Data Mining and Knowledge Discovery Group at the Department of Computer Science and Engineering (DISI) of the University of Bologna
Publications
A list of recent publications of the Data Mining and Knowledge
Discovery Group at DISI follows, grouped by topic.
Gene Ontologies
- Domeniconi, G., Masseroli, M., Moro, G., & Pinoli, P. (2016). Cross-organism learning method to discover new gene functionalities. Computer Methods and Programs in Biomedicine, 126, 20-34. https://doi.org/10.1016/j.cmpb.2015.12.002
- Lena, P. D., Domeniconi, G., Margara, L., & Moro,
G. (2015). GOTA: GO term annotation of biomedical
literature. BMC Bioinformatics, 16(1),
346. https://doi.org/10.1186/s12859-015-0777-8
- Domeniconi, G., Masseroli, M., Moro, G., & Pinoli,
P. (2014). Discovering New Gene Functionalities from Random
Perturbations of Known Gene Ontological Annotations. In KDIR
2014 - Proceedings of the International Conference on Knowledge
Discovery and Information Retrieval, Rome, Italy, 21 - 24 October,
2014
(pp. 107-116). https://doi.org/10.5220/0005087801070116
- Domeniconi, G., Masseroli, M., Moro, G., & Pinoli, P. (2014). Random Perturbations of Term Weighted Gene Ontology Annotations for Discovering Gene Unknown Functionalities. In Knowledge Discovery, Knowledge Engineering and Knowledge Management - 6th International Joint Conference, IC3K 2014, Rome, Italy, October 21-24, 2014, Revised Selected Papers (pp. 181-197). https://doi.org/10.1007/978-3-319-25840-9_12
Support Vector Models and optimization in distributed and streaming
environments
- Frandi, E., Ñanculef, R., Lodi, S.,
Sartori, C., & Suykens, Johan A. K. (2016). Fast and Scalable
Lasso via Stochastic Frank-Wolfe Methods with a Convergence Guarantee.
Machine Learning 104(2), 195-221. Berlin Heidelberg: Springer.
- Frandi, E., Ñanculef, R., Gasparo, M. G., Lodi, S., &
Sartori, C. (2013).Training Support Vector Machines Using
Frank-Wolfe Optimization Methods.
International Journal of Pattern Recognition and Artificial Intelligence 27(3),
1360003. Singapore: World Scientific.
- Ñanculef, R., Allende, H., Lodi, S., & Sartori,
C. Two One-Pass Algorithms for Data Stream
Classification using Approximate MEBs. In A. Dobnikar,
U. Lotrič, & B. Šter (Eds.), Adaptive and
Natural Computing Algorithms, 10th International Conference,
ICANNGA'11, Proceedings, Part II, April 14-16, 2011, volume
6594 of Lecture Notes in Computer Science (pp. 363-372). Berlin
Heidelberg: Springer.
- Frandi, E., Gasparo, M. G., Lodi, S., Ñanculef, R., &
Sartori, C. (2010). A New Algorithm for Training SVMs using
Approximate Minimal Enclosing Balls. In I. Bloch &
R. M. Cesar (Eds.), Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications, 15th Iberoamerican
Congress on Pattern Recognition, CIARP 2010, Sao Paulo, Brazil,
November 8-11, 2010, volume 6419 of Lecture Notes in Computer
Science (pp. 87-95). Berlin Heidelberg: Springer. The paper was awarded
as the "Best Paper" of the conference.
- Lodi, S., Ñanculef, R., &
Sartori, C. (2010). Single-Pass Distributed Learning of Multi-class
SVMs Using Core-Sets. Proceedings of the Tenth SIAM
International Conference on Data Mining, Columbus, Ohio, April 29-May 1,
2010 (pp. 257-268). Philadelphia: SIAM.
- Lodi, S., Ñanculef, R., &
Sartori, C. (2009). L2-SVM Training with Distributed Data. In
L. Braubach, W. van der Hoek, P. Petta, & A. Pokahr (Eds.),
Multiagent System Technologies, 7th German Conference, MATES 2009,
Hamburg, Germany, September 9-11, 2009, volume 5774 of Lecture
Notes in Computer Science (pp. 208-213). Berlin Heidelberg: Springer.
Parallel and Distributed Outlier Detection
- Angiulli, F., Basta, S., Lodi, S., & Sartori,
C. (2016).
GPU Strategies for Distance-based Outlier Detection.
IEEE Transactions on Parallel and Distributed Systems 27(11), 3256-3268. Los Alamitos, CA: IEEE Computer Society.
- Lodi, S., Angiulli, F., Basta, S., Luiselli, D., Pagani, L., & Sartori,
C. (2014). Distance-based outlier approach to improve the detection of genomic loci undergoing differentiation in worldwide human populations. Accepted for publication in a volume of selected papers from
Workshop Bringing Maths to Life (BMTL 2014), Naples, Italy, October 27-29, 2014.
Berlin Heidelberg: Springer.
- Angiulli, F., Basta, S., Lodi, S., & Sartori,
C. (2014). Accelerating outlier detection with intra- and inter-node parallelism.
HPPD-DM 2014,
Special Session on High Performance Parallel and Distributed Data Mining,
International Conference on High Performance Computing & Simulation (HPCS 2014),
Bologna, Italy,
July 21-25, 2013 (pp. 143-150).
- Angiulli, F., Basta, S., Lodi, S., & Sartori,
C. (2013). Fast outlier detection using a GPU.
HPPD-DM 2013,
Special Session on High Performance Parallel and Distributed Data Mining,
International Conference on High Performance Computing & Simulation (HPCS 2013),
Helsinki, Finland,
July 1-5, 2013 (pp. 143-150).
Los Alamitos, CA: IEEE Computer Society.
- Angiulli, F., Basta, S., Lodi, S., & Sartori,
C. (2013). Distributed
Strategies for Mining Outliers in Large Data Sets. IEEE
Transactions on Knowledge and Data Engineering 25(7), 1520-1532. Los Alamitos, CA: IEEE Computer Society.
- Angiulli, F., Basta, S., Lodi, S., &
Sartori, C. (2010). A Distributed Approach to Detect Outliers in
Very Large Data Sets. In P. D'Ambra, M. Guarracino,
D. Talia (Eds.), Euro-Par 2010 - Parallel
Processing, Proceedings, Part I, 16th International Euro-Par
Conference, Ischia, Italy, August 31-September 3,
2010 (pp. 329-340). Berlin Heidelberg: Springer.
Distributed Data Clustering
- Costa da Silva, J., Klusch, M., & Lodi,
S. (2016). Privacy-awareness of Distributed Data Clustering
Algorithms Revisited. In Henrik Boström, Arno Knobbe, Carlos Soares, & Panagiotis Papapetrou (eds.), Advances in Intelligent Data Analysis XV, October 13-15, 2016, Stockholm, volume 9897 of Lecture Notes in Computer Science (pp. 261-272). Cham: Springer International Publishing.
- Costa da Silva, J., Klusch, M., Lodi, S., & Moro,
G. (2006). Privacy-preserving agent-based distributed data
clustering. Web Intelligence and Agent Systems 4,
221-238.
- Bellavia, S., Lodi, S., &
Morini, B. (2006). Inferences on Kernel Density Estimates by Solving
Nonlinear Systems. In K. A. Froeschl & W. Grossmann
(Eds.), Proceedings 18th International Conference on Scientific
and Statistical Database Management SSDBM 2006, Vienna, Austria,
3-5 July 2006 (pp. 389-397). Los Alamitos, California: IEEE
Computer Society.
- Costa da Silva, J., Klusch, M., Lodi, S., &
Moro, G. (2004). Inference Attacks in Peer-to-Peer Homogeneous
Distributed Data Mining. In R. López de Mántaras
& L. Saitta (Eds.), Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, ECAI 2004, including
Prestigious Applicants of Intelligent Systems, PAIS 2004,
Valencia, Spain, August 22-27, 2004 (pp. 450-454). IOS Press.
- Klusch, M., Lodi, S., &
Moro, G. (2003). Issues of agent-based distributed data mining.
In Proceedings of the Second International Joint Conference on
Autonomous Agents & Multiagent Systems, AAMAS 2003, July
14-18, 2003, Melbourne, Victoria, Australia, (pp. 1034-1035). New
York, NY: ACM.
- Klusch, M., Lodi, S., &
Moro, G. (2003). Agent-Based Distributed Data Mining: The KDEC
Scheme. In M. Klusch, S. Bergamaschi, P. Edwards, & P. Petta
(Eds.), Intelligent Information Agents, The AgentLink Perspective,
volume 2586 of Lecture Notes in Computer Science
(pp. 104-122). Berlin Heidelberg: Springer.
- Klusch, M., Lodi, S., & Moro,
G. (2003). The Role of Agents in Distributed Data Mining:
Issues and Benefits. IEEE/WIC International Conference on
Intelligent Agent Technology (IAT 2003), 13-17 October 2003
(pp. 211-217). Halifax, Canada: IEEE Computer Society.
- Klusch, M., Lodi, S., & Moro, G. (2003). Distributed clustering
based on sampling local density estimates. In Proceedings of the
19th International Joint Conference on Artificial Intelligence
(pp. 485-490). Acapulco, Mexico: AAAI Press.
Stream Data Clustering
- Lodi, S., Moro, G., & Sartori, C. (2006). Stream Clustering Based on Kernel Density Estimation. In G. Brewka, S. Coradeschi, A. Perini, P. Traverso (Eds.), Proceedings of the 17th Eureopean
Conference on Artificial Intelligence, ECAI 2006, Including Prestigious Applications of Intelligent Systems (PAIS 2006),
Riva del Garda, Italy, August 29 - September 1, 2006 (pp. 799-800). IOS Press.
Data management and mining in massive and self-administered networks
- Cerroni, W., Monti, G., Moro, G., & Ramilli,
M.: Network Attack Detection Based on Peer-to-Peer
Clustering of SNMP Data. In N. Bartolini, S. Nikoletseas,
P. Sinha, V. Cardellini, & A. Mahanti (Eds.), Quality of
Service in Heterogeneous Networks, Proceedings of the 6th
International ICST Conference on Heterogeneous Networking for
Quality, Reliability, Security and Robustness, QShine 2009 and
3rd International Workshop on Advanced Architectures and
Algorithms for Internet Delivery and Applications, AAA-IDEA
2009, Las Palmas, Gran Canaria, November 23-25, 2009, volume 22
of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering (pp. 417-430).
Berlin Heidelberg: Springer.
- Monti, G., & Moro,
G. (2009). Self-organization
and Local Learning Methods for Improving the Applicability and
Efficiency of Data-Centric Sensor Networks. In N. Bartolini,
S. Nikoletseas, P. Sinha, V. Cardellini, & A. Mahanti (Eds.),
Quality of Service in Heterogeneous Networks, Proceedings of the
6th International ICST Conference on Heterogeneous Networking
for Quality, Reliability, Security and Robustness, QShine 2009
and 3rd International Workshop on Advanced Architectures and
Algorithms for Internet Delivery and Applications, AAA-IDEA
2009, Las Palmas, Gran Canaria, November 23-25, 2009, volume 22
of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering
(pp. 627-643). Berlin Heidelberg: Springer.
- Lodi, S., Monti, G., Moro, G., & Sartori,
C. (2009). Peer-to-Peer Data Clustering in Self-Organizing
Sensor Networks. In A. Cuzzocrea (Ed.), Intelligent
Techniques for Warehousing and Mining Sensor Network Data
(pp. 179-212). Hershey, PA: Information Science Reference.
- Monti, G., & Moro,
G. (2008). Multidimensional Range Query and Load Balancing
in Wireless Ad Hoc and Sensor Networks. In K. Wehrle,
W. Kellerer, S. K. Singhal, & R. Steinmetz (Eds.),
Proceedings of the Eighth International Conference on
Peer-to-Peer Computing, 8-11 September 2008, Aachen, Germany
(pp. 205-214). Los Alamitos, California: IEEE Computer Society.
- Monti, G., Moro, G., & Lodi,
S. (2007). W*-Grid: A Robust Decentralized Cross-layer
Infrastructure for Routing and Multi-Dimensional Data Management
in Wireless Ad-Hoc Sensor Networks. In M. Hauswirth,
A. Montresor, N. Shahmehri, K. Wehrle, & A. Wierzbicki,
Proceedings of the Seventh International Conference on
Peer-to-Peer Computing, 2-5 September 2007, Galway, Ireland
(pp. 159-166). Los Alamitos: IEEE Computer Society.
- Moro, G., Monti, G., & Sartori,
C. (2006).WR-Grid: A Scalable Cross-Layer
Infrastructure for Routing, Multi-dimensional Data Management
and Replication in Wireless Sensor Networks.In G. Min, B. Di
Martino, L. T. Yang, M. Guo, & G. Rünger (Eds.),
Frontiers of High Performance Computing and Networking - ISPA
2006 Workshops, volume 4331 of Lecture Notes in Computer Science
(pp. 377-386). Berlin Heidelberg: Springer.
- Moro, G., & Monti,
G. (2006). W-Grid: a Cross-Layer Infrastructure for
Multi-Dimensional Indexing, Querying and Routing in Wireless
Ad-Hoc and Sensor Networks.In A. Montresor, A. Wierzbicki,
& N. Shahmehri, Proceedings of the Sixth IEEE International
Conference on Peer-to-Peer Computing (P2P'06), 6-8 September
2006, Cambridge, UK, (pp. 210-220). Los Alamitos: IEEE Computer
Society.
September, 2018