recursionlEEE Transactions on Software Engineerir10), 1150-1163.

J. Boyle, S. Leishman, J. Fothergill & P. Gray (1994) Design of a visual language for a

database. Technical Report University of Aberdeen.

A. Massari & P.K. Chrysanthis (1995) Visual query of completely incapsulated objects. In:
Proceedings 5th International Workshop on Research Issues on Data Enginéeiijre,
Taiwan, pp. 18-25.

A. Del Bimbo, M. Campanei & P. Nesi (1992) A 3D visual environment for querying image
databases. IrProceedings International Workshop of Advanced Visual Interfattesid
Scientific Publishing Co. Ltd., Singapore, pp. 12-25.

T. Catarci, S. Chang, M.F. Costabile, S. Levialdi & G. Santucci (1996) A graph-based
framework for multiparadigmatic visual access to databa&fsE Transactions on
Knowledge and Data Engineeri®(3), 455-475.

M. Consens & A.O. Mendelzon (1990) Graphlog: a visual formalism for real life recursion.
In: Proceedings ACM Symposium on Principles of Database Sysipn#)4-416.

E.F. Codd (1970) A relational model of data for large shared data le2orksnunications of
the ACM13(6), 377-387.

G. Bellavia, D. Maio & S. Rizzi (1994) Minimizing the cost of query formulation through
user viewpoint Relations. Iffroceedings Secondo Convegno Nazionale su Sistemi Evoluti
Per Basi Di Datj Rimini, Italy, pp. 141-159.

R. Fagin, A.O. Mendelzon and J.D. Ullman (1982) A simplified universal relation
assumption and its propertidsCM Trans. Database Sy3(3), 343-360.

W. Kent (1981) Consequences of assuming a universal rela@v, Trans. Database Syst.
6(4), 539-556.

J.A. Wald and P.G. Sorenson (1984) Resolving the query inference problem using Steiner
trees, ACM Trans. Database Sy9(3), 348-368.

E. Sciore (1994) Query abbreviation in the entity-relationship data mofibemation Syst.
19(6), 491-511.

A. Motro (1986) Constructing queries from tokens. Pnoc. ACM SIGMOD Int. Conf.
Management of DataVashington D.C., pp. 120-131.

29

[21] A.N. Badre, T. Catarci, A. Massari & G. Santucci (1996) Comparative ease of use of a
diagrammatic vs. an iconic query language Biectronic Series Workshop in Computing
Springer, Londonkttp://www.springer.co.uk/eWiC/Workshops/IDS3.html

[22] G. Bellavia, D. Maio & S. Rizzi (1995) An SQL extension supporting user viewpoints. In:
Proceedings 6th International Conference on Database and Expert Systems Applications
London, pp. 334-343.

30

